SL(2,C), SU(2), and Chebyshev polynomials
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When expressed in terms of the trace, the characters of SU(2) are known to be related with the
Chebyshev polynomials of second kind. It is shown that those of the first kind also play a
fundamental role. If 4eSU(2) and ¢t = Tr A4, then f, (t) = Tr(4,,), f,, (2 cos 8) = sin né /sin 0,
I, (t) =Tr(4™),1,(2 cos ) = 2 cos nf, where 4, denotes the representative of 4 in the irrep
of dimension n. Other polynomials related with them are of interest. They are (i) the
“primordial” polynomials P, (every f, or l, can be expressed in a unique way in terms of P,,
where d is a divisor of n), (ii) the “factorial” polynomials f,! = f, f,- - -f,, which occur in a
natural way in the representations, (iii) the g, polynomials appearing in the generating

functions of powers of f,,.

I. THE 7, POLYNOMIALS

The characteristic equation for AeSL(2,C) is

A2 —t44+T1=0, (.1
where ¢t = Tr A and I is the unit 2 X 2 matrix. From (1,1) it
follows that any power (positive or negative) of 4 is a linear
combination of 4 and /

A"=f, ()4 —h, (D], (1.2)

where f,, and 4, only depend on . It is a simple matter to
prove that they are in fact polynomials with integral coeffi-
cients. By multiplying (1.2) by A, one gets in using (1.1)

yLER I [f;,(t)A _h”(t)I]A
= [, () —h,()]A—f, (DI

and, by identification, we obtain the recurrence formula

Soi1 @) =tf, () = f,_1 (D), (1.3a)

fo(t) =0, fi() =1, (1.3b)
together with &, (£) =f, _, (1),

A"=f,()A4—f, ., (DL (1.4)

Equation (1.3) could be used as a definition of the sequence
/, (8). By choosing for 4 a diagonal matrix with entries e =%,
we get for 70,
fo(2cos @) =sinnf/sinf=U, _,(cos ), (1.5)
as it can be shown by induction. Here U is the standard
notation for the Chebyshev polynomial of the second kind.
Our labeling is justified by the symmetry property
fon®)=—f,() (1.6)
but also by the property (3.2) which will be derived later on.
It is well known that the representative 4, of SU(2) in the
irreducible representation of dimension n has the trace
sin n@ /sin @ if the eigenvalues of 4 are e =, Therefore
fo(trd) =tr(4,). (L.7)
Remark 1: If we multiply (1.1) by 4 ! we see that
A4+ A '=1l (1.8)
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Moreover if we replace 4 by 4 ~! in (1.4) and subtract the
equation obtained from (1.4), we get
(A" —A4 "/ (A—-A"Y=fI (1.9)

Remark 2: The choice of the letter f for denoting our set
of polynomials is made to recall the well-known link between
Fibonacci numbers ¢, and Chebyshev polynomials, namely,

L) =1"""¢p,

¢n+l =@n +¢n—1’ ¢0=0’ 1= 1.

Remark 3: The orthogonality of the £, () is just the
orthogonality of characters

1 +2
—J (4 — )V (Of, (Ddt =6,
2r J_2
Remark 4: The generating functions of the f,’s can be

written

(1.10)

(1.11)

z el z
P(tz) =—— — = ()= —
D) = Tty 2T T T 12
(1.12)
Il. THE /, POLYNOMIALS
The /,’s are polynomials in ¢ defined by
1,(t) =Tr(4") @.n

[compare with (1.7)]. Taking the trace of both sides of Eq.
(1.4), we get

L@)y=t,() —2f,_, (D)
and, by use of (1.3),

L) =foi1() —fo_1 (D). (2.2)

It is a simple matter to deduce that the /,’s satisfy the same
recurrence relation as the £, ’s, namely,

L=t )=1,_,@),

(2.3)
L)y =2, L) =t
Instead of (1,6), we have
I_,(0y=1,(). (2.4)
Instead of (1.8), we have
A"+A4 "= (0], (2.5)
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which can be easily proved by replacing 4 by 4" and ¢ by
I,() in Eq. (1.1).

Remark: The numbers A, defined by [, (/) =i"A, are
known as the Lucas numbers. They obey the same recur-
rence relation as the one of Fibonacci (with 4,=2,
A, =1).

Finally suppose that 4 is diagonal with entries e * *, we
readily get from (2.5), for n>0,

1,(2cos 8) =2 cos n@ =2T,(cos 8) (2.6)

or
1,(t) =2T,(¢/2), (2.7)

which relate the /,’s to the Chebyshev polynomials of the
first kind.

Remark: For a given value of ¢, the sequences 4, (¢)
satisfying the recurrence relation (1.3a) form a two-dimen-
sional vector space. The sequences f, (¢) and /, (¢) form a
basis characterized by the fact that they are eigenvectors of
the operator T transforming a sequence (4, ) into the se-
quence (4 _, ). That sequence space can be given a symmet-
ric scalar product

(&:h ) =1(28oho — 81h_1 — g_1h1). (2.8)
We get an orthogonal (resp. pseudo-orthogonal) space if
|t] <2 (resp. |¢|>2) and an indefinite metric for || =2.
Note that {g,g} is invariant under a shift, namely,

gn gn+l

(g.8) =det[ ] for any neZ. (2.9)

For a diagonal matrix, the entries are }(¢ + (¢ — 4)'/?).
Formulas (1.9) and (2.5) give

S (®) = (a"—B")/(a —B),

n+1 gn

(2.10)

IL,)y=a"+8", (2.11)
wherea = J(t + (12 —4)),B=4(t — (t1? —4)')=a"".

The sequences (") and (8 ") both satisfy the recur-
rence relation (1.3a). They form an isotropic basis for the
sequence vector space.

Other properties of the f, and I,: We must underline that
the SL(2,C) group is a very pedagogical tool for a study of
the Chebyshev polynomials. As an example the property

La.@=1,1) (2.12)
follows from
Tr(4™) =1,(Tr(4")).
Also
fiQ)=n, [,(2)=2 (2.13)
follow from A4 = I.
Let us mention that the expressions
n-1Mp-k—1
2 (8) = ( )(1—2)"_""'
L=2 " &
n-1 —k—1
= (2” o (S Gt
) k=0
n—1 2n
=21—2n ( )t_z n-k—lt 2k
kgo e+ 1 ( ) (r+2)
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are easily obtained by setting A =X+ Tord=(X+1)/
(X — I) (the same for the /,’s).

lil. THE PRIMORDIAL POLYNOMIALS P,

In the following, f, and /, have positive index n. We
have already mentioned the relationship between the f,, and
the Chebyshev polynomials,

U, (t/72)=f,,,(8). (3.1)

Our labeling was clearly justified by the symmetry property
(1.6), but also by the following ones:

Ll S Off n|m, (3.2)
f;z/\fm =f;:/\m' (33)

In (3.2) the vertical bar means ““is a divisor of.” In (3.3)
the symbol A means “greater common divisor” (g.c.d.).
The same symbols are used both for polynomials and natural
integers.

The proof of those properties is quite easy. A matrix A is
said to be of pseudo-order n if n is the smallest integer such
that 4  is a scalar matrix; it is clear that

A" =Al iff nlm.

From Eq. (1.4), we get
S (D=0

Property (3.2) follows.
Property (3.3) can be derived from the following identi-

iff n|m.

ty:

Jas () = L1, (D) £, (D), (3.4)
a direct consequence of the property

Tr(4,,) =Tr(4%)Tr(4,) (3.5)

obtained with the aid of identities (1.9) and (2.5)."Note that
A% canbe considered as well as (4, )®or (4 %), (representa-
tion property).

Let us denote by d the g.c.d. of m and n. It is clear that
J; () =0 implies £,, (t) =f, (t) = 0. Conversely suppose
[ (1) =f,(£) =0.Wehavem = ad,n = bd witha Ab = 1.
From (3.4) we have

Solla (D) 14 () =fo (L (D)) f4 (1) = 0.
Since a Ab = 1, f, and f, cannot vanish together. Therefore
£, () =0.

As a consequence we have also the following property:
[/, and f,, are relatively prime iff n and m are relatively prime.

An important consequence of (3.2) and (3.3) is that
any polynomial f, can be factorized in a unique way as a
product of prime factors,

f;.(t) =HPd(t)’

d|n
where the product is taken for all divisors of n. The P, are
characterized by the properties

(i) P, only divides the f,, such that n|m,

(ii) P, =f, iff n is prime,

(iii) P, AP, =1lifn#m.

Before giving a rigorous definition of the P,’s (hereafter
called primordial polynomials), let us examine some exam-
ples.

(3.6)
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Example 1: We know that f;| f;. Since f,=P, (2 is
prime) we have f, = P,P,.

Example 2: f,| fs and f;| fo. Therefore there exists a
unique polynomial P, such that fg = P,P,P;.

Example 3: f,, = P,P,P, PP,

fi(®) =t(t2 =12 =2)(t2=3)(t*—4t* +1).

In order to get a rigorous definition of the P,’s, we will

use the Mgbius function. It is an arithmetical function' de-
fined as follows:

pl)y=1,
p(n) =1 (resp. — 1) if n is a product of an even (resp.
odd) number of different primes,
p(n) =0 otherwise.
Formula (3.6) can be written
log £, (2) = z log P, (t).
d|n
By making use of the inverse Mgbius formula,’ we get
tog P, (1) = (%) log £, (1)
d|n d
or

P, () =T[fa(0)]* . (3.7

d|n

Consequence: A matrix A4 is of pseudo-order »n if and
onlyif P, (tr4) =0.

Proof: P, (t) =0 implies f, () = 0. The pseudo-order
must be a divisor of n. Since f, (¢) = I1,,,P,(¢) and the P,’s
are relatively prime, not other P, (¢) can vanish. The pseudo-
order is 7.

The /,’s also can be factorized in primordial polynomi-
als. The proof is based on the relation

Lon (1) = £, (D], (1), (3.8)
which is a direct consequence of (3.4) for @ = 2 and of the

value of /,(¢) = t. Now, any n can be written in a unique way
as n = 2%m where m is odd and a>0. We have

f2a+l,,. = HPdPZdPM“ 'P2a+nd,

d|m
Sy = depzd“’Pza,,-
d|m
From (3.8) it follows that

L., (2) =dHP2a+ld(t) (m odd). 3.9)
The inverse forrl;nula is given by

P, (1) =ﬂn[lzad(t)]“‘"’d> (3.10)
(the proof is easy but tedious; it is left to the reader).

As particular consequences we have

(i) Py, |l,, (3.11)

(ii) 1, (t) = P,(2)P,, (¢) if p is prime, (3.12)

(iii) Lo (£) = Pya v (2). (3.13)
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Some properties of the primordial polynomials (given
without proof).

(i) They are polynomials with alternate integral coeffi-
cients.

(i) P, (1) = H(t—-2cos ﬂ), (3.14)
p(n) h
where p(n) meansp<nandpAn=1.
It follows from (3.14) that
deg P, (¢) = @(n), (3.15)

where @(n) is the Euler arithmetical function. From (3.6)
we obtain the well-known formula

Y ed)=n

dln

[taking into account that degree f, =rn — land (1) = 1].
(iii) We have

P, (1) =t%" — [@(n) +u(n)]t*™ "2 4 -, (3.17)
(iv) As a consequence of (3.15) every polynomial P, is

of even degree except P,: P,(¢) =t.

(v) For practical computations of the primordial poly-
nomials it is convenient to use the following property:

log P, (1) =log £, (1,5, (1))

(3.16)

- z logf;), (ln/p,-(t)) + 210gf;,| (ln/p,pj(t))' )
’ (3.18)

where n = py'p3*- -+ and p,,p;,... #p,. As examples, we have

Py (1) = Bl _ Slls(0)

AHL®) ALY
Pty ~LllsOVALO) _ Allo®)AL®)
T o) flls (D) Als(D) Al ()

(vi) The divisibility property (3.2) can be proved on a
physical problem: the polynomial f, (¢) appears as a charac-
teristic equation for a massless string on which (n — 1) iden-
tical massive points have been fixed at equal distances. Obvi-
ously any eigenfrequency for the n-interval problem is also
an eigenfrequency for an nm-interval one. More precisely

£, (1) =det(e] = J,), (3.19)
where
’0 1 0 07
1 0 1 e 0
0 1 0
J, =
0o - 0 0 1
_0 0 0 1 0_
3.20)

Although the divisibility property is physically obvious, it is
not evident on the structure of J,,.

(vii) For t =2, P,(2) is related with an arithmetical
function A (n) known as the Von Mangoldt one’

lo, if n=p* (p prime, a>1),
Aln) =Log P, (2) = [ng otherwfse i
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In other words,
P,(2)=p
P,(2)=1

if n=p~* ime),
' p (p prime) (3.21)
otherwise.

IV. THE CLEBSCH-GORDAN SERIES AND THE /,’s
Let us consider a Kronecker product of the type
B=A4, ®4, ® -84 (4.1)
where B is the representative of the matrix 4eSL (2,C) in the
representation which is the direct product of representations

of spins (n;, — 1)/2 (i = 1,2,...,k). Suppose that B reduces as
follows:

ng?

B=ad, ©aA, & -oaAd,, (4.2)

where a; is the multiplicity of the representation of dimen-
sion m;. One gets from (4.2)

TrB =0,/ () + 02/, () + " + 8, [, () (43)
and from (4.1)
TrB=f, (0f, ()£, (D). (4.4)

We intend to give a formula permitting to compute the mul-
tiplicities @, as functions of the n,’s.

Before going to the general case, let us study the case
where B is of the form

B=A@A®A---®A (k factors). (4.5)
Then

TrB=1t* (4.6)
From

A+A" ' =1
we get

(A +A -—1)k+l___kil(k+ I)A k+1-—2r=tk+ll
r

r=0
or
1 K& (k+1
Y Z( )lk+1—2r(t)=tk+l-
2 r=0 r

By taking the derivative of both sides and using the property
(valid even for negative n)

L4
— My Mo, . .tk 1
Fk (Xl,xz,...,xk+ 1) - 2 a"l"l""lk+|xllx22 xk+l
n;=0
+2 PN
1 X X" " Xp

1,(t) =nf, (1) 4.7)
we obtain
1 k&! k!
tk=7r=om(k+1—2")fk+1—2r(t)
or
[(k+1)/2] k!
“= 2 arriom I

><.fk+l—2r(t)’

where we have taken into account the property (1.6).

The coefficients appearing in (4.8) can be considered as
entires of an infinite matrix XK. They give the multiplicity of
the representations appearing in the reduction of a tensor
product of & spin- representations. The matrix X is reduc-
ible into an odd and an even part. It reads

(4.8)

- -

(4.9)

All entries” above the diagonal are zero. The entries of the
first column are known as Catalan numbers.?

Let us now examine the most general problem; namely,
the reduction of the Kronecker product (4.1). The number
of times the representation of dimension n appears is given
by the scalar product

- S

2
=LJ‘ S, (Of () £ (O, () (4 —2%)2 dt.
2 J_-2
(4.10)

Because of the symmetry of that formula we will writen,  ,
instead of n.

Instead of computing the formula (4.10) we will derive
a generating function for the a’s. For such a purpose, we
multiply (4.10) by x7'x32- - -x;*,*' and sum over all n,’s. We
get, with the aid of (1.12),

T ) (M- 42 —tx, + X2, )

k+1

1

(4—t2)1/2dt

=X X2 X 41 z x:"‘ H

i=1

2262 J. Math. Phys., Vol. 28, No. 10, October 1987

jeEn (6 —x;)(1 _xixj)'

(4.11)
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The simplest functions F) are
Fi(x,x5) = %%/ (1 — X1x,),

X1XoX3 ,
(1 —x%5) (1 — x%3) (1 — x4%3)

Fy(x,x3,x3) =

X1 X2X3%,4 (1 — X, X5%5%,)

Fi(xy,x5,%3,X,) =

Os

F4(x1,x2,x3,x4’x5) e ——
I (1 —x;x;)

where g, are the elementary symmetric functions of degree /.
Let us note that the F, ’s for larger values of k¢ have more and
more complicated expressions.

V.FACTORIAL CHEBYSHEV POLYNOMIALS

In the present section, we study two kinds of polynomi-
als which are involved in representations of SL(2,C) and
SU(2). They are

L =[O £,(1), fo(O!=1, (5.1)
LN=1L@®0L):-1,), LN=1, (5.2)
and the f( " (¢) defined by
(An—l__z)(An—S_z)...(A —n+1_z)
= S £, (=D, (5.3)
k=0

where t = Tr A.
Proposition 5.1: We have the recurrence relation
?-f(;“) () =L, @), 1D 0+ _k(t)f(;) ).
(5.4)
Proof: First we note that for 4 = I, t = 2 and definition
(5.3) givesf( n (2) = (%) and (5.4) gives the well-known
recurrence relation for binomial numbers [/, (2) = 2]

Gi)=Gr)+()
k+1) \k+1 k)
It is clear that (5.3) is symmetric in the exchange

A<A " which explains why the f, », s only depend on #.

Multiply each factor of (5.3) by 4 and the left-hand side
by A " — Az. It follows that the right-hand side must be
multiplied by 7 — 4"+ 'z. We get

(A" —Az)(A""? —Az)+ (4 ~"— Az2)
= ¥ fi, (= DI —A4""'2)2%
K=o
According to the definition (5.3), we have

n+1

3 fipen, (0 (= D*(dz)*
k=0

— i‘f(ﬁ) (t)(— l)k(Zk—An+lzk+l).
k=0

Replace now z by 4 ~'z and identify the terms of both sides.

We get
— —k—1 n—k
f(ZI%) I=f o (nA +f(;) (1A .

2263 J. Math. Phys., Vol. 28, No. 10, October 1987

(1 —xx,) (1 —x23) (1 — x3x,) (1 — x5%3) (1 — x,%x4) (1 —x3x4)’
[1 '_0'4+0'5(1 —(75)],

-
Multiply by A " and take the trace of both sides. We obtain
LOS e, ()

=lk_,+1(t)fz+l)(t)+l,,_k+,(t)f(z)(t)- (5.5)

The relation (5.4) is just a particular case of (5.5) forr =0.
Proposition 5.2:

ANGEIAOY/ AT SO (5.6)

Proof: This can be proved recurrently with the aid of
(5.4). Forn =1, (5.3) gives

1
l—z=3% f,(O(— 1)%z%,
k=0

which proves (5.6) for n = 1. Let us suppose that (5.6) is
valid for n. The relation (5.4) gives with the aid of (5.6)

2f(;¢}) (t) = [lk+1(t)f _k(t) + l,,_k(t)fk+1(t)]

X o OV et DV _ e (D]

and Proposition 2 follows from the identity

S () =£, (O, (1) + 1L, ()f, (1)

[a direct consequence of (2.10) and (2.11)].
Remark 1: Other identities like

(5.7

2n+1

> S, (0 =2[1, (D)7,
k=0

2n+1

S S, (= 1DF=0,
k=0

can be proved.

Remark 2: By making ¢ = i, we can discover nice prop-
erties of Fibonacci and Lucas numbers.

In the next two sections we give applications of the
S (@)'s.

Proposition 5.3: The f( n (¢) withk(n — k) = Oare poly-
nomials with simple roots. More precisely, any S n (¢) can
be written in a unique way as a product of distinct primordial
polynomials

f(;, (ty=P, ()P, (t):-P, (), m<n, (5.8)

with the properties
S @(m;) = k(n— k), (5.9)
(5.10)

Zﬂ(mx) = - 1’
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3 Atm,) = log (Z) (5.11)

Proof: Equation (5.8) can be written

fip O =T Pn(e)sem, (5.12)
m=1

where a(n,k,m) must be proved to be 0 or 1 (never nega-
tive!). Euclidean divisions of » and &k by m give

n=m((n—R)/m)+ A, O0<A<m,

k=m((k—k)/m)+k, O<k<m.
Then, the Euclidean division of n — k by m will be
n—k=m(ln—k— (hA—k)1/m)+h—k if axk

=m(ln—k—(A—k)l/m—1)
+ha—k+m if A<k
It follows that in f(’n‘), P, will appear at the numerator
(n — 7i)/m times and at the denominator
5__1}+ [[n —k—(A—k))/m times if A%k,
m [n—k—(A—k)]/m—1 times if fi<k.

Therefore it will appear once as a factor in f, py if A <kand

not otherwise. That proves the beginning of our proposition,
that is,

a(nkm)=1 if A<k,

(5.13)
a(nk,m) =0 otherwise.
Now, we know that
L@ =t""'—(n=2)t""34 -, (5.14)
P, (6) =t" —[u(n) + @(n)]t#W "2 4. (5.15)
From (5.14), we easily get
i |
1
1 1
1 P,
1 P, P,
1 P,P, PP,
1 P PP, PP,
1 P,P,P, P,P.P, P,P PP,

The relations (5.16)—(5.18) permit one to check that
table. For instance, f, 1, = PsPeP; is such that

3(7—=3)=@5) +@6) + @(T) =4+ 2 +6,

— 1 =pu(5) +pu(6) +u(7) = - 1+1-—1,

log(7:6-5/2-3) =log5+ 0+ log 7.

VI. THE GENERATING FUNCTIONS OF THE 7, (f)*
We already know that [ (Eq. 1.12)]
> fu)z"=
n=0

z

e 6.1)
1—tz+ 22 (

2264 J. Math. Phys., Vol. 28, No. 10, October 1987

f;z(t)' — tn(n—l)/2

—[(n=2)(n—1)/2]grn—Dr2—2 ..
and, if k(n — k) #0,
Lo (O =t " Rlk(n—k) —1]gkn-0 -2 4 ...
But (5.15) and (5.12) give us

n

f(;) (1) =t"— z a(nk,m)
m=1
X[@pm) +pu(m)1tV¥ =24 -,
where

N= Z a(n.k,m)p(m).
m=1
It readily follows that, if k(n — k) #0,

n

> a(nkm)p(m) =k(n —k),
(4]

m=

(5.16)
> a(nkm)lp(m) +p(m)] =k(n—k) —1,
0

m =

which becomes by use of (5.16),

n

> a(nkmu(m) = —1.

m=0

Equations (5.17) and (5.16) are alternatives for (5.9) and

(5.17)

(5.10). The last property to prove, namely, (5.11) follows
from (5.12) by replacing ¢ by 2,
log (Z) =m§::1a(n,k,m)A(m). (5.18)
Consequence: The f( " (t) can be written in a “Pascal
tableau’ analogous to the one of binomial numbers. We get
1
1
P,P, 1 .
P 1
P,P.P P,P.P, 1

Proposition 6. 1: The generating functions of the £, (¢)* is
given by

i & (1.2)
fu ("= ,
n;O Ef:olf‘(;(+1) (t)( — )Izl
where g, is a polynomial in ¢ and z, of degree k in z with
£.(,0) =0.
Proof (by induction): The property is true for k = 1 [Eq.
(6.1)]. It can be also written as follows:

(6.2)

4
-2 4" "—2)

S £ =
n=0
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Equation (6.2) would follow from definition (5.3) and the
relation we are going to prove recurrently:

-]

S fukzr

n=0

_ g (8,2)

T Ak —z) (A5 P—z) (4 "k —2z)
That relation can be written

(6.3)

g l= 3 f,()z"(A4*—2)-(4 " ~2).
n=0
Let us replace z by Az. A simple transformation leads to
g (t4z) = 3 £,(D*A " (45 —2)
n=0

XA 3—z) (4% 1—2)
and
(A —A4 ~%2)g, (t,42)

— iﬂ'(t)Anzn(Ak+l_z)
n=0

XAt —z)--(4 k1 2), (6.4)
A similar relation can be obtained by replacing 4 by 4 ~!
(same trace). By subtracting that relation from (6.4) and
dividing by 4 — 4 ~', one obtains
(4—4 " '2)g, (t,Az) — (4~ — A*2)g, (1,4 ~'2)
A—47!

=gk+](t,z)1- (65)
We readily see that if g, is of degree kinz, g, . , is of degree
k + 1. Moreover g, , (¢,0) =0and g, , , (,2) is polynomi-
alinz

Proposition 6.2: Define

k—1

& (t2) = a,, (), (6.6)
1=0

where a, ; is a polynomial of degree /(k —/ — 1) and
ak,l(t) =ak’k_1_1(t), (6.7)

1) =10 (Da, () +fi 1 (Dag,_, (D).
(6.8)

Proof: From (6.5) and (6.6) we get

k—1

81 (2 = z ak,l(t)zl+l
=0

Al+1_AI—kz_A —I—I+Ak—lz
X A—4""!

k-1

=Y a1 T+ (02 7]
I=0

from which (6.8) follows.
For k =1, a,,(¢) is of degree /(k — 1 — 1) = 0. Let us
find the degree recurrently. From (6.8), we get
deg [a, 1,(D)]
=sup [(l(k—I1-1)+L(I—-1)k—-D+k—-1]
=Il(k-1). Q.E.D.
Finally (6.7) can also be proved by induction

2265 J. Math. Phys., Vol. 28, No. 10, October 1987

Ay rae—1(2)
=fe_ 141D () + 1, 1 By, (2)
=fe—141D 1 () +f11(Da, () =a,, 1, ().
Here are the first g, polynomials,
8.(12) =z,
g(12) =z+ 2,
g:(t,2) =z + 2t + 2°,
g4(t2) =z 4+ (3t =)z + (3t2—1)2 4+ 2%,
gs(t,z) =z 4 (413 - 312
+ (6t* — 824+ 2)2 + (413 = 30)* 4+ 2,
ge(t,2) =z + (5t* — 6t + 1)
+ (1065 —25¢4 + 1612 — 2)2°
+ (10£® — 25¢% + 16:2 — 2)z*
+ (5t*—6t2 4+ 1) + 25
Remarks: (1) By taking ¢t =2, we get the generating
functions of the k th powers of natural integers
- nkat — 8« (2,2) .
n=0 (1 —z)k+?
(ii) By taking ¢t =/, one would get the generating func-
tions of @ ¥’s.

(iii) An analogous computation could be made for the
k th powers of the /, polynomials. The results are

d h,(1.2)
nZoIn (t)kz" = k+1
- fopo, (=D

1=0

, (6.2)

where A, is a polynomial in ¢ and z, of degree k in z. If we
state

k
bt =3 b, (D27,
m=0
where b, ,, (¢) is a polynomial of degree m(k + 1 — m) sat-
isfying

bk+ 1,m (t) = Im+ 1 (t)bk,m (t) - lk—m+ 1 (t)bk,m—-l (t)'
Moreover A, (¢,0) = 2,

VII. CAYLEY-HAMILTON RELATION FOR A,
Proposition 7.1: The Cayley-Hamilton equation for 4,

S (- D, (4% =0. (7.1)
k=0

Proof: If A is diagonal and unitary, i.e.,
_ [exp(i6)

0
A 0 exp( — 1'0)] ’
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its representant 4,, is
expli(n — 1)8)
expli(n — 3)0)

0 exp( — i(n — 1)8)

If we replace z in (7.1) by one of the eigenvalues of 4,,, one
obtains an identity [see (5.3) ]. That proves our proposition.
Consequence: Using the identity (3.4)
S () = £, () (1, ()

and taking the trace of (7.1), we get

" S ()
— D . (1) = =0.
;Z'o( ) ‘k’()f,,(t)

VIil. CONCLUSION

The present work has two possible continuations. One
involves the SL(2,F) groups where F is a finite field. An
elementary study of that kind of group proves that our vari-
able ¢ instead of # /2 is natural. To give an argument for that
we state without proof the following property: If p is an odd
prime and ¢ an integer

1 [(t—2 t+2
fiwem= |(53)+ (57}

1 [ft—2 t+2
fonmo=3 [(52)- (5]

where (a/p) is the Legendre symbol.!

Another study concerns the generalization of Cheby-
shev polynomials for SL(%,C). The main results in that do-
main have been presented in some conferences* and will be
written in a forthcoming paper.

Notes added in proof
(1) Equations (3.9) and (3.10) can be conveniently re-
written as

ln (r) = H Pzn/d(t),

d|n
P,, (1) =.Hn [Lha () ]*9,

where d ||» means d is an odd divisor of n.

(2) If we rewrite a(n,k,m) as a function of k and
! = n — k, for a fixed value of m,  is a periodic function in &
and / of period m.
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APPENDIX A: THE FIRST 7, POLYNOMIALS

Jo(®) =0,
fil)y=1,
L) =t
Sy =12—1,

fi(t) =t —=2t=1t(t*—2) =P,P,,

L)y =t*—3t2 41,

fs(t) =1 —4t3 4+ 3t =P,P,P,,

f(t) =t —5t* 46621,

fs(8) =t7 —6t° + 10t — 4t = P,P,P,,

So(t) =¥ — T+ 15t* — 102 + 1 = P,P,,

S1o(t) =1° —8t7 +212% — 20t 3 + 5t = P,PP,,,

Ju(2) =1 —9¢8 4 28:6 — 354 + 15t2— 1,

Jia(8) =" —10¢° + 36¢7 — 56¢° + 35t — 6t

= P)P;P,PcPy,,

Sis(8) =2 — 11210 4 45¢® — 84¢°
+ 704 =212+ 1,

Fra(®) =" — 126" 4 55¢° — 120¢ 7 + 126¢°
— 56t + 7t = P,P,P,,,

fis(8) =t —13¢12 4 6610 — 165¢8 + 210¢¢
— 126t +28:> — 1 = P,PsP,,

fis(t) =1 — 14s1 4 78 — 220¢° + 330¢7
—252¢% + 8413 — 8t = P,P,P,P,,,

S (1) =115 — 150 4 9112 — 286¢ ' + 495¢ 8
—462:% +210* — 36¢t2 + 1,

fig(®) =t —16:1° 4+ 105¢ 3 — 364t !
+ 715¢° — 792t 7 + 462¢°
— 120¢3 4 9 = P,P,PPoPy,

Sio(t) = ¢ — 17¢ 1% 4 120¢ 1 — 455¢ 12 4+ 10012 1°
— 1287¢% +924¢% — 330¢* +45¢2 — 1,

Foot) =1 — 1817 4 136¢'° — 560t 12 4 1365 1!
—2002t° + 1716t 7 — 792¢° + 165¢3
— 10t = P,P,PsP,oPy.

APPENDIX B: THE FIRST /, POLYNOMIALS

I, =2,
LL=t=P,

Henri Bacry
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12=t2—2=P4,
L=t—3t=P,P,
L=t*—424+2=pP,
Is=1°—5t 4 5t=P,P,,
lg=1°—6t*+92_2=P,P,,,
L=t"—Tt°+ 143 — Tt =P,P,,,
ly=1%—8:5+20t*—16t> 42 =P,
Io=1°—9t7 +27t5 — 30t + 9t = P,P.P,q,
Lio=1" —10t® + 35¢° — 50t * 4+ 25t> — 2 = P,P,,,
Ly=1t""—11¢° + 44t —77t° 4 55¢t> — 11t = P,P,,,
D=1 — 12"  54s% — 11265+ 105¢% — 3612 + 2
= PgPy,,

Lia=1" — 13t 4 65t° — 15617 + 182¢°

— 9113 + 13t = P,P,,
La=1t"—14t"2 1L 77¢'° — 210¢ 8 + 29416 — 196¢*

+49t2 -2 =PP,,
Lis=1"—15¢" 490t " — 275¢° + 450t 7 — 378¢5

+ 1403 — 15¢ = P,P P, Py,
Lg=1"— 16" 4 104¢ 12 — 352¢ ' 4 660t ®

— 672t% 4+ 336t* — 6412+ 2 = P,,,
L=t — 17615 4 1193 — 442 4 935¢°

— 1122¢7 4 71413 — 20413 + 17t = P,P,,,
Lg=1¢"®—18% 4 135¢ % — 5461 1% 4 1287t 1°

— 1782¢% 4 1386¢° — 540r* + 81r% —2

= 4P12P3sr

lLo=1"—19t"7 4 152t 5 — 665: *

+ 1729¢ "1 — 2717¢° 4 2508¢7
— 1254¢° 4 285t — 19t = P,Py,.

APPENDIX C: THE FIRST PRIMORDIAL POLYNOMIALS
If pis prime, P, () = £, (1),
P,(t)y=t*-2,
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Py(t) =1> -3,
Py(t) =t*— 4% 42,
Py(t) =t —6t* 4+ 9121,
P(t)y=1t*—5t2+5,
Po(ty=t*—4t*+1,
P (t) =t5—Tt*+ 142 -7,
P (1) =3 —9¢% 426t — 24t + 1,
Pig(t) =18 —8t%420t% — 16t% 4 2,
P(t) =t5—6t*+9t2 -3,
Pyo(t) =18 — 8254+ 19t — 12¢% + 1,
P, (t) =t — 13119 4 6418 — 146¢°
+ 148¢% —48:2 4 1,
Py(t) =t — 11¢% + 4425 — 77t* + 55t 2 — 11,
P (1) =18 —8t°420t% — 16t + 1,
Pys(t) =2 —20¢ '8 4 1702 '¢ — 800z * 4 2275¢ 12
— 4003¢ 1° 4 42801 8 — 2605¢ ¢
+775¢4 =75t 2 + 1,
Py(2) =12 — 13¢'° 4 65¢% — 156t
+ 182¢t% — 9122 413,
Py (t) =1t — 1826 4 135¢'% — 5461 1% 4 1287¢1°
— 1782¢8 + 1386¢° — 540¢ 4 + 81¢2 — 1,
Pu(t) =t —12¢"° 4 53¢® — 10416
+ 8614 —24:% 4 1,
Py(t) =18 — 7t 4+ 1414 — 82+ 1,
Py,(1) =1 — 16t 4 104¢ 12 — 352t '° 4 660t °
— 672164 3361% — 6412 + 2.

'G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers
(Clarendon, Oxford, 1965), Chaps. 16 and 17.

2R. Pauncz, Spin Eigenfunctions, Construction and Use (Plenum, New
York, 1979), p. 21.

M. Aigner, Combinatorial Theory (Springer, Berlin, 1979).

“H. Bacry, in Lecture Notes in Physics, Vol. 201 (Springer, Berlin, 1984), p.
483; Lecture Notes in Mathematics, Vol. 1171 (Springer, Berlin, 1985), p.
564; Group Theoretical Methods in Physics (Nauka, Moscow, 1986), p.
239.
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Pedestrian approach to two-cocycles for unitary ray representations

of Lie groups
J. Krause
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Necessary and sufficient conditions for unitary ray representations of connected Lie groups are
reexamined. Thus a systematic constructive method is obtained for calculating the admissible
exponent factors (two-cocycles). The gauge freedom of the unitary ray representation
formalism is also considered. This introduces the distinction between trivial and genuine ray
representations. A special gauge is then adopted, within which the two-cocycle is almost
unique. The only prerequisite of the exponent factor calculus is the knowledge of the binary
combination rules for the essential parameters of the group. The attained method affords a
simple, general, and explicit (i.e., coordinate-dependent) two-cocycle calculus. The aim of this

paper is merely instrumental.

I. INTRODUCTION

This work concerns non-Abelian two-cocycle calculus,
as required in many applications of the quantum theory of
symmetries. Indeed, it is a well-known fact that quantum
mechanics does not fix the phase of the vectors describing
pure states, and one associates such states to rays rather than
to vectors. Therefore, unitary ray representations shouid be
used in quantum theory, in general.! The extension of the
unitary formalism, from “true” (vector) to “projective”
(ray) representations, faces no difficulties, as long as one is
able to calculate the admissible exponent functions (i.e., the
two-cocycles) of the corresponding group G. The current
techniques for calculating two-cocycles, however, are con-
ceptually difficult and complicated to handle, because they
are usually presented within a highbrow mathematical for-
malism that goes beyond the standard curriculum of most
physicists in these matters. In fact, these techniques seem to
be reserved to those physicists who are specialists in coho-
mology theory and other sophisticated issues of Lie group
theory.?

There are two (perhaps more) available methods; one is
purely group-theoretic, the other has a more geometric fla-
vor. Briefly stated, the group-theoretic method is as follows.
It is known that the exponents of a Lie group G are related to
the true unitary representations of a “larger” group G, asso-
ciated with G. This G, is a central extension of the universal
covering group G of [the Lie algebra L(G) of] G by the one-
dimensional Abelian group R [that is, by the additive group
of real numbers, which, by its turn, is the universal covering
group of U(1): R ~U(1)]. This fact immediately affords a
constructive method for obtaining the two-cocycles of G.
The starting point of the process is the choice of an admissi-
ble extension® L, (G) of the Lie algebra L(G) by the trivial
algebra L, = L(R). Then, once an allowable extended alge-
bra L, (G) has been established, one can determine the
group G, (by means of the Campbell-Baker-Hausdorff for-
mula, for instance). In this way, the two-cocycles of G can be
read off by inspection of the group multiplication law of the
parameters of G,. Moreover, it has also been shown that for
the determination of the associated two-cocycle of G one can
use directly any faithful representation of the extended alge-
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bra L, (G).* Exponent factors for several Lie groups of phys-
ical interest have been calculated by means of this technique.
Perhaps this is the approach to unitary ray representations
of G preferred by people familiar with cohomology theory’
of Lie groups and Lie algebras.®

The other method of construction of continuous (in
fact, of class C *) exponents that figures in the literature’ is
analytic and uses the powerful coordinate-independent tech-
niques of modern differential geometry.® This method was
introduced by Houard in classical mechanics (in connection
with the problem of determining the Lagrangians whose
Euler-Lagrange equations are invariant under a given trans-
formation group®). Clearly, the same technique serves the
purposes of quantum theory as well. After introducing some
differential forms, obtained from any given C * exponent of
G, in this approach one proceeds reciprocally to deduce a
general formula giving the exponents in terms of the closed
left-invariant two-forms of the group. In effect, Houard
proves the following theorem: For a Lie group, any C ~ local
exponent explicitly determines a closed left-invariant two-
form and, conversely, to any closed left-invariant two-form
corresponds a family of C = local exponents that can be ex-
plicitly calculated (see Ref. 7). In this manner, the trivial
(local) exponents correspond to those two-forms that are
differentials of left-invariant one-forms and, moreover, the
classes of equivalent local exponents® on G correspond biuni-
vocally to the classes of equivalent closed left-invariant two-
forms (i.e., those that differ by the differential of a left-invar-
iant one-form). (Let us here remark that, for any given Lie
group, every conceivable method of construction of its two-
cocycles, in general, produces only local exponents.?)

These are beautiful and powerful methods indeed. Yet,
it seems that there is still some room for a more pedestrian
approach to this subject. Thus this paper addresses the prob-
lem of developing a general and elementary method for cal-
culating local two-cocycles of a given Lie group, once the
group multiplication law of its essential parameters is known.
To our knowledge, an approach such as the elementary and
explicit (i.e., parameter-dependent) constructive approach
to exponent factors of Lie groups is lacking in the current
literature, notwithstanding the many important features
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concerning this issue that can be found in the excellent “clas-
sical” works of Wigner,'® Bargmann,® and others.*’ Our
main purpose here is to bring this matter into a tailor-made
formalism, manageable enough for the needs of quantum-
theoretic application. Of course, we do not claim complete
originality for the mathematical contents of this paper,
whose aim is purposely instrumental. Our approach to the
issue of two-cocycles is analytic and, in many respects,
comes very close to Houard’s work,’ as a simplified, coordi-
nate-dependent version of it. (Though there are some novel-
ties in our scope of the subject.)

Clearly, this is an endeavor interesting for its own sake;
even more interesting and timely since two-cocycles are be-
coming fashionable in several areas of theoretical physics.
For instance, two-cocycles have been investigated recently
in connection with the Wess—Zumino—-Witten anomaly,'' as
nontrivial extensions of current algebra,'? and also in the
cohomology of Wess—Zumino Lagrangians of gauge fields."?
In a different context, a special two-cocycle of the Euclidean
group E, has been used recently to obtain the kinematic
quantum model'* of the simple harmonic oscillator.'® It
should also be mentioned here that a suitable (well-known)
two-cocycle of the Galilei group'© yields the kinematic quan-
tum model of a Newtonian free particle.'”” Furthermore,
even three-cocycles are becoming fashionable (as they can
be found, for example, in the quantum mechanics of a point
particle moving in an external magnetic field that is not di-
vergence-free'®), and several physicists have pointed out
their usefulness in the quantum mechanical description of
magnetic monopoles.'® (We would like to mention this fact
here, although we do not touch on three-cocycles in the pres-
ent article.) Hence, a simplified, self-contained formalism of
two-cocycles, presenting its own calculational tools, may be
of some help to a wide realm of physicists.

Let us outline the contents of this paper. We first exam-
ine the consequences of the various (well-known) functional
relations for two-cocycles that occur in the theory of unitary
ray representations of Lie groups (Sec. II). In Sec. I1I we
obtain a set of necessary and sufficient conditions for the
required functional relations that characterize an admissible
two-cocycle. Therefore, a systematic constructive procedure
arises (and this is the main point in the present approach).
In Secs. IV and V we discuss the gauge transformations of
unitary ray representations of Lie groups. In order to illus-
trate the main features of the method, some miscellaneous
examples are also included in this paper (Sec. VI). For the
sake of completeness, we add an Appendix where we present
an elementary introduction to “non-Abelian calculus.” We
hope that his appendix will help the reader to grasp the dis-
cussions contained in the following context. Let us finally
remark that in this paper we shall proceed in a straightfor-
ward formal manner, since our emphasis is on method. For
all the important topological details we refer the reader to
Bargmann’s paper.’

fl. EXPONENT FACTORS FOR UNITARY RAY
REPRESENTATIONS REVISITED
Webegin our work presenting the general features of the

ray formalism conducive to the allowable exponent func-
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tions of an arbitrary, connected, r-parameter Lie group G.
We denote by g = (¢',...,¢") a generic point of the group
manifold M(G); the coordinates ¢°, a = 1,...,#, are real and
form a set of r essential parameters of G. We shall write
g = (g',...,g") (instead of ¢g—') to denote that point in
M(G), uniquely associated with the point g, that labels that
element of G and that is the inverse of the element corre-
sponding to g; the point e = (e,....e") of M(G) labels the
unit element of G. Thus the r-dimensional manifold M(G)
carries an analytic mapping g: M(G) XM(G)-M(G),
which is endowed with the group properties. This mapping is
realized by a set of r group-multiplication functions of the
parameters, say, g(q’;g) = ¢".*° (Indices are often sup-
pressed when there is no danger of confusion.) In the Ap-
pendix we present a summary of useful formulas pertaining
to the affine geometry of M(G), which shall be needed in the
sequel; in particular, some general properties of the analytic
functions g° can be recalled from the Appendix.

In order to simplify our discussion, and concentrate on
the main problems of two-cocycle calculus, in this paper we
assume that the coordinate patch {g} covers a whole sub-
manifold N(e) CM(G), which is a neighborhood of the
identity point e. Sometimes, however, when G is a noncom-
pact, connected, and simply connected Lie group (as, for
instance, the universal covering group of a noncompact Lie
group), we also formally assume that the coordinate patch
{g}, containing the identity point e, covers the whole mani-
fold M(G) and maintains everywhere the required one-to-
one correspondence with the elements of G. (Certainly, if G
is compact, this last assumption would be inaccurate.)

We now turn to the unitary ray representations of G. In
quantum mechanics G establishes an isomorphism between
rays that preserves all transition probabilities. Therefore, it
is useful to define unitary (or antiunitary) operators rays, in
analogy to the notion of vector rays. In this fashion, accord-
ing to Wigner’s theorem,?’ the operators of the isomorphism
are representatives selected from the corresponding opera-
tors rays. Hence one infers (by well-known arguments) the
ray representation property

Ui () U (9) = U, [8(¢5)], 2.1

where ¢, is a real function of the points ¢’ and g, and where
U, (¢') and U, (q) are suitable selected representative oper-
ators. (Right now, k is a label for the selection of representa-
tives.) Itis clear that for a different choice of representatives,
a different function ¢, will appearin (2.1). We shall discuss
this gauge freedom in Sec. IV. Since G is connected, it can be
shown that the operators U, (g) are necessarily unitary.’
However, as a consequence of (2.1) one gets

U (@=U7 ()= "0 (@), (2.2)
where p1, (g) is defined by
1 (q) = &, (0;9) =4 (G:9) (2.3)

(which identity can be proved rather easily). The relation
stated in (2.2) holds for unitary ray representations in gen-
eral, instead of

Us () =Uq '(9) =Up(@), (24)
which holds for unitary vector representations. Of course,
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one recovers (2.4) within the ray formalism by choosing a
gauge such that u, (¢)=0 (cf. Sec. V). Also, the “initial
value” property of ¢,

¢ (e:9) = @i (ge) =0, (2.5)

for all geN(e), need not be assumed since it can be proved
quite directly. (That is, this property is #ot a gauge condition
imposed on the exponent function.) Thus

Hi(e)=0 (2.6)
follows, wherefrom
Uce)=1 2.7)

is attained for all selections of representatives. Now, the as-
sociative property of the representation (2.1) yields the fol-
lowing well-known functional relation for the exponent
function:

¢:(d59) + i l9":8(4'59) ]

=¢:(¢";q') + ¢ [8(q".q')3q] - (2.8)
This three-point relation entails the fundamental property
for an admissible local exponent function, and thus it repre-
sents the backbone of two-cocycle analysis.? Finally, the op-

erator identity for the Hermitian adjoint of the product of
two operators gives

¢.(959) + 6. (G;q")
=, (q") + 1 () — (845D . (2.9)

Altogether, the functional properties we have sketched
above enhance the two-cocycle &, (¢’;g) with the group
properties of the U, (g)’s, at least on N(e) CM(G).

Before proceeding to examine the technicalities of two-
cocycle calculus, we wish to mention two important fea-
tures. First, let us recall that, using an elegant construction
of Iwasawa’s,”> one can show that every local exponent
&, (q'sq) is equivalent (cf. Sec. IV) to a local exponent
& (g';q) that, on some neighborhood N(e) of the identity,
has continuous partial derivatives of all orders with respect
to the parameters ¢ and ¢. Iwasawa’s theorem is a direct
consequence of the functional relation (2.8). Next, let us
also recall that, for a connected and simply connected Lie
group G, every local exponent ¢, (¢';q), defined on some
neighborhood N(e) of the identity, can be extended to a
global two-cocycle function defined on the whole group
manifold M(G) (cf. Theorem 5.1. in Bargmann’s paper?).
Moreover, the extended two-cocycle is differentiable every-
where on M(G)XM(g) if ¢,(q’;q) is differentiable on
N(e) X N(e).

. TWO-COCYCLE CALCULUS ON THE GROUP
MANIFOLD

This section deals with the general theory of exponent
calculus corresponding to a connected Lie group G. Looking
first for the necessary conditions of the formalism, let us
define the functions

r’(q) =D, (¢')¢: (q'39) » 3.1
1¥(q) =D, () (39" , (3.2)

attached to a given phase function ¢, . The operators D, (¢")
stand for lim,, _, d, [cf. Appendix, Eq. (A8)]. These func-
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tions will be called right and left exponent generators, respec-
tively. Clearly, they satisfy the initial conditions:

ri¥e) =1 () =0. (3.3)

Now, we subject the three-point functional relation of ¢, to
the following manipulations: On both members of Eq. (2.8)
we perform the operations (1) D, (¢"), (2) D, (q), and (3)
D, (q'), separately. Thus we obtain

X, () (g39) =rPlg(g:q)] —rP(q), (3.4)
Y, (o (¢59) =1 [g(gs) 1 —1(q), (3.5)
[X.(q) — Y, (g)]d:(q39) =1(g) —rP(g), (3.6)

respectively, where X, (¢) and Y, (¢) are Lie’s infinitesimal
operators in M(G) [cf. Egs. (A9) and (A10)].

However, the exponent generators are not completely
arbitrary. In fact, if one performs (1) D, (¢') and (2) D, (q)
separately on Eq. (3.6), one gets

X (i (q) — 05,1 (q) = 1R (e) + ulP (),

(3.7
Y AP (g) — 05,1 (q) =r(e) +viP(q), )
where we have defined
ug'(q) =limd; 9, 38, (¢39)
e (3.8)

v (@) =1imd; d; ¢, (g4 ,
q—e

and where the 0%, denote constants defined in Eq. (A21).
Hence, taking ¢ = e in Egs. (3.7), one obtains

res(e) =157 (e) . (3.9)
Moreover, D, (q) applied to Eq. (3.5) yields
X (DIP(q) =Y, (9r¥(9) . (3.10)

In this way, it can be shown that Egs. (3.7) and (3.10) are
the only first-order differential equations for the exponent
generators one can obtain from the set (3.4)—-(3.6). Accord-
ingly, besides Egs. (3.10), taking the skew-symmetric parts
of Egs. (3.7), one concludes that the generators have to sat-
isfy also the following inhomogeneous non-Abelian curl
equations:

X, (rP(q) =X, (r (@) —for(@) = -k, ,
(3.11)

Y (1) = Y (I (@) + o1 °(g) =k,
(3.12)

where /¢, = o, — 0%, are the structure constants of G (cf.
the Appendix), and where the &, are constants such that

ko =r(e) —ri(e) =1 (e) — 1% (e) . (3.13)
These constants will be briefly referred to as the ray constants
of the extended representation.

Finally, let us point out that the ray constants them-
selves are not all independent, in general, for they have to

satisfy two sets of constraints. Indeed, we first observe the
following constraints:

k, +k,=0. (3.14)
Furthermore, if we operate with D_ (q) in Eq. (3.11), we get
Phae (€) — rip(€) =f o1l (€) — 06 rl (e) + aprid(e)

from which the Bargmann constraints® easily follow:
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fgbkcd +fgakbd +fgckad =0. (315)
This completes our analysis of the necessary consequences of
an admissible exponent function of G.?>

In the sequel we discuss this framework from a synthetic
point of view, since we are searching for necessary and suffi-
cient conditions on which a constructive method of expo-
nent calculus can be grounded. To this end, we organize our
discussion in a series of lemmas, which may be proved rather
easily once we are in possession of the typical manipulations
of “non-Abelian calculus” (cf. the Appendix). For the sake
of briefness, however, we here omit the proofs of these lem-
mas.

Hereafter, any given set {r,(q),/,(q); a =1,...,r} for
which there exists a solution ¢(g';q) of Egs. (3.4) and (3.5),
with the initial conditions (2.5), will be called an admissible
set of exponent generators. Then, according to Lemma A.V,
one has the following lemma.

Lemma 3.1: The solution ¢ associated with an admissi-
ble set of generators is unique.

Albeit trivial, this lemma is important because it means
that all the gauge freedom one has for settling two-cocycle
functions comes from the gauge freedom of the generators
themselves (cf. Sec. IV). The following lemma is ““crucial”
for the issue we are studying.

Lemma 3.1I: If ¢ (q’;q) is the solution associated with an
admissible set of generators, then ¢(q’;q) satisfies the three-
point functional relation (2.8).

Thus admissible sets of generators produce admissible
two-cocycle functions. The consistency of Egs. (3.4) and
(3.5) with the initial conditions (2.5) can be checked quite
directly, without recourse to the relation (2.8), so that the
problem tackled in the previous lemma is well posed indeed.

We now present two lemmas concerning the relations
between the several differential equations of the formalism.

Lemma 3.11I: For an admissible set of exponent genera-
tors such that r, () = [, (e), a = 1,...,r, the associated solu-
tion ¢(q;q) of Egs. (3.4) and (3.5) also satisfies Eq. (3.6).

[Of course, sensu stricto, the condition 7, (e) = 1, (e) of
the previous lemma is a necessary feature of a set of admissi-
ble generators.] Hence, Eq. (3.6) plays no essential role in
the constructive approach. Furthermore, we have the fol-
lowing lemma.

Lemma 3.1V: If for a given set of right exponent genera-
tors {, (¢) }, the function ¢ (¢';q) satisfies Eq. (3.4) with the
initial conditions (2.5), and if there exists a set of left genera-

tors {/, (g)} such that Eq. (3.10) holds, then ¢(q’;q) also
satisfies Eq. (3.5) (and vice versa).

In this way, recollecting the previous results, one has
proved the following theorem.

Theorem 3.1: The necessary and sufficient condition for
&, (¢';9) tobe an admissible two-cocycle function of G is that
it satisfies either Eqs. (3.4) or Egs. (3.5), with the initial
conditions (2.5).

Next, we present three lemmas concerning the exponent
generators.

Lemma 3.V:1f {r, (¢), 1, (q) } is a set of functions satis-
fying Eqs. (3.10), and such that £, 7. (e) =f5,1.(e), then
these functions also satisfy Eqgs. (3.11) and (3.12), where
(now) the k,, correspond to a set of constants of integration.
(Clearly, k,, + k,, =0.)

As an immediate consequence one has the following
lemma.

Lemma 3.VI: For a given set of ray constants, if one
assumes the initial conditions (3.3), then Egs. (3.10) and
(3.12) imply Eq. (3.11).

Finally, our last lemma is a consequence of Lemmas
A.Il and A.VIIL

Lemma 3.VII: If a set of functions {r, (¢)} satisfy Eq.
(3.11) then there exists a function ¢(q’;g) that satisfies
(3.4). In the same manner, if a set of functions {/, (g) } satis-
fies Eqs. (3.12), then there exists a function ¢(g';g) that
satisfies (3.5).

Thus one has the following theorem.

Theorem 3.1I1: For a given set of ray constants, a neces-
sary and sufficient condition for the existence of an admissi-
ble exponent function ¢(g';q) is either (1) to have a set of
right generators r{*’ (q) satisfying Eqgs. (3.11), orelse (2) to
have a set of left generators / (¥ (¢) satisfying Egs. (3.12),
together with the initial conditions (3.3).

In summary, given a connected Lie group G, the general
procedure for obtaining an admissible two-cocycle function
&, (q';q) is clear. One first introduces a suitable set of ray
constants, which have to satisfy the required constraints
(3.12) and (3.15), and may be otherwise arbitrary. Then
one may solve the problem completely “from the right” [i.e.,
solve Eqgs. (3.11) and (3.4) ], or completely “from the left”
[i.e., solve (3.12) and (3.5)]. We present a resume of this
general method in Table I, adopting the “right” framework
for the sake of concreteness. (However, this method is far
from producing a unique two-cocycle function, because of

TABLE 1. General procedure (from the right) for obtaining an admissible nontrivial local exponent function of a connected non-Abelian Lie group.

Step Symbol Solve Initial conditions

(1) Ray k. koo + kyy =0

constants Sokea + S kg +fackog =0 ko #fopk.
(2) Right

exponent ¥ (q) X ADr (@) — X (ri (@) —fosrP (@) = —ky re) =0

generators
(3) Two-cocycle é (q9) X, (¢ (q:9) =rPlg(qg:9)] — ¥ (¢") ¢ (69) =0
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the ample gauge freedom one has in selecting the representa-
tive operators.)

As a very simple example of the method we observe that,
in particular, for an Abelian Lie group all the ray constants
can be taken arbitrarily (within k,, + k,, = 0). In this case,
if the ¢’s are canonical parameters, the exponent generators
are simply given by

) =18 = L kag”
and the admissible two-cocycles are all of the form?®

& (q'59) =14 k.q"°q" .
More interesting examples are discussed in Sec. V1.

It must be borne in mind that for a connected Lie group
the previous method produces only a Jocal two-cocycle
é. (¢';q) defined on N(e) X N(e). In the applications one
usually obtains a two-cocycle of class C * quite directly (i.e.,
without recourse to Iwasawa’s construction®?). Moreover, if
G is a noncompact, connected, and simply connected Lie
group, the method usually yields a global two-cocycle which
isC=on M(G)XM(G).

(3.16)

(3.17)

IV. GAUGE TRANSFORMATIONS AND GENUINE
UNITARY RAY REPRESENTATIONS

As was already mentioned, it is evident that the expo-
nent factor one uses in a ray representation depends on the
selection of representative operators. Thus if one considers a
different choice of representatives, say,

Uy (q) =™ U (q), (4.1)
taken from the corresponding operator rays, then a new two-
cocycle function appears in Eq. (2.1); namely,

b (459) = 61 (939) + Vi ()

+ Ve (@) — Vin [8(450) ] (4.2)
Here y,.., (g) is an arbitrary real function, provided it satis-
fies

Ve (€) =0. (4.3)
Two exponents related in this fashion are called equivalent.
Hence one has a local gauge freedom inherent to the unitary
ray representations formalism, since Eq. (4.2) is a gauge
transformation of the second kind.

Taking ¢' = g in Eq. (4.2) yields

L (@) =1 (@) + Vi (@) + Vi (q) . (4.4)

{We shall return to this equation presently.) From the defi-
nitions (3.1) and (3.2), the general gauge transformation
law induced by Eq. (4.1) on the exponent generators imme-
diately obtains; viz.,

r&(g) = ri (@) — X (@ 7er (@) + Viwa (@) (4.3)

1D =1°(9) — Yo (@ Veu (@) + Vina(€) . (4.6)

As a consequence, the general gauge transformation induced
on the ray constants follows:

ko =kap +fasVine(e) . 4.7
Clearly, we are using the label k = (k, ,,...,k, _,,) todenote
the set of ray constants used in the determination of the two-
cocycle ¢, (¢';q), attached to the U, (¢)’s according to Eq.
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(2.1). Hence, if 7,4 (e) =0 and f$,¥ix.(e) =0 (ie,
k., =k, ), we write y,, () = ¥, (¢) and we say that the
two exponent functions ¢, (¢';q) and ¢}, (¢';q) areequivalent
within a restricted gauge transformation. Briefly, restricted
gauge transformations leave the ray constants invariant.

It can be proved quite directly that the consistency of the
general gauge transformation scheme demands

[X.(q) — Y. (@) ]y [8(g59)] =0. (4.8)

However, according to Lemma A.II, this is an identity, and
therefore it sets no restriction on the gauge generating func-
tion ¥, (g). Thus, in conclusion, one has a consistent
scheme of gauge transformations (of the second kind), and
every unitary ray representation of G defines in a unique way
only a class of equivalent exponent functions.

We next supply some lemmas that concern the gauge
transformations of unitary ray representations.

Lemma 4.1: For a given set k of ray constants, the gener-
ators {r{*’(q), I ¥’ (¢) } are defined only within the restrict-
ed gauge transformation,

rR(g) =rP(9) — X, (7 (@), (4.9)

1:%(q) =1(q) — Y. (@7 (@), (4.10)
provided

Yea(€) =0. (4.11)

This lemma (4.I) is an immediate consequence of the
Lie algebra L(G) (i.e., cf. Lemma A.III).

Lemma 4.1I: A general gauge transformation of the ex-
ponent generators [viz., Eqs. (4.5) and (4.6)] induces a
gauge transformation of the exponent function [i.e., Eq.
4.2)].

Furthermore, as was already remarked (cf. Lemma
3.I), all the gauge freedom of a two-cocycle function comes
from the gauge freedom of the exponent generators. One also
proves the following lemma as a corollary to Lemma 4.1.

Lemma 4. 111 An arbitrary gauge transformation of the
ray constants, i.e.,

k:zb = kab +f§bkc (4.12)

(withk,,a = 1,...,r, arbitrary real constants), induces a gen-
eral gauge transformation of the exponent generators (i.e.,
Egs. (4.5) and (4.6) ], with the only proviso that

yk’k,a(e) =ka ' (413)

So we have shown that the whole formalism of gauge
transformations, as deduced from Eq. (4.1), is inversible.
Let us epitomize this in the following theorem.

Theorem 4.I: The general gauge transformation [i.e.,
Eq. (4.12), with some f¢, k. #0] of the ray constants is a
necessary and sufficient condition for having a nonrestricted
gauge transformation [i.e., Eq. (4.2)] of the exponent func-
tion.

In Table II we present a summary of general gauge
transformations for unitary ray representations of non-Abe-
lian connected Lie groups.

Of course, genuine unitary ray representations of G are
those ray representations that may not be reduced to a vector
representation by a mere gauge transformation, as presented
above. In order to further study this matter, we better con-
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TABLE II. Gauge transformation scheme for unitary ray representations. The transformations shown are necessary and sufficient conditions for having

equivalent unitary ray representations.

Step Gauge transformations Conditions
(1) Ray kap =k oy = ko +fok.
constants
(2) Exponent r (@) —r.(q) =r,(9) — X, ()¥(q) + &, Yale) =k,
generators L(@-1(g) =1,(9) - Y, (y(g) + &,
(3) Two—cocycle #(q9)—~¢'(g9) = 8(g9) — vIg(g" D] +7(¢) + ¥(g) —y(e)
(4) Gauge (@)~ (q) =v(g) —y(e) Y'(e) =0
generator

sider- instead trivial unitary ray representations; namely,
those whose exponent functions are of the form

¢(q59) =v[e(qg 9] —v(g) —7(q). (4.14)
Two-cocycles of this kind are nothing but gauge artifacts; as
such, they bear no physical meaning in quantum theory.
Therefore, it is worthwhile to learn how to avoid these trivial
solutions.

It is an immediate consequence of Eq. (4.14) that the
trivial exponent generators are of the form

ra(q) =X, (q)y(q) +k,, (4.15)

L(g) =Y (y(g) +k,, (4.16)
where we set k, = — 7, (e), and therefore the correspond-
ing trivial ray constants are given by

kap =fark. (4.17)

(which are obviously admissible, in principle). One can easi-
ly see that Eqs. (4.14), with (4.15) and (4.16), satisfy the
system (3.4)—(3.6) in a trivial fashion, that is, identically for
whatever function ¥(¢) one may consider. In the same way,
it also can be shown that Eqs. (4.15) and (4.16), with
(4.17), satisfy Egs. (3.10)-(3.12) in a trivial manner.
Hence, one has no true differential equations for the deter-
mination of ¥(g), as it should be. In other words, albeit tri-
vial and arbitrary, a purely gauge exponent function is an
admissible solution of the problem.

Conversely (and most importantly), the reader can
prove the following lemmas.

Lemma 4.1V: Trivial exponent generators produce only
trivial two-cocycle functions.

Lemma 4.V: Trivial ray constants produce only trivial
exponent generators.

We thus have the following theorem.

Theorem 4.II: The necessary and sufficient condition
for having a trivial two-cocycle function is that a/l the ray
constants are trivial.

This theorem settles the issue since, as a corollary, to
have a genuine unitary ray representation of G it is enough to
introduce at least one ray constant that is not trivial (i.e.,
such that 0%k, #f ¢, k. ). A glance at Eq. (4.7) shows that
it is impossible to eliminate a nontrivial ray constant by means
of a gauge transformation. On the other hand, if a given set k
contains some trivial ray constants, these always may be
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eliminated simultaneously by means of a suitable change of
gauge. In particular, for an Abelian Lie group, all trivial ray
constants are necessarily zero, and thus yield nothing (i.e.,
all ray representations of Abelian Lie groups are genuine).

An interesting consequence of Theorem 4.11 arises, for
instance, in applications to the group SU(2), for which all
the ray constants are obviously trivial. Hence, all unitary ray
representations of SU(2) are gauge artifacts (as is well
known indeed). An analogous result holds for the homogen-
eous Lorentz group. (Even so, let us recall that the double-
valued representations of these groups are more properly
interpreted as ray representations.)

V. A SPECIAL GAUGE

As usual when one deals with a theory that formally
contains some gauge freedom, in the unitary ray representa-
tion theory one takes advantage of the allowable gauge trans-
formation to choose a gauge in which the two-cocycle func-
tion ¢, (¢';q) becomes “simpler” (or behaves in a physically
“reasonable” manner). On physical grounds, one of the
most reasonable properties of ¢, one would like to retain
when the formalism is used in quantum theory corresponds
to the unitarity of the representative operators, as expressed
in Eq. (2.4). There are, of course, other gauges within the
unitary ray formalism. However, henceforth we impose the
following gauge condition:

pi(g) =0. (5.1)

It is clear that in order to transform a given unitary ray
representation into a ray representation belonging to this
special gauge one uses ¥, (¢) = — } 1, (g) as the generator
of the required gauge transformation. Moreover, it is also
clear that one still has some remaining gauge freedom for
selecting the representative operators within this gauge. In-
deed, this freedom entails the property

7x(9) + 7 (g) =0, (5.2)

which must be satisfied everywhere by the gauge generating
function. In agreement with Eq. (A26), this means that the
gauge generators ¥, (¢) (which operate within the special
gauge) must be solutions of the differential equations

Xa (Q)T’k (q) - Ya (6)7/k (5) = 0 ’
together with the initial datum y, (e) =0.

(5.3)
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When expressed in terms of the exponent function
&. (¢';q) itself, our special gauge is characterized by the
property

¢ (939 + ¢ (3:9) =0, (5.4)
for all ¢’,geM(G), which is clearly equivalent to Eq. (5.1). If

one now performs the operation D, (¢') in this last equation,
and uses Eq. (A26), one easily obtains the relation

1R(g) =r(@) (5.5)

characterizing the exponent generators within this gauge. In
effect, conversely, if one assumes this relation and considers
Eqgs. (3.4) and (3.5), written for ¢, (¢';q) and for ¢, (g;9"),
one arrives at Eq. (5.4), because of the initial conditions
(2.5). Hence we arrive at the following theorem.

Theorem 5.I: The relation / (' (g) = r{¥(g) is a neces-
sary and sufficient condition for the special gauge defined in
Eq. (5.1).

Furthermore, if one assumes Eq. (5.5), then the differ-
ential equations for the exponent generators are Egs. (3.11)
and also

Y AP (@) + Y, @r (@ =0. (5.6)
In the applications, however, it may be rather cumbersome
to find a solution r{*(g), a = 1,...,r, of Eq. (3.11), with
r{¥ (e) = 0, which at the same time satisfies Eq. (5.6).

According to the preceding discussion, one can always
bring a (previously calculated) exponent function into the
special gauge (5.1) by performing a suitable gauge transfor-
mation at the end of the calculations.

VI. MISCELLANEOUS EXAMPLES

With the aim of exhibiting the technicalities of non-Abe-
lian two-cocycle calculus, in this section we present some
simple instances that are, at the same time, mathematically
nontrivial and physically important. Many features of the
results obtained in this section are well known, of course.
Our emphasis is on method. Here we content ourselves with
obtaining the formal results, and do not delve into their
physical meaning.

A. The Galilei group in one-dimensional space

Let us apply the formalism of two-cocycle calculus to
the Galilei group in one-dimensional space. The group-mul-
tiplication functions for this three-parameter Lie group are
given by

¢"'=g' (@5 =9q"+4q',

=) =9"+9-q°", (6.1)

=g =9"+¢",
where ¢’ corresponds to Newtonian time translation, ¢° to
Euclidean space translation, and ¢° to the Galilean boost in
one-dimensional space. Clearly, the group manifold corre-
sponds to — o« <¢° < w0, @ = 1,2,3, with the identity point
at the origin, e = (0,0,0), and the group-inversion formulas
for the parameters are

73'=-q¢', T=-9~9¢, =—-¢. (62)
Thus one easily obtains the right and left infinitesimal opera-
tors; namely,
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X,=d,, X,=09,, X;=0,-¢'3,, (6.3)
and

Y,=9,—¢°3,, Y,=08,, Y,;=0,, (6.4)
respectively. The well-known Lie algebra follows:
[Xsz] =0, [Xb/Y3] = —-X,, [Xz,X3] =0, (6.5)
[Yvyz] =0, [Yst] = Yzy [Y2:Y3] =0,
and also [X,,Y, ] =0, for a,b = 1,2,3. Hence the only non-
zeroth structure constant is 2, = — 1.

After settling these details, we are ready to apply two-
cocycle calculus to this group. One first considers the con-
straints (3.15) for the ray constants. After some simple cal-
culations, one concludes that all the ray constants
{k 12,k \3,k,3} survive. Clearly, k,, is a gauge artifact and may
be eliminated from the beginning. However, Since our pur-
pose is merely illustrative, it seems worthwhile to feign igno-
rance on this fact, and manage the issue with all three ray
constants present. Then Eqgs. (3.11) for the right generators
yield

ria — Py =k, (6.6)
Fa3 =7V —qlrz,z =ky;, (6.7)
P30 — "3 +qlr1,z +r=kK;. (6.8)

Of course, one can tackle these equations following several
integration schemes. We shall use the following scheme.
Let us assume (without loss of generality)

ri(q) =%k12‘12+%k1343+u(ql,qz,qs) s (6.9)

where u(q) is an undetermined real function. Then, Egs.
(6.6)—(6.8) (also without loss of generality) yield

ry(g) =} kznq] +14 k2343

+f dq'' u, +v(g*4*), (6.10)
0
ri(q) =3 kyyq' + 1 ks (¢° + ¢°g")
q' q'
+f dq'' u, ——q‘f dqg'' u,
0 0
+f dg? vy —q'v+w(g’) . (6.11)
0

Thus Egs. (6.9)-(6.11) represent a general solution to Egs.
(6.6)—(6.8). However, the functions u(q',¢%q°), v(¢%.¢°),
and w(gq®) remain completely arbitrary. Clearly, defining
the function

1 qz q.\
V(q)=fl dq"u+f dq’2v+f dgw, (6.12)
0 0 0
one obtains

x(y(g) =ulq" .¢".¢*),

ql
x,(9)y(q) =f dg'' u, +v(g°g)
0

q' q
x3(9)y(q) =J- dg'! U — q]f dg'' U,
o

0
q2
+j dg*v; —qg'v+w(g®), (6.13)
(o]
and also y(e) = ¥(0,0,0) = 0. So one gets, after performing
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the gauge transformation generated by ¥(g) in (6.9)-(6.11)
the following completely gauge-reduced solution:
ri(g) =} kg + 4 kg,

r(g) =} kyq'+ 3 kxg’,

r3(q) =14 kyq' +1 ki (g +9°¢") -
Thereafter, for the corresponding left exponent generators,
using Eq. (3.10), one obtains

L(g)= —tkp(@®+4'9") — L kisg®,

I(g)= — i kzlql | kzs‘]3 ’

Lig)= —} kyq' — 3 ky2q*;
which, according to Eq. (6.2), show that these exponent
generators belong to the special gauge discussed in Sec. V
[i.e.,onehas l,(q) =r, ()]

We now finish our work using these exponent genera-
tors. Let us consider Eq. (3.4) for the two-cocycle function
produced by the right generators. In the present case these
equations are
AACEIES k(¢ —q°¢") + 3 kg,
d;6(q9) =1} kyq' + 4 kxg’,

(35 —q''95)6(g59)
=3kag' +1kn(@ + 00" + 90" .
A straightforward integration of this system yields
¢(q59) = kild'' (¢ —4°q") —4%¢']
+1kile? — ¢°(¢* + 4'P)]
+%k31(q'3q'—q"q3) s (6.17)
which meets the condition ¢(e;q) = ¢(q;e) = 0. The reader
can show that ¢(¢’;¢) as given in Eq. (6.17) is also a solution
of (3.5). Furthermore, a rather tedious (but easy) calcula-
tion shows that this solution satisfies the three-point func-
tional relation (2.8). Clearly, 4(g;9) = ¢(g;g) =0 (as ex-
pected).

Finally, we observe that the gauge transformation gen-
erated by

7(q) = — L k3 (¢'q> +2¢%),

when performed on the solution (6.17), eliminates the k5,
term. Thus our solution reduces to the form

#(qq) =1k, (¢ —q"¢") — q"%q"]
+ 1 kalg?d — ¢ (4 +q'¢)]

(6.14)

(6.15)

(6.16)

(6.18)

(6.19)

(which, of course, could have been assured from the begin-
ning, since k5, is a gauge artifact). This solution is unique in
the sense that it is a completely gauge-reduced two-cocycle
satisfying u(g) = O. It is interesting to observe that ¥(g), as
defined in Eq. (6.18), generates a gauge transformation that
is not a restricted one [ie, one has y,(e)=0,
¥, (e) = — k3,7, (e) = 0], nevertheless it operates within
our gauge [i.e., ¥(¢) = — ¥(g)]. Once we have a unitary
ray representation of the Galilei group (corresponding to
one-dimensional space), with the phase function given by

¢(12)(qr;q) =%k12[q :l(qz _q3ql) _qr2q1] , (620)
or
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$27(q'9) =1 knslg?e’ — ¢°(¢* + ¢°g")] (6:21)
[or else ¢''? + ¢, as in (6.19) ], then it is not possible to
change this ray representation into a vector representation
by a mere gauge transformation.

The literature on unitary ray representations of the Ga-
lilei group is rather extensive.>**?* The issue has been stud-
ied mainly in connection with the Galilean invariance of the
Schrodinger equation of a free particle.’?” Indeed, the im-
portant fact to remark is that these projective unitary repre-
sentations of the Galilei group are the only ones to which we
can attribute a usual physical meaning.?®*° The two-cocycle
function $®® presented in Eq. (6.21) corresponds to the one-
dimensional space version of the well-known Galilei two-
cocycle function for three-dimensional space. (The constant
k5 corresponds to the mass of the particle.?) The two-cocy-
cle ¢"'?, presented in Eq. (6.20), also figures in the current
literature,>® and its physical meaning has been discussed by
Lévy-Leblond.

B. The Euclidean group in the plane

The group of translation and rotations of two-dimen-
sional Euclidean space has the following rules of binary com-
bination of the parameters:

"' =g' (g5 =q¢"+4q',
g"? = g2(q';q) =q'* cos wq' + ¢ sin wg' + q2 s
q,,3 =g3(q/,q) — qlz sin wa + q:3 cos a)ql +q3 ’

”1

(6.22)

where wq' = 0 is the angle of rotation in the plane, and
{¢%¢°} corresponds to space translations along a system of
rectangular Cartesian axes. The group manifold is given by
—77'<a)q1< +mT, — oo <q2< + o0, — oo<q3< + o0,
the identity corresponds to the origin, e = (0,0,0), and the
inversion formulas for the parameters are

=1

7'=-4¢',
7= —q¢*coswq' + ¢’ sinwgq', (6.23)
7= —q¢*sinwg' —¢*coswg' .
Hence, the right and left infinitesimal operators are
X, =3d,, X,=coswq'd,—sinwg'3d,,
1 .l ; 2 l 2 3 (6,24)
X;=sinwgqg 9, +cosawq' d;,
and
Y,=2 —(l)(qza _qsa ) s
1 1 3 2 (6.25)
Y,=48,, Y,=9,,

respectively. So one gets two nonzeroth structure constants;
namely, /3, =f3, = w. Therefore, k,, is the only admissible
ray constant that is nontrivial.

We next solve the differential equations for the right
exponent generators; i.e.,

1 : 1
(coswq )r , — (sinwgq )r,; =r,, +or;,

(sinwg')r,, + (coswg')r s =ry,, —or,, (6.26)

(coswg')(r;, —ry3) — (sinwg')(ry, +733) = — ks .

It seems advantageous to consider, without loss of genera-
lity,
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r2(q) =L kysg’ sec wg' + u(q',.4%4%) ,

2 1 1,2 .3 (6.27)
ry(q) =} k3,q” secwg' +v(q,4°.9") ,

which, when substituted into the last of Egs. (6.26), yield

(coswg') (v, —uy) — (sinwg')(u, +v5)=0. (6.28)

Clearly, as a simple possibility for this last relation to hold,
onemay choosev, —u; =0,andu, + v; = 0, wherefrom
one easily obtains

J

u(q'q") = w(gHe’ +1(q"),

v(g'.¢*) =w(qg")q* +g(q") .
(This “ansatz” is legitimate, since we are just looking for one
set of right generators.) Thus we have

r2(q) =4 kg’ sec wg' + wigh)g® + f(g") ,
r3(q) =4 kyq” sec g’ + wig')g* +g(q") ;

which, when substituted into the first two equations of
(6.26), give us

(6.29)

(6.30)

r(g) = — L ky0[(¢*) + (¢*)’Isec’ wg' + 4 [(¢°) — (¢°)?] [ow(g')cos wg' + w(g')sin wg']

— ¢’g*low(g")sin wg' — w(g')cos wg'] + ¢*{[ f(g") + wg(q') ]cos wg' + [¢(g') — wf(g")Isin wg'}

— {[f(g") + wg(g") ]sin wg' — [g(g") — wf(g")]cos wg'} + s(g") .

(6.31)

The functions f(q'), g(¢"), w(q"'), and s(¢"') remain arbitrary. However, it is an obvious general rule that all those undefined
terms in an exponent generator that do not exhibit a linear dependence on the ray constants may be eliminated by means of a
suitable restricted gauge transformation. Indeed, in the present example it can be proved that the function

7(9) =1 w(g")[(§*)* — (¢*)*]sin vg"' + w(q')¢’q’ cos wg'

ql
+ g(g") (g% cos wg' — ¢* sin wg') + f(g") (¢* sin wg" + ¢ cos wg') + f dq'' u(q'") (6.32)
0

generates a gauge transformation that reduces the right exponent generators [presented in Egs. (6.30) and (6.31)] to the
form
r(q) =L kol (g + (¢*)?1sec’ og', r(q) = —Lkg®secwq', ri(q) =1kq’secwq',
where we have written k = k,. Therefore, the associated left exponent generators are given by
L(g) =1kol(g)? + (¢")]sec’ wq', L(g)=Lk¢*tanwg' +1kqg*, L(g) =1kq’tanwqg' — 1 kq*. (6.34)

One can easily check that these phase generators belong to the u(g) = 0 gauge [cf. Sec. V].
We now obtain the two-cocycle corresponding to these generators. If one proceeds from the left, one has to solve the
following set of differential equations:

[0, —w(¢* 35— ¢° 3,)16(q';9)
=1ko[(§)?+(¢7) + () + (¢°)]sec’ 0(q" + ¢') + 1 k(¢ + ¢ )cos wg' sec’ w(g'" + ¢')

(6.33)

+ 4 ko (g°q — q%¢%)sin g sec o (g + ¢') — 1 ko[ (62)* + (¢°)2]sec? g, (6.35)
3,6(q';q) =1 k(g coswg' + ¢ sin wg')tan(q'' + ¢")
—Lk(g”sinwg' — ¢ cos wg') + L kg*[tanw(qg"" + ¢') —tan wg'] , (6.36)
3:4(q9) = — 1 k(¢ sinwg" — ¢ cos wg'Ytan w(q"' +¢")
—1k(g? coswg' + ¢° sinwg') + L k@’ [tan w(q"' + ¢') — tan wg'] . (6.37)

A straightforward calculation then yields the final answer:
¢ (q59) =1 k[(g)* + (¢°)?][tan w(g'" + ¢') —tanwg''] + 1 k[(¢*)* + (¢°)?][tan w(g"' + ¢') — tan wq']
+1k(4%¢* +q°¢*) [cos wg' tan w(g"' + ¢') — sin wq']
+ 1 k(¢

—q”¢)[sinwq' tan w (g’ + q') + cos wq'] . (6.38)

I
The reader can check this solution against the fundamental  C. The Poincare group in two-dimensional space-time

three-point functional relation (2.8). This two-cocycle be-

longs to the special gauge ;2(¢) = 0.

Let us recall that the Euclidean group in two dimensions
corresponds precisely to the Newtonian symmetry group of
the (classical) one-dimensional harmonic oscillator.!® In
another paper we have dealt with the quantum kinematic of
the harmonic oscillator, using the regular ray representation
of the Newtonian group E, of the system, with the two-cocy-
cle presented in Eq. (6.38)."
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The Poincaré group in two-dimensional Minkowskian
space-time {(#,x)} is a three-parameter Lie group, with the
following binary combination law:

qul =A(ql3)(ql _q13q2) +qll ,
q"2 ZI{(qIS)(q2_q13ql) +q12’
¢’ =(q"+¢)/(1—-4°¢),

(6.39)
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where
Ag*) =1 —(g»)? 2. (6.40)

Clearly, ¢' corresponds to coordinate-time translation, > to
(one-dimensional) space translation, and ¢° is the one-di-
mensional Lorentz boost. (We set ¢ = 1.) The group mani-
fold is thus defined by — o <g'< + 0, — 0 <g° < + o,
1<¢®< + 1;and e = (0,0,0). Thus
7'= —A@P)Ng +¢¢), F=-Ag)(F+29),
F=—-q. (6.41)
Using 3,4 (¢*) = ¢°[4(¢*) ]° one obtains the following infin-
itesimal operators:

X1=51, X2=52,

X,= —¢d,+[1- (4*)%19;,

and

(6.42)

Y, =48, —¢°3,), Y,=4(@)—43d),

Y=[1-1(g)%13;. (6.43)
Therefore, the nonzeroth structure constants are
f2, =f1, = 1. Hence this group has just one nontrivial ray
constant; namely, k,, = k #0. Now, the differential equa-
tions for the right exponent generators read

re—ra=1,

73 +42"2,1 +q‘r2,2 — 1= (@) +7 =0, (644)
@ri+q'r, — (1= (@)lr; +r, +r=0.
Starting with the assumption

riq) =Lkq’ +ulg'qaq") (6.45)

one easily arrives at the completely gauge-reduced solution
r(q) =1kg*, r,(q)= —1kq', ri(g)=0. (6.46)
Hence the associated left exponent generators are such that
1,(q) =r,(g) holds, and we have a solution within the
gauge u(q) =0.

In this manner, the differential equations (from the
right) for the function ¢, (¢’;q) become [after substitution
of the first two equations into the third, cf. Eq. (3.4), with
a=123]

318 (q59) =3 kA (¢* —q"°¢") ,
330 (q59) = —3kA(g) (¢ ,

(6.47)
330:(q59) =1k [A(@) (& —q°¢")g”
— 1k (4@ (q'eDg"
which one readily integrates to read
¢ (q59) =3 k(G%¢' —T'q") . (6.48)

Clearly, ¢, (q;q) = ¢« (g;9) =0. Moreover, one easily
checks that this is an admissible nontrivial two-cocycle in-
deed.
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APPENDIX: AN INTRODUCTION TO NON-ABELIAN
CALCULUS

For the sake of completeness here we append some (not
as well-known albeit elementary) features of non-Abelian
calculus used in this paper. We shall develop this issue in a
rather sketchy fashion. Here G denotes an r-parameter con-
nected Lie group and M(G) = {gq = (¢',....¢") } denotes the
group manifold. Hence M (G) is endowed with » group-mul-
tiplication functions,

qna__:ga(qu’“"qfr;ql’.“,qr) , (Al)

with a = 1,...,#, which realize the binary composition law of
the essential parameters of the group.?® Thus one has

(¢'59)eM(G) X M(G) —-g(q';,9)eEM(G) , (A2)

8(ge) =gleg) =¢q, (A3)

8(q:9) =g(g:q) =e, (A4)

gla"8(q )} =gle(q";a' )], (A5)

the meaning of which is clear.

Now, let us define the following functions:

R3(q) =D, (¢')g"(¢";q)=1im 3 ;£°(q',9) , (A6)
g —e

L3(q) =D,(¢")g(¢;9')=1im 3 ;8°(gq;q") . (A7)
q —e

[ Bear in mind that under the action of one of the operators

D,(q) =1limg,, (AB)
g-—-e

a = 1,...,r, all the corresponding variables ¢ = (¢,...,¢") be-
come ignorable in the result.] Because of well-known geo-
metric reasons, one refers to the functions Rj(g) and
L$(q), a,b = 1,...,r, as the (elements of the) right and left
transport matrices in M(G), respectively. One then intro-
duces Lie’s (right and left) infinitesimal operators on
M(G); namely,

Xa (q) =RZ(4)3b ’
Y, () =L:(9)d, .

Of course, one has R (e} =L (¢) = &5.

Next, we present a series of interesting lemmas. How-
ever, we omit the proofs, for the sake of briefness.

Lemma A.I: For any given Lie group, one has

(A9)
(A10)

X, (¢)g(q:9) =R;[eglg5q9)], (A1)
Y, (9)g°(q":9) =L;[gqq)], (A12)
X, (9)8°(q';9) = Y, (q')8°(q":9) . (A13)

We observe that (A11) and (A12) are nontrivial gener-
alizations of the trivial relations X, (q)q° =R ;(gq) and
Y,(q)¢* =L (q). These are useful results, indeed. By
means of these formulas one proves immediately the follow-
ing lemma.
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Lemma A.II: For any differentiable function ¢(q) de-
fined on M(G), one has

X, g WWleld:9)] =X, (@) ¢[(¢59)], (Al4)
Y, g s9)1¥lg(q:9)] =Y, (9)¢[g(q’,9)], (ALS)
X, ()ylgd:q)] =Y, (g)[glgq)]. (Al6)

Recall that g(q';9) = ¢"eM(G), so these equations are well
posed indeed. We like to remark that (A14)-(A16) entail
the non-Abelian generalizations of the corresponding ele-
mentary results of ordinary (i.e., Abelian) calculus. We
shall also present a set of converse relations to these equa-
tions.

Furthermore, Lemma A.I permits us to derive easily the
Lie algebra of the set of operators {X,(q),Y,(q); a,b
=1,.,r}.

Lemma A.III: The infinitesimal operators X, (¢) and
Y, (g) obey the following algebra:

[Xa (@)X, (D] =Fo0Xc (@), (A17)
[Yo(). Y, (] = —foY.(8), (A18)
[Xa (q),Yb(q)] =0, (Alg)
where the structure constants are given by
S = 0% — Ogp (A20)
with
04 =Rj () =L7,(e) =D (9)R5(q) =D, (q)L7(q).
(A21)

One also needs to consider matrices performing inverse
transport on M(G). These matrices are defined as follows:

R (q) =lim 3;¢°(¢53) (A22)
q9—q
L3(q) =lim d;¢*(g:q") ; (A23)
q—q
so that
R:QR5(q) =R(R5(q) =52, (A24)
Le(q)L§(q) =L ()L (q) =52 . (A25)

Lemma A.IV: For any differentiable function ¥(q), the
following relations hold:

X (@) = — Y. (v(q), (A26)
Y (Y@ = — X, (DY) . (A27)

[To prove this lemma, consider the middle-point can-
cellation relations

gleg(q":9):8(g:9)] =2(q":q") , (A28a)
glg(q”;9):8(q:9")1 =8(qa":9") » (A28b)

which are rather obvious and may be proved easily. Then, by
taking the limits (1) lim,. _, lim, _, d, in (A28a) and (2)

limq.ﬂe lim, ., d, in (A28b), after some manipulations,
one gets

aqa e(=\pc ar=\J ¢

o —L2@R5(q) = —RIPL; (@), (A29)

from which Egs. (A26) and (A27) follow.]
The result stated in Eq. (A29) is useful because it entails
two explicit relations between the one-to-one related vari-
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ables g and ¢. Let us also observe that from (A29) we obtain

lim 22

9~e Jg°
as it should be indeed, since e + 8¢ = e — &g + O(2).

As a remark (referred to in the context of this paper),
we present a trivial feature.

Lemma A.V: The solution of the homogeneous system
of first-order linear differential equations,

a

(A30)

=6,

X.(g)4(q59) =0, Y.(9)(g'9) =0, (A31)
a = 1,...,r, with the initial conditions

$(e;q) = ¢(g:e) =0, (A32)
for all geM(G), is

#(q';9)=0 (A33)
(which is obvious, indeed).

Lemma A.VI: One has

det{[ X, (¢") + X.(9)]g"(¢’0) } #0, (A34)

det{[ Y, () + Y.(9)]8°(¢39) } #£0, (A35)

for all points ¢’ and ¢ in M(G).

(Recall that G is connected.) Formally, the proof is an
immediate consequence of Lemma A.IL

Now, let us define the following auxiliary functions on
the group manifold:

he(q) =g(q;q) » (A36)

fora = 1,...,r, and for all ge M (G). Clearly, 2 °(g)eM(G). It
can be shown that det[d, 4 “(¢) ] #0 holds everywhere. So
we write

g°=h(q) > g =h"() (A37)
(say). With this construct one is in position to prove the
following lemma, which is tantamount to the converse of

Lemma A.Il.
Lemma A.VII: If either

[X.(9) — Y, (¢")]d(g59) =0 (A38)
or

{X.[e(q59)] — X. (¢ }8(q’59) =0 (A39)
or

{X.[e(¢d:9)]) — Y. () }8(q’59) =0 (A40)

holds for all ¢’',qeM(G), then there exists a function ¢¥(q)
such that

#(q5q) = ¥lg(qg’9)] . (A41)
To prove this assertion, observe that
det[X,(¢")8"(q:0) ]
det[ Y, s
et[ Y, (9)8°(¢39) ] (A42)

det[ X, (9)g°(¢";:0) ]
det[ Y, (¢")g"(¢";9) ]

hold for all ¢’ and g. Of course, Lemma A.VII corresponds
precisely to the elementary implication

(d, —9:)¢(q'9) =0-¢(d"9) =¥(¢' +q),
valid in the Abelian case. In this sense, (A41) represents the
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most general integral of either of Egs. (A38), (A39), or
(A40).
We next prove the following important lemma.
Lemma A.VIII: The general solutions of the homogen-
eous non-Abelian curl equations,

X (@r, (@) — X, (Q)r.(q) —for.(g) =0, (A43)

Y, (l(q) — Y, (@, () +fipl.(9) =0, (A44)
are

r.(q) =X, (9)v(q), (A45)

L@ =Y, (@l'(q), (A46)

where 7(q) remains arbitrary.

Proof: That (A45) and (A46) imply (A43) and (A44),
respectively, is trivial. Thus let us assume (A43), and define
new auxiliary functions

u,(q) =R (g, (q) .

Then, because of the Lie algebra (A17), (A43) becomes
X, (R (Qu.(q) — X, (R (Qu (q)
=u (@) [X,(PR;(q) — X, (PR ()]
+ [RE(R(q) +R5(@RI(D)]
X [#ea(q) —usc ()] =f0R(QIu.(q) .
Thus one has
U, (g) — Uy, (q) =0,

whichyields 4, (¢) = ¥, (g). Hence (A45) follows. One ob-
tains (A46) from (A44) in a similar way. Thus one proves
the lemma.

Let us observe that if one uses the same scalar field y(g)
in the solutions (A45) and (A46), then one gets

Y (r. (@) =X, (9], (), (A47)
as a trivial consequence of (A19). Conversely (and finally),
we assert the following lemma.

Lemma A.IX: If the fields 7, (¢) satisfy (A43) and one
defines the fields [, (¢) by means of ( A47), then these satisfy

Y. (I, () = Y, (@, (q) +fol.(q) =C, , (A48)
where the C,,’s are constants given by

Cop =fallc(e) —r.(e)]. (A49)
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Finite-dimensional representations of the special linear Lie superalgebra
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In a series of two papers all finite-dimensional irreducible representations of the special linear
Lie superalgebra sl(1,7) are written down in a matrix form. This paper develops a background
for constructing the representations. Expressions for the transformation of the basis under the
action of the generators are given for all induced and, hence, for all typical sl(1,n7) modules.

I. INTRODUCTION

In this paper and the one that follows' we study all fin-
ite-dimensional irreducible representations of the special lin-
ear Lie superalgebra (LS) sl(1,7) for any n =2,3,... . We
considersl(1,n) [ = 4(0,n — 1) in the notation of Ref. 2] as
a subalgebra of the general linear Lie superalgebra gl(1,n).
The latter consists of all squared (n + 1)-dimensional ma-
trices. We label the rows and the columns of these matrices
with indices 4,8,C,D,... = 0,1,2,...,n. Assign to each index 4
a degree (A), which is zerofor4 =0and 1 for4 = 1,...,n.
Let e z€gl(1,n) be a matrix with 1 on the 4 th row and the
B th column and zero elsewhere. The even (resp. the odd)
part of gl(1,n) is defined to be the linear envelope of all
matrices ez, for which (4) + (B) is an even (resp. an odd)
number. The multiplication ( = the supercommutator)
[, ] on gl(l,n) is given with the linear extension of the
relations

lesssecnl
=8pcesp — ( (1.1)

The LS sl(1,n) is a subalgebra of gl(1,n) consisting of
all those matrices aegl(1,n), whose supertrace ( = str) van-
ishes, i.e.,

4 B))[(C) + (D
_ 1)(( )+ (BIHO) + ( )]5ADeCD'

aecgl(1,n), str(a) = i (—1)%a,, =0]-

sl(1,n) = [a
A=0
(1.2)

The even subalgebra

sl(1,n)o =linenv{E,|E; = e; + 8 €4, 1L j=1,.,n}
(1.3)

is isomorphic to the general linear Lie algebra gl(#). In this
case the E;; are the Weyl generators of gl(n),

[E(/'!Ekl] = 5jkEil - 511'Ekj’ i,j,k,l = 1,...,n. (1.4)

The algebras sl(1,n), n = 2,3,..., belong to the class of
the basic Lie superalgebras (LS’s) in the classification of
Kac,? i.e., each sl(1,n) (1) is simple, (2) has a reductive
even subalgebra and (3) has a nondegenerate Killing form.
All simple Lie algebras are basic Lie superalgebras. The ba-
sic LS’s, which are not Lie algebras, resolve into four count-
able classes [A(m,n), B(m,n), C(n), and D(m,n),

*) Present address: Institute of Nuclear Research and Nuclear Energy, blvd.
Lenin 72, 1184 Sofia, Bulgaria.
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m,n = 1,2,...], one continuous class of 17-dimensional alge-
bras D(2,1;a), and two exceptional LS’s G(3) and F(4).
The structure of the basic LS’s resembles in many re-
spects the structure of the simple Lie algebras. Every such
algebra 4 can be represented as a direct-space sum
A=N"eoHa N7 ofits Cartan subalgebra H, which is the
Cartan subalgebra of the even part, and the subalgebras N ~
and N * spanned on the negative and the positive root vec-
tors, respectively. The root vectors e, are in one-to-one cor-
respondence with their roots a, which are elements from the
space of all linear functionals (the dual space) over H.
The correspondence e, <>« is determined from the relation

[he,]=a(h)e,, ach. (1.5)

One can always choose a canonical system of 37 elements in
A (r=dim H)

e, fis (1.6)
which generate the algebra and have the following proper-
ties: (a) h,,...,4, constitute a basis in H; (b) ¢,eN * and
Jf:eN ~ are positive and negative root vectors, respectively;
and (c) the generators (1.6) satisfy the relations

[ei’fj] = 6ijhi’ [[hi’ej]l =Q;e;, ﬂ:hl’-f_]‘]l = —Qy;J;

.7
where ¢; =0or 2, i = 1,...,7, and, if &; = 0, then the first
nonzero element among @, ; ., kK = 1,2,...,is 1.

The matrix a = (a;) is called a Cartan matrix of 4. Up
to an isomorphism the algebra A is characterized by its Kac~
Dynkin diagram. The latter consists of r white, gray, and
black nodes, denoted as O, ®, and @, respectively. The ith
node is white, if ¢; is an even element, and gray or black, if e,
is an odd element and a;; = 0 or 2, respectively. The ith and
the jth nodes are joined by |a,a;| lines [except for
D(2,1;a)].

The Cartan subalgebra H of sl(1,n), which is a Cartan
subalgebra of gl(n), is a linear span of the generators
E,,...E,, [see (1.3)],

H=linenv{E,|i = 1,..,n}. (1.8)
Wechoose E, s...,E,, as abasis in H and denoteby E ',....E "
the dual to it basis in H , i.e.,

ENE,))=8, E'eH, ij=1,..n (1.9)
As usual, we accept a lexical ordering in )1 , assuming that
A=32"_ A,E'>0, if the first nonzero coordinate of this

i=1,..,r,
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functional is positive, i.e.,

A>0, if11=12="'=lk_1=0, /1k>0. (1.10)
Then for any two functionals 4 ', 4 el one defines
A'SA fA'—=1">0. (1.11)

Very often we identify A with its coordinates, i.e., we set

A=Y LE'=[Adyh, ] (1.12)
i=1
We say that 4 = [4,,...,4, ] is lexical if
A=A, .20 Yi=1l..,n—1 (1.13)

From (1.5) oneinfers that the setofalle, 5,4 <B = 0,1,...,n
(resp. A>B =0,1,...,n) gives the positive (resp. the nega-
tive) root vectors of s1( 1,n). The canonical system of genera-
tors (1.6) reads

hy=E,,, €1 = €1, fi=e

h,=E; — E,, €, =€y, fr=ey,
hn=En—1,n—l_Enn9 en=en—l,n’ f;t=en,n—l,
(1.14)

with e, and f; being the only odd generators in it. Since
[#..e,] =0, i.e, a;; =0, the Kac-Dynkin diagram contains
one gray and n — 1 white nodes:

s—O0—O——0—0.

1 2 3 n—1 n

The structure of the finite-dimensional modules over a
given basic LS is illustrated in Fig. 1. Apart from the alge-
bras B(0,n),? every basic LS has indecomposible (i.e., non-
fully-reducible) finite-dimensional modules, Several exam-
ples of such modules are available. However, at present it is
not known how to construct all indecomposible representa-
tions. In contrast to this, all finite-dimensional irreducible
modules (fidirmods) are fully classified.* Every such fidir-

(1.15)

All Finite-dimensional
modules

|

are direct
sums of

Nondecomposable Irreducible
modules modules
Nontypical Typical
modules modules

FIG. 1. The structure of the finite-dimensional modules over a given basic
LS.

2281 J. Math. Phys., Vol. 28, No. 10, October 1987

mod W(A) is characterized by its highest weight AeH . In
particular, let W(A) be the module over the basic LS 4,
induced from the fidirmod V;(A) of the even subalgebra
A,CA [seeRef. 4,forsl(1,n) see also Sec. II C}]. Then either
(1) W(A) isafidirmod of 4 or (2) W(A) isan indecompo-
sible 4 module, but the factor module W(A)/I(A) with re-
spect to the maximal (nontrivial ) invariant subspaceT( A)is
a fidirmod. In case (1) the fidirmod W(A) = W(A) and
also the representation of 4 in W( A) is called typical. In case
(2) the fidirmod W(A) = W(A)/I(A) (and the corre-
sponding representation) is said to be nontypical. It is re-
markable that each fidirmod of the basic LS 4 can be con-
structed in this way, i.e., it is either typical or nontypical. In
Ref. 4 a given fidirmod W (A) is characterized by the coordi-
nates a;, = A(h;), i = 1,...,r, of its highest weight A in the
dual to h,,...,h, basis 4 ',...h "in & . To visualize the 4 fidir-
mod W(A) one writes above each, say the ith node
(i = 1,...,r) of the Kac-Dynkin diagram the coordinate a; of

A. For instance, the sl(l,n) fidirmod W(A),
A =3"_,a;h’, is denoted as
g—O—O——O0——0. (1.16)

The method of induced representations describes all
typical representations and in principle shows how one can
proceed to construct the nontypical modules. In this way®
and in other publications®® several properties of the finite-
dimensional irreducible representations have been estab-
lished. Of interest in this respect is the generalization of the
Young tableaux technique to the case of LS’s.® Irrespective
of the progress, the representation theory of the basic Lie
superalgebras is still far from being complete. It is, in fact,
much less worked out in comparison with the corresponding
level of development of the simple Lie algebras. In particu-
lar, from a physical point of view, the important problem of
computing the matrix elements of the generators within an
arbitrary fidirmod has been solved so far only for the low
rank Lie superalgebras osp(2,1), sl(1,2),” osp(3,2),'® and
s1(1,3)."" In the present paper and in Ref. 1 we take a further
step towards the solution of the general representation prob-
lem. We consider all fidirmods of the Lie superalgebra
sl(1,n) for any n = 2,3,..., introduce appropriate basis, and
write down expressions for the transformation of the basis
under the action of the sl(1,#) generators.

1. INDUCED REPRESENTATIONS OF si(1,n)
A. Abbreviations, notation, terminology

We list here some of the abbreviations and the notation
that will be used throughout the paper:

LS, LS’s—Lie superalgebra, Lie superalgebras,

LA, LA’s—Lie algebra, Lie algebras,

Fidirmod (s)—finite-dimensional irreducible
ule(s),

lin env (X )—the linear envelope of X,

C—the complex numbers,

Z——all integers,

Z_, —all non-negative integers,

N-—all positive integers,

GZ basis—Gel’fand—Zetlin basis [see (2.13)],

mod-
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I-basis—induced basis [see (2.54) ],

[ s —product (supercommutator) in the LS,
[xy] =xy —yx,

{xp} =xp +px.

Let m €C. Then we set

[ml,n+l’mz,n+1’~--rmn,n+1] = [m]n+]’ (2.1)
[Myesmypsetyy ] = [m],, k=1,.,n, (2.2)
[mi +emy +c,cimyy, + cl=Im+cly, ¢cC, (2.3)
[ £ 810y £ 6, ] = [m]E (2.4)
[k + £61; + 18ymay + 6,

+ 905 sty + E61; + 18y | = [MIE™,
En=0,+1, i,je(1,2,....k), (2.5)
by =my —i, (2.6)

r i<,
S6)) = {1; 1, £2r2>jj. 27

Definition 1: A sequence of n numbers, which are either
0 or 1, will be called a 8-tuple.

For any such 6-tuple we use three different notations,

{6}, =16,,...0,} = (iyy.in), 6,,....8, =0,1, (2.8)

where (i,,...,i5) is the subset of (1,2,...,n), consisting of all
those ke(1,2,...,n), for which §, = 1, i.e,,

0, =1, if ke(iyyin),
0, =0, if kE(ijyenin).

Definition 2: The O-tuple {6}, is said to be of degree N, if
0,4+ +6,=N,ie,

{6}, = (i1yein)-

(2.9)

(2.10)

B. Fidirmods of gi(n)

Throughout the paper we use the Gel’fand and Zetlin
notation for the fidirmods of the Lie algebra gl(n) (see Ref.
12), accepting also some abbreviations from Ref. 13. Every
fidirmod of gl(n) is labeled by its signature

[m], = [my, M350 my, ], (2.11)
where m,,,,...,m,, are, in general, complex numbers such
that

m;, —m;, €L, (2.12)

Let V([m],) be the fidirmod of gl(n) with a signature
[m],. Asabasisin V([m],) we choose the Gel’fand—Zetlin
basis (GZ basis),?

Vi<j=1,..,n.

mln ’mZn ""’mnn [m]n
my; my,....my; Y= | [m]; (2.13)
myy my,

The numbers m,,,,...,m,,, €C are fixed and label the represen-
tation space. The others m;€C distinguish between the basis
vectors in ¥([m],) and take all possible values, consistent
with the “betweenness” condition

m ;. —myel,, my;—m;, ,; €L,. (2.14)
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The Cartan generators E,|,...,.E,, are diagonal in this basis,
i.e., the GZ basis consists of weight vectors. Since

[m], [m],
[m]y ( k k! ) [m]y
E = mi - mi — ’
k [m],_: .;1 * i;l et [m]_,
myy my,
(2.15)
the correspondence weight vector — weight is
[m],
[m]k n ( k k—1 )
- mi - m; . _ Ek. (2.16)
ml,_, K=1 i; , i;l k-1
my,

The highest weight vector x, is the one from (2.13) for
which

my=m; ,=""=m,, i=1l.n (2.17)
In this case (2.15) yields
E.x, =myx,, i=1..,n, (2.18)

and, therefore, m,,,,...,m,, are the coordinates of the gl(n)
highest weight A in the dual to E,,...,E,, basis E',...E",

A= .iminEiE[mln,--.,m,,n] =[m],. (2.19)

i=1
In other words, the signature (2.11) of the gl(n) fidirmod
V([m],) consists of the coordinates of the highest weight A
in the basis £ 1,...,E .

C. Induced representations

We now proceed to introduce, following Kac,* the
sl(1,n) module W([m], , ), induced from the gl(»n) fidir-
mod Vy([m],, ). Werecall that [see (2.1)]

[m]n+l = [ml,n+1’m2.n+l""’mn,n+1]' (2.20)
The coordinates of the gl(n) highest weight [see (2.19)]

A:i;m,.,,,HE" (2.21)

in Vy([m], . ) satisfy (2.12), which in the present notation
reads

(2.22)

Denote by P__ the linear envelope of all odd positive root
vectors of sl(1,n),

m, . —m, €L, Vi<j=12,..n.

J

P, =linenv{ey|i = 1,...,n}. (2.23)

Let P=gl(n) ® P, . Extend Vy([m],, ) to a P module,
assuming

P . Vy(Im],.,)=0. (2.24)
The sl(1,n) module, induced from the gl(n) fidirmod
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Vo(iml, ), is defined to be the factor space
.W([m]n+l)=U® Vollml, .\ M/I(Im], . 1), (2.25)

of the tensor product of the sl(1,n) universal enveloping al-
gebra U with V,([m], ;) and subsequently factorized by
the subspace

I([m],,,) =linenv{up®v — uepvlucl, pePCU,
veVo(lml, )} (2.26)

The linear space W([m], +1) is equipped with a structure
of an sl(1,#) module in a natural way:

guev) =guev, gesl(ln), ueveW([m],,,).
(2.27)

From the Poincaré-Birkhoff-Witt theorem* follows that U
is a linear span of all elements of the form

g = (elo)al(ezo)ez. v (enﬂ )8"1’: ela"-’en = 0;1’ (2.28)

where p is a polynomial of elements from P. The restriction
6; = 0,1 comes from the observation that (e, )*>=0in U.
Since for any g, defined in (2.28), and ve¥,([m], . ,),

g8ev={(e;0)" (€)% " (e, )G"P®U

= (€10)"(€20)% - (e,0) " ® p, (2.29)
one concludes that
w(lml,..)
=lin env{(e;p)®* (€,0) " @ v|veVy( [m],, 1)
8,,....6, =0,1}. (2.30)
Let x;€¥,([m],, ) be a gl{n) weight vector with a
wcightief), ie., Eyx; =A(E;)x;, i=1,..,n Then
E; [ (€10)% " (eng )% ®x,; ]

=[,1(E,.i)— s Gk](em)”'---(e,,o)a"@xl. (2.31)

kgti=1
Therefore, for any 6,,...,6, = 0,1

(€10)% ()&%, =x,.€W([m],, ) (2.32)
is an sl(1,n) weight vector with a weight
A= z[uz«:,.,.)— D Hk]E"eﬁ, (2.33)
i=1 ks#ti=1

which, in the lexical ordering we have accepted [see (1.11)],
is less than A, 1’ <A. Clearly, the highest weight A [see
(2.21)] of the gl(n) module Vo([m], ) is also a highest
weight of the s1(1,n) module W([m],, , ;). Denoting by

1= (elo)o”'(e,,o)o (2.34)

the unity in U, one concludes that 1 ® x, is thesl(1,#) high-
est weight vector in W([m],_ ), ie.,

e (18x,)=0, Ey(lex,)=0, j<k=1,.,n,
(2.35)

E.(1ex,)=m,, ,(1ex,), i=1,.,n

Thus, to every gl(n) fidirmod V,([m],, ) there corre-
sponds an induced sl(1,n) module W( [m], ). Both of
them have the same highest weight A = 2}_,m,,  ,E' Ev-
ery induced module W([m], ,) is either irreducible [i.e.,
itisansl(1,n) fidirmod] or indecomposible. The representa-
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tions of si(1,n), realized in the irreducible induced modules
(and also the modules themselves), are said to be typical.*
Each W([m], +1 ), whichis notirreducible, contains a max-
imal sl(1,n) invariant subspaceT( {m], . 1)50. The factor
module W([m]l,,,)/I(Iml,, ) carries an irreducible
representation of sl( 1,n). All such factor modules (and also
the corresponding representations) are called nontypical.
Since 1®x,E1([m],,,), the highest weight of
w([m], 1 y/I([m], ) is the same as the highest weight
of Vo([ml, . ), i.e, A=Z2]_,m,, E’ Since, moreover,
the typical and the nontypical representations exhaust all
finite-dimensional irreducible representations of sl(1,n), we
conclude that there exists one-to-one correspondence
between the fidirmods of gl(n) and the fidirmods of s1(1,7),
namely,

Vo(lml, . )yoWml, . )/I(Im], . ),  (2.36)

where in the typical modules we assume that
I({m]n+l ) =0'
A convenient criterion for the irreducibility of

W([m], . ) has been proved in Ref. 14.

__ Proposition 1: The induced sl{1,n) module
W({m], ) is typical if and only if
My, #Fk—1 Vk=12,.,n (2.37)

D. Induced basis

The main difficulty to overcome in constructing the
nontypical modules is the determination of the maximal
{nontrivial) invariant subspace T [m],,.,) of each
W([m], . )-Tosimplify the problem (which will be solved
in Ref. 1) we introduce a basis in the induced modules in
such a way that each basis vector is either from 7([m], +1)
or is a vector from a complement to its subspace. To this end
we decompose W([m], . ) into a direct sum of gl(n) fidir-
mods V(A,), where 4,, i = 1,...,M, is the highest weight of
V4,

- M
W(lm],,,)= 2 ® V{(4,), (2.38)

P==1
and intro__duce a GZ basis ', within each V(4;). Thenas a
basis in W([m],, ,) we take

M
= U T,

R
Since I([m], +1) isa gl(n) submodule, it is a direct sum of
some of the gl(n) fidirmods V(4,) i = 1,..,M,

I(Iml,, ) =V(A) eV, e e V,)

iy# o £ie(l,.,M). (2.40)

Clearly, each basis vector belongs either t_(_)T( Iml,, )orto
the complementary space 2 ; ® V(4;), je(iy,...,ix ), i.e., the
basis I' possesses the required properties.

Let TC U be the subalgebra spanned on all polynomials
of the odd negative root vectors, i.e.,

T =lin env{(e,0)? (€20) %" ** (€0)*"|01...,0, = 0,1}
(2.41)

The relation (2.30) shows that the sl(1,n) module
W([m], . ), considered as a linear space, is a tensor prod-

(2.39)
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uct of T"and Vy([m], ),

W(lml, ) =TeVy(Iml,, ). (2.42)
Since [gl{n),T]1 CT, T can be viewed as a gl(n) module.
Moreover, for any aegl(n) and t @ veT ® Vo ([m], . ),

a(tev) = [ad(@)jtev+teav, ad(a)t=[a,t].

(2.43)

Therefore, W( [m],, ) is a tensor product of the gl(n)
modules T and V,([m], ;).
Proposition 2: For any integer 0<N<n the subspace

S 6,=N,

i=1

Ty =lin env[(elo)e" (0™

0.0, = 0,1] (2.44)
is a gl(n) fidirmod with a highest weight
N n
AN=2(1—-N)E"+ D (—N)E" (2.45)

i=1 i=N+1
Therefore, characterizing 7, with the coordinates of its
highest weight, we write
L,.,N, N+1,.n

Ty=V([1—-N,.,1—N, —N,...,—N]).

The proof is straightforward. The subspace T, is one-
dimensional, spanned on the unity of U. The subspace
T, = lin env{ey |i = 1,...,n} is n dimensional; the correspon-
dence root vector <> root in this case is

o[ —1+68,,,— 1+ 8., — 1+ 6,].
Since T'= 24 _, ® Ty, we have from (2.42)

(2.46)

(2.47)

W(ml, )= 3 &[Ty Velml,, )] (248

N=0
The decomposition of Ty ® Vy([m], . ) into gl(n) fidir-
mods is easily carried out (a useful prescription for such
decompositions is given in Ref. 13):

TN® VO([m]n+1)

’
= Z $V([m,,,,+1+0,
8,,....6,=0,1
o+ -+6,=N

— Ny +6, —N]. (2.49)

Asusual, [m,,,, + 6, —N,...m,,  , +6, — N ] arethe
coordinates of the highest weight in the basis £ ,....E " [see
(1.9)]. The prime on the sum in (2.49) means that one has
to delete all nonlexical terms, i.e., those V([m,, , + 6,
—N,..m,, ., + 8, — N) for which

(mi+1,n+l +0i+1)—(m,-,,,+| +6,~)>0, (2.50)
for certain i = 1,2,....n — 1. Combining (2.48) and (2.49)
we have the following proposition.
_ Proposition  3: The induced sl(1,n) module
W([m], ) decomposes into a direct sum of gl(») fidir-
mods as follows:
W([m]n-{»l): 2' eaVv([’nl,n-&l

0,1

6,,...8, =0,

n

+0,= 3 Oty + 6, — ia,.]).

i=1 i=1

(2.51)
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Observe that the signatures of the gl(»n) fidirmods in the
direct sum decomposition (2.51) are all different, ie.,
W([m]l, ) is a simply reducible gl(») module. Let

M=y +6,— 3 6. (2.52)

k=1
Asabasis I'([m],) in each

V([ml,n+1 +6,— 2 Oty + 6, — 2 ek])
K=h K=

=V([mnssmn, N =V([mM],), (2.53)

we choose the Gel’fand-Zetlin basis (2.13). To indicate,
however, that each such vector belongs to W([m], , ) we
modify the notation setting

-ml,n 1My yseesMp 17
[m],
my, My, ...,
[m];, )= )
my My sy
my,
L myy o
[ [m]n +1 T
[m],
= ) (2.54)
[m]i
L. My
Then the system
= e‘}{anr([ml,n +1 + 01 - k;] ek ""’mn.n + 1
+6, — 2 Ok]) (2.55)
K=

gives a basis in W([m], +1). The union is over all those
6,,...,8, = 0,1 for which the lexical condition (2.50) holds.
More precisely, we have the following proposition.

Proposition 4: The basis in the induced s1(1,7) module
W([m],., ) consists of all those patterns (2.54) for which
the following conditions hold:

(1) my=mypyy +6,~ S 6 61,658, =0,1,

k=1
(2.56)
(2) mi,j+l _mij€Z+’ m '_mi+l,j+lez+’
i<j=1,.,n— 1. (2.57)

The so-defined basis in W([m],, ) will be called an in-
duced basis and each vector (2.54)—an I-pattern. This basis
is an analog of the Gel’fand and Zetlin basis in the fidirmods
of the classical Lie algebras. Indeed, consider the chain of
subalgebras

sl(1,n) Dgl(n) Dgl(n — 1) D+ Dgl(2) Dgl(1)

(2.58)
and a flag of subspaces
W(iml, ) DV(Im]l,)DV([m], 1)
D--DV([m],) DV(m,,), (2.59)
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where, forany k = 1,...,n, V(I{m], ) is a gi(k) fidirmod with
a signature [m],. Since dim V{m,,) = 1, the flag (2.59)
determines a one-dimensional subspace, spanned on the I-
pattern (2.54).

From (2.56) one concludes that

n 1 n
z b, = Z (M1 —Mgy)e (2.60)
K=1 n— 1%,
Moreover,
I n

0, = z(mi,n+l —my) —(my, —my,),
n—1:<
k=1,.,n. (2.61)

Consider the O-tuple {6,,0,,...,.0,} = {6}, determined by
(2.61).

Propositz’gn 3: The signature [m],, of the gl(n) fidirmod
V(im],YCW{([m],, ) is uniquely defined [see (2.56)]
and defines uniquely [see (2.61)] a 6-tuple,

We use this correspondence to turn W [m], ) into Z-
graded linear space.

Definition 3: We say that the gl(n) fidirmod
V([ml,)CW([m],, ) isofdegree N,deg ¥ ([m],) =N,
if the degree of its O-tuple (Definition 2) is N, i.e.,
8,4+ +8, =N or [see (2.10)] {8}, = (i1yenin)-

If the degree of an I-pattern (2.54) is NV, then (2.60) and

(2.61) yield
O =N—(my, 1 —my,),

k=1,.,n. (2.63)

Hi. TRANSFORMATION OF THE /-BASIS
A. Expressions for the even generators

By construction all I-patterns (2.54) with a fixed nth
row [my,,...m,, ] = [m], constitute a gl(n) Gel'fand-
Zetlin basis I'([m],) in V([m],)CW([m],, ). The ac-
tion of the gl(n) generators, i.e., the even generators E;; [see
(1.3)1, on this basis is known.'? In terms of our notations

[M1nsmrysecmy, 116,,6,,...,6, }. (2.62) (2.54) it reads
i
'[m]n»f-l- -[m]n+l-
[m] [m]
Epw * =(my+ Mg — My = =My ) 1 (3.H
[m]e_ [mli
L My L. My
v-[m] - -[m]”+l-
n+1
: [m]
E Ul | A | G = oy + DIy = b 2] (3.2)
Kok — = 2. 1 .
Y mle_, AV TMGL Uy =l A DUy — 1) ot
. [mle_,
L M :
. M
-[m] - ~{m]n+1-
n+1 M
: [m]
E [m], =k'1 Hf:l(lik—'lj,k—l)nz{(;lz(li,k——l_lj,k—l —1) |2 [m]jk (3.3)
otk [mlc_y i=1 H:;;il(li,k—l _lj,k—l)(li,k-l k-1 T ) T
. [m]k—2
L My :
. My

where [; =m; — i.

The action of the other generators can be obtained from the commutation relations (see, for instance, Ref. 13). Therefore,
it remains to determine the transformation of the /-basis under the action of the odd generators of s1(1,n).

B. Application of the Wigner-Eckart theorem
We consider first the odd negative root vectors e,g,...,,0

. With respect to the adjoint representation of sl(1,n), restricted

to the even subalgebra gl(#n), these generators transform among themselves,

[Eij’ekoﬂ = 5jke-o - 5ijeko-

(3.4)

Therefore, the linear span 7, of e,q,...,€,0 i8 @ gl(n) module, which, according to Proposition 2, is a gl(n) fidirmod with a
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signature [0, — 1,..., — 1], i.e,

T, =linenv{e,|p = 1,..,n} = V([0, — 1,..., — 1],). (3.5)
The link between the generators e,,...,¢,, and the GZ basis in T, is easily established:
[—1],
[—1],
eq = , p=1,..n, (3.6)
S §
-1
where, according to the notation (2.3) and (2.4),
[—1l,=[—-1,..,—-11=[—1,..,—1],, (3.7)
\’k?l:;s\./
[—-11L =(0,—1,.,—~1)=[0, —1,.., — 1],. (3.8)
\,k\tges\/

In the representation space W([m], +1) the abstract supercommutation relations (3.4) hold as operator equations

Ejero —eroE;=[Ejero] = e — 8yexo- (3.9)
For simplicity in (3.9) and everywhere in the paper we use the same notation for the elements of sl(1,#7) and for their
representatives as endomorphisms in W([m] »+1 ). From the commutation relations (3.9) one concludes that the endomor-
phisms e,...,¢,, are components of a gl(n) irreducible tensor operator with a signature [0, — 1,..., — 1],. Therefore, apply-
ing the Wigner—Eckart theorem,' taking into account that V([ — 1]}) ® ¥ [m],) is a simply reducible gl(#) module [see
(2.49) for N = 1], and using (3.6) and (2.54), we have

('], [—11,  [m], ]
(m], .\ : : : (m], .,
[m’], —11 Tn
eo | U1 | =S RUML,, 1m0, o [[ 1]]" ;[,Z']" ] (3.10)
. p—1 - p—1 p—1
my : : : my,
[ mu -1 my

The sumin (3.10) is over all those I-patterns that are allowed from Proposition 4; R([m],, . 1,[m],,[m'],) are the so-called
reduced matrix elements for the tensor operator (e,,...,€,o ) and

[m']n [—1]:. [m]n

. s (311)
my, —1 my,
are the gl(n) Clebsch~Gordan coefficients, which relate the tensor product of two GZ bases in the decomposition
V(-1 eV(Iml,) = eV(im'],), (3.12)
[m'],
ie.,
[—11, [m], ( [m'], (-1, [m], ]| [»].
[—11} [m], _s 1, | =11, Il 'l (3.13)
[_llp—l [m]p—l [m ]p—l [_l]p_.l [m]p*l [m ]p—l
—1 my, | my, —1 my; mi,
Taking into account that
V1l e V([m],) =¥V(lm+1],) (3.14)

and multiplying both sides of (3.13) with the basis vector of the one-dimensional module ¥ ([1], ), one derives that

2286
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Each such Clebsch—Gordan coefficient can be written as a product of gl(#) scalar factors (» = 2,3,

[ [m], [—1], [m],
[m'], [—'1];, . [n;],,
[mI]p—l [— 1],,_1 ’ [m]p—l

L m.;l —:1 ’7;11

C [m' + 1], [01,  [ml,
[m".i"l]p [d]}, . [n;],,
[m"+11,_, | [0],_, [m],_

m;1.+1 0 my,

1

[ [m'+1],

[ +11,
[ +11,_,

L m'1|+1

-l

[m' +1],
[m'+1],_,

e [ [m' +1],
X .
s LIm + 11,

(01,

[0,

[01,_, [ml,_,

0

n [l 1,
_r=1;_7[+1 [[m,+ 1]r—l

[0

r—1

[m],

[m],

my,

[o1;
(0]

 [ml,
[0],-, ’ [m],_,
(o1,

The expressions for the scalar factors are available.!” The gl(n) scalar factor,

|

[m'+1],
(m'+1],_,

[01: [ml,

may be nonzero only if

3i=1,...,r such that [m’ + 1], = [m],

[01:_,’ [ml],_,

If for certain i = 1,...,randj = 1,...,r — 1 (3.18) holds, i.e.,

’ — ’ -
my, =m,_, — 1 +6lj"“’mr—l,r—-—1 =m,_,_, —1 +8r—1,j)

then

mir =my, — 1 + 6lil""m;r = mrr - 1 + 5n"

[m];
[mY

r—1

(01 ml,
[03_,’ lml,_,

r—1
Hk #Ej=1 (Ik.r-l

-l

[m],

; [m]r—l

_ [m],
[O]r—l ’ [m]r—l

;¢i=1(lkr -

where /; and S(i, j) are defined by (2.6) and (2.7).
The gl(p) scalar factor

[ [m' +1],
[m' +1],_,

[0, I[ml,

may take nonzero values only if

3j=1,.,,—1 such that [m'+1], =[m}, and [m' +1],_, =[m],_,,

i.e., for certainj = 1,...,p,

my, =m, —1+6,.,m, =m

Then

is no

2287

[m],
.[m]p—l

[ [m],

.[m]r—l

[0  Iml, ]_
[O]p—l ’ [m]p—l B

The gl(r) scalar factor
[ [m’ +1],
| [m' +1],_,
nzero if and only if [m’ + 1], = [m], and [m' + 1],_, = [m],_,. Then

[0, [ml,
(01, m1,_,

[0, [m],]
[O]r—l ’ [m]r—l

[01,_, [ml,_,

|

PP

]

—1+6

’ —_— ’ —
iy Mip_ 1 + 1 =My M1 p1 t 1 =My _1p-1-

- (hp—1 —

P

—1) |2

= 1.

Hi#j=l(1kp _'ljp)

J. Math. Phys., Vol. 28, No. 10, October 1987

(lk,r— 1

16
wsll),

dj=1,.,r—1 such that [m' +1],_, = [m} _,.

_li,r—l)H;cséi——-l(lkr—lj,r—l) 2

lir)nz;j!= 1

b
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(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)
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Inserting (3.15) in (3.10) and using (3.18), (3.22), and (3.26), we obtain

F[m]n+]
[m],

[m]p = il nz_: U i R([m]n+1’[m]n’[m_1]-2‘)
=1lj,_ =1 /

€m0 . >
[m]p_l In Jp=
L my
i [m]n+l T
[m—11;
[m}2 | [0], [m],,] " [[m]f:' (o [m],] P
; ; ; —17 |. (3.27
X[['"L’—l 01, Iml,_ | 2 L pmpemy | 1002 ot || U100 ) 2D
[m_l]p_.]
m“.~1 J

In a similar way as for T, [Eq. (3.5) ] one concludes that the subalgebra P__, defined with (2.23), is a gl(n) fidirmod with
respect to the adjoint representation. Its signature is [1],7", i.e.,

P, =linenviey, |p=1,..n} = V([1]7 7). (3.28)
The relation between the GZ basis in F([1],7 ") and the positive odd root vectors reads
[11,"
(11,77
€, = , p=1,.,n (3.29)
i,
1
Since V([1], ") ® V,([m],,) is a simply reducible gl(n) module, from the Wigner—Eckart theorem we have
[[m], ] - < [iml. ]
" [m’]'l l n_n m n ’
1, Sl R | )
5 (1, | (1177 [m] :
e | ml, | =S S(ml,olmlo w1 | e | U7 ey, ] (3.30)
[m ]p-—l [l]p—l [m]p—l '
[m]p—l . . . [m ]P—l
m; 1 ‘
| L 11 my; | mi, J

The sum is over all I-patterns (Proposition 4); S([m], . ,,[m],,[m'],) are the reduced matrix elements, corresponding to
(€gyy+++€0n ). The Clebsch~Gordan coeflicients can be represented as products of scalar factors

[ (7], | (1" Iml, 7 [ =11, | [01;" [m], ]
Y, | (77 tml, || I =11, | (0l D,
[m,]p—l [l]p-—l ’ [m]p_l [ml_I]p——l [Olp—l ’ [m]p—l
my, 1 my; | N m;l'_l 0 mp J
o [ ey o e ] | 10
_r=p+1 [m,— l]r~1 [0]':rl+1’ [m]r—l [m’_ 1]p—l [0]p—1 ’ [m]p—l

p—1 r—1 0
[ | o [m],]. 331

ALt —11,_, 1 101, [m],_,

The scalar factors, appearing in the first multiple, may be different from zero only if
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3i=1,..,r such that [m'— 1], = [m] 7},

3j=1,..,r— 1 such that [m' —1],_, = [m],~,. (3.32)
If (3.32) holds, then'®
m]~'| [0]7" m]), m2l_ — I L Uy =L, + 1) |2
[ ]_. [ ]—r+1; [ ] ]:S(l,]) k;éj-—-l(k,r—l lr) ]k;éz_l(k jor |+ ) . (3.33)
[m],~, 1 [0], [m],_, H;;éi=l(1kr —lir)Hl’c;j=1(lk,r—1 —lj,r——l +1)
The second multiple in (3.31) may take nonzero values only if
Ji=1,..p such that [m'— 1], =[m]; " and [m'—1],_, =[m],_,. (3.34)
Then
m]; [0]"—1,; e ]= M2ty =l | (3.35)
[m]p—l [O]p—l [m]p—l Hi;&i=l(lkp_lip)
The scalar factors, appearing in the last multiple of (3.31), are nonzero if and only if
[m, - 1]r = [m]r and [m' - l]r—l = [m]r—l' (3'36)
In this case
[m], 0], m], ,
] (o] ; L] ]:1. (3.37)
[m],_.1 [0],_, [m]r—l
Taking into account (3.31), (3.32), (3.34), and (3.36) we write (3.30) in the following form:
r[’n]n+l-
[m],
S n n—1 P .
e | Iml, [=3 S - SSUM,,lmluim+ 11
(m],_, Ja=lj, =1 =1
o
L My
B [m]n+l T
[m+1],7"
[m] | (01,77  [m] [ Iml 77| 10177 Iml, P
[ s i tm,. 411,77 |- (338
[m]p—l [O]p—l [m]p—l r=p+1 [m],_', ! [O]r—l [m]r—l ’
[m+ 1]p—1
[ my+1 ]

C. Reduction of the problem

At this place it is convenient to change to new notation for the reduced matrix elements. According to Proposition 5 and
the relation (2.8) the signature [m], of the gl(n) submodule ¥([m],) CW([m],, ) isin one-to-one correspondence with
the set (/,,...,iy ) of those indices for which 6, =6, = --- =6, = 1.Since [m — 1], and [m + 1], "are also determined by

the same 6-tuple (i,,...,i ) and i, we set
R([m,y 15[m],,[m — 115) SRUML, 4 i),
S([m,y1,[ml,,Im + 11, =8Um], 4 iy iy
In the case p = n we obtain from (3.27), and (3.38)-(3.40),

[m]n+l [m]n+l

[m], . [m—1]

= N I i e e Ol "

€ a1 1= R([m], 4 15ieeesinsi) - —11,_
0 [m]. 1 i;} [m],y shisenin M, (o — 1) [m . | -
my, my; —1

2289 J. Math. Phys., Vol. 28, No. 10, October 1987

(3.39)
(3.40)

, (3.41)
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[m], .. [m],

[m]" d . . . HZ;:(lk,n—l —lin) 12 [m+1]"_
€n | [m],_ | = z S(Im], 4 15800 osinsi) " [m+1],_, (3.42)

. i=1 k;éi=l(lkn _‘lin) .
my, m;, +1
{
Proposition 6: In the right-hand side of Egs. (3.41) and  Suppose that (3.51) holds. Then [see (3.49)]
(3.42) the coefficients, written below, are nonzero for any /- 5 - _ S — .

My gy =My pq — 1, My, =my,. (3.52)

pattern:

mzid R —|
k—l(k,n—l in ) ‘ %0’
HZ #i=1 (Ikn - lin )
|} X ¢ FR—
R k2 T S ) (3.43)
Z;ﬁ: 1 Ukn — lin )
Proof: From (2.57) one derives
m, —m;, >0 Vic<j=1,.,n, (3.44)
my, —m;, >0 Vigj=1l..,n-1, (3.45)
m, —m,.,,>0 Vij=1..,n—1 (3.46)

The inequality (3.44) together with the definition (2.6)
yields

Ly —1,>0 Vi<j=1,.,n, (3.47)
and, therefore,
H (lew — 1) #0. (3.48)
k#i=1
Suppose that for a certain / = 1,...,n there exists an J-pattern
[m]n+1 [m]n+1 T
[m], [m—1],
[fh]n—l = [m—l]n—l
myy my—1
such that
[ [m]n+l
Mzl —fo— 2|
n [m - 1]n -1 =0.
Hk;éi=l(lkn _lin) .
. my—1

(3.49)
Then there should exist k = 1,...,n — 1 such that
—-m, —k+i—1=0,

lk,n—l - Iin — 1= mk,n—l
ie.,

My, —my, =k—i+1 (3.50)

(a) Suppose that k>:i. Then k — i 4+ 1 >0, whereas ac-
cording to (3.45) m,,, _, — m,, <0. Hence (3.50) is impos-
sible.

(b) Suppose that -k <i. Then k — i+ 1<0, whereas
(3.46) yields m, ,, _, — m,, >0. Therefore, (3.50) could be
fulfilled only if k =7 — 1, i.e., if

My _yp_1 =My, (3.51)

2290 J. Math. Phys., Vol. 28, No. 10, October 1987

Combining (3.51) and (3.52) we obtain /1, _,, _, <m,,
which contradicts the definition of an I-pattern [see
(2.57)]. Hence, also in this case (3.50) is impossible. This
proves that the coefficient from (3.41) cannot be zero. In a
similar way one concludes that the coefficient from (3.42) is
different from zero, i.e., (3.43) holds.

Proposition 7: If

-[m]n+l
deg| [m], |=N,

then

[ [m]n+1
deg |[mF 1) | =N=N+1

Proof: Let [m], = [mF 1] ie,
My = My, T 1 £ 8 (3.53)
According to (2.60) the degree N, corresponding to [#],, is

~ 1 n
N=n_1k§l(mkn+l My )
- }n‘,(m — My, )
n—lk___ kn+1 kn
1 n
n—1;=

Proposition 8: If ie(i,,...,iy ), then
R([m], 4 1sipeniy;i) =0. (3.54)
Proof: The vector on the left-hand side of (3.41) is of

degree N. For the corresponding O-tuple we have
0, =6, = =86, = 1. Therefore, for each i),...,i,,...,ix,

0, =N—(m ., —m,)=1 (3.55)
Suppose that for a certain i,&(iy,...ix), R([m], ;
[}s-sipsi, ) #0. Then in the sum (3.41) there will appear a
vector with [m], = [m — 117, i.e., with m,, =m,, —1
-+ 5,‘,,-P. In particular, m, , =m, , and since (Proposition
7

’P’"

[m]n+l
deg|[m—1]?|=N=N+1,

we conclude from (2.63) that

‘é.', =N- (mip,n+l —mip,n)

=N—(mp,y—m,)+1=6, +1=2, (3.56)
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which is impossible, since it contradicts the definition of the
I-basis (Proposition 4).
In a similar way one proves the next statement.
Proposition 9: If ié(il,...,i v ), then

-[m]n+l-
[m],

enO [m]n—l =

—
3
—t

=

!

—-
[

[m]n+l
[m],

e,_10 | [m],_,

my,

[m]n+l
[m],

€n_1 | [m],_,

my,

2291

A Lt (A
z R([m], , 15iensinst) k=lihon?

_Iin _l)

S( [m]n +1 ;il""’iN;i) =0.

[m]n+l

172 [m_ 1];

ie(iy,..., in)

HZ #i=1 (lkn - lin)

HZ; } (lk,n—l - Iin)

m—11,_, |
my;,—1

[m]n+l
v | [m+117"

z. SUIm], o 13i1seensinsd)

n—1

= 3 3 RUM kDS J)

(i ynsipy) J=1

HI':;H= 1 (Ikn - lin)

[m+1]n—l 4

my +1

x n;;jl=1(lk,n—1 —Iin_l)nz#i=l(lkn‘_lj,n—l)n;;%(lk,n—-Z—lj,n—l —1) |
H’I:;éi=l(lkn _Iin)nz;}:l(lk,n—-l —lj,n—])(lk,n—l _Ij,n—l -1
r [m]n+l 1
[m—1],
MICERAN
[m_lln—-Z
[ my;—1 J
n—1

= Z z S([m]n+l;il’---’iN;i)S(i’j)

ieiimniy) j=1

X HZ ;jlz 1 (lk,n —1

—lin)nz¢i=l(lkn _lj.n—l + l)nz;f(lk,n—z - lj,n—l) 2

HZ Fi=1 (lkn

T [m]n+l

[m+1],"
[m+1]77,
[m+1],_,

- Iin )Hz;jl= 1 (Ik,n -1

L m;+1 J
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—lj,n—l)(lk,n—l

b1+ 1)
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(3.57)

Inthe casesp = n,n — 1 therelations (3.27) and (3.38)
together with Propositions 8 and 9 yield

(3.58)

(3.59)

(3.60)

(3.61)
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Ill (3.58), (3.60), and throughout the paper a sum over
i€(i},...,iy) means a sum over the compliment set
(Lyeees®)\ (By5eensin ), 1€y

= ¥ . (3.62)

€Upomin)  i= (1,2,0.,0)

Proposition 10: The endomorphisms e,, and e, of
W([m],, ), defined with Eqgs. (3.58) and (3.59) satisfy
the right commutation relations with the even generators E;;
[which action on W{([m], , ,) follows from (3.1)-(3.3)],

namely
[ewsEy] = —bjn€0 +yno, 6j=1,..m, (3.63)
[eonsEj] = bineqy — S0,y 6,j=1,..,n. (3.64)

A sketch of the proof is given in Appendix A.

Proposition 11: The endomorphisms e,, and e, de-
fined in (3.27) and (3.28), satisfy the commutation rela-
tions with the even generators £, i.e.,

[eonE; ] = b€y — Syeon, b jsk =1,..,m, (3.65)

[exo-Eyi] = —Bpen + 6 ex0, jk=1,.,n. (3.66)

Proof: Let i< j and k < n. Using Proposition 10 and the
gl(n) commutation relations (1.4), we have

[€owsEy]
= [eOnEnk —E, e, ’Eij]
=[[on:Ey]:Eni] + [eons [ EnrsE5]]
= [8ineo; — O;€0nsEni ] + [€onsOriEnj — 8,0 B ]
= iy [€0jsEnx ] — Oy€or + Ori(€0; — 8;n€0,)
— 8 (8,n€01 — Bucon)- (3.67)
Since i< j,
(3.68)

Inserting (3.68) and (3.67) and taking into account that
[ €onsEni | = €ox» We get the desired result

Sineqy = 08;,80, and 6,,e0, =38,,8,, €0

in%“jn

[eonsEj] = Orieqy — Bye0r  Vi<j=1,...,n. (3.69)
To complete the proof we use the relation
leon—1:Enn_1]=0, (3.70)
which is proved in Appendix B.
Let n>i>j. Then
[eO,n -1 ’Eij ] = [[eOn ’En,n -1 ]9Ez]]
=[e""’[Emn—l’Eij]]=5i,n-1eoj'- (3.71)

From (3.69)-(3.71) we conclude that the ¢, ,, _, fulfill the
commutation relations with gl(»n):

[eo’" 1 ’EU] = 6i,n _- leoj —_ aijeO,n_ 13 i,j = 1,...,”.

(3.72)
Letnowk<n —1and n>i>j. Then
[eOk’Eij] = [eOnEnk —E, e, Ey]
= [eOn![Enk’Eij]]
=0 [€onsEnj ] =0y, n>i>j.  (3.73)

2292 J. Math. Phys., Vol. 28, No. 10, October 1987

Ifk<n—1andn>j,

[eo"’E"f] = [eom— 1En-— Lk — En —1,k€0,n — UEnj ]
= _61»"—1[e0,n—1vEnk]=0s n>j-

From (3.69), (3.73), and (3.74) we conclude that

[eosEy] = Orieq; — ben, k<n—1, i,j=1,.,n.

(3.74)

(3.75)
The last relation together with (3.72) and (3.64) gives
[eonsEj] = Orieo; — e Visjik=1,...,n.  (3.76)

In a similar way one also proves the commutation relation
(3.66).

Proposition 12: If {e,, €0, } =0 (i.e., €y,€,, =0) as an
operator equality in W(lm], +1), then also

{egp 0,3 =0 Vpg=1,.,n (3.77)
Proof: Let p < n. From Eq. (3.76) we have
{eOn ’eOp} = {eOn €onE,p, — EnpeOn} = —€p, [eOn ’Enp]
— [eonsEnp 1€0n = — {eon 7e0p}'
Therefore,
{eone0s} =0, p=1,.n. (3.78)

Letp <n, g<n. Then
{eop ,eoq} = {eOp )eOnEnq - EnqeOn}
= — {eon:[€opsEng ]} = 0. |

In a similar way one proves the following proposition.
Proposition 13: If {e,q,€,0} =0in W([m], ), then

{eo.60} =0 Vpg=1,.,n (3.79)
Proposition 14: If the operator equation
{enO’eOn} = Enn (3.80)

holds in W([m] »+ 1), then also the anticommutation rela-
tion
{e0:60,t =E,, (3.81)

is fulfilled.
Proof: Let p <n. Using Eqs. (3.75) and (3.81) one de-
rives
{eOn ’epO} = {e0n ) [Epn ’enO ] } = [Epn 9{en0 !eOn }]
= [E 0 Enn ] = E,,. (3.82)
If p < n and g < n, then we have from (1.4) and (3.82)
{epo ’eoq} = {epo’ [eon ,E,,q ]}
= [{ey0.0n1,Eng | — {eon:[€0:Eng ]}
= [EpnEng] + 6, {eonserot = E,. [ |
From Propositions 11-14 we conclude.
Corollary: The operators e, and ey, k = 1,...,n, de-
fined with the Eqs. (3.27) and (3.38) turn the linear space

W([m]l,, ) into an sl(1,n) module if and only if the fol-
lowing relations hold:

enOenO = 09 (3.83)
€onon =0, (3.84)
enOeOn + eOnenO = E,m. (3.85)
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D. Determination of the reduced matrix elements

Considering the relations (3.83)-(3.85) as operator
equations in W([m], , ;) and using the expressions (3.58)
and (3.59) we arrive at the following equations for the un-
known reduced matrix elements.

For any i <j = 1,...,n and i, je(iy,...,ix ),

R(Im],  isipipsDRUIM], o 13iseoinsbs )
llln+l _ljn+l + 1|1/2

R( [m]n +1 HIT ,IN,])R( [m],, +1 ;l‘ly""iI\Hj;l‘)

For any i <je(i},....ix),
S([m, 4 3i1reeesins)SUIMY, 4 13i1memig NE )

|1n+1 - m+l +1|1/2
SUIm], o 15fpeoin; DSUMI, o y5inemdin \ Jif)
Ili,n+l —lj,n+1 + 1|1/2

(3.87)

where i,,...,[y \7 is the set /,,...,iy from which the index i has
been deleted. B
For any i€(i},....iy ) and je(i,,....ix ),

S( [m]n+ l;il"",l'N;i)R( [m]n + l;ily'"’iN \l,])

=0.
| in+1 T 1n+\ + 1 | 1z +R([m]n+1;i19"-’iN;j)S( [m]n+l;i1""1iN’j;i) =o’
(3.86) (3.88)
]
S([m]n+|;l'],...,l.N;l‘)R([m]n+ l;il""’iN \i;i)
i€y in)
n—1 n — 12
T Gonms =] | T e =bud oo = + )|
k=1 kAi=1
+ Z R([m]n+1)ll) ’IN;_])S([m]n+1alla ’lN’]’_])
.’E(ll ----- ind
n-1 n 1/2 n n—1
kHl(lk,n—l _’l]n_l) k#l-'l l(lkn—ljn)(lkn _l)’ 21 2 jn—l (389)
= = =

A derivation of Egs. (3.86)—(3.89) is given in Appendix C.

A hint of how to solve the equations for the reduced matrix elements give the results from Refs. 18 and 19. There we have
introduced a concept of I-basis for the LS’s s1(1,2) and s1(1,3). In particular, for the action of e,9,¢,, (7 = 2,3) on the I-basis
we had [see (2.32) and (2.35) in Ref. 18 and (2.32) in Ref. 19]

[[m,01] (ml, sy

[[m]n (6) Iz ;l(lkn—l —'lin _1) 172 [m—-llln (3 90)
e = sgn - s .
"0 m]‘,,_, iéu,;,im s I i1 Ukner =l 1) L _]"_1

L myy my —1

r[m]n+l- [m]n+l

[m]" 'L:i(lk 1 —1.) 12 [m+ 1]"—i
eon | [m],_, ='(2_ )sgn(a)(,n+1 +1) 7 — ) [m+11,_, |, (3.91)
[ CTN ) #1_1 kn+1 7 %in+1 .
b mll J m11+1
I

where sgn (@) is a sign function, depending on 8,,...,6,, i.e.,
sgn(6) = + 1. Comparing (3.58) with (3.90) and (3.59)
with (3.91) we conclude that in the cases n = 2,3 the re-
duced matrix elements are of the form

R( [m]n +1 iseeninsl)
172

;... d
k#i= l(kn m) , (392)

_li,n+1)

=sgn(0)
;éx— 1 (lkn+ 1
S([m], +1 S seensinsl)

172

Hz FEi=1 (lkn - Iin)

#l—l(lkn+l _li,n+l)
(3.93)

=sgn((;, ., +
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The solution of Egs. (3.86)—(3.89) is not unique. One
possible solution can be given with expressions of the form
(3.92), (3.93) for any n. More precisely, we have the follow-
ing proposition.

Proposition 15: The reduced matrix elements
R([m], , sipeoiy:d) and S([m], , | iyeiy;i) of the gl(n)
irreducible tensor operators (e,¢,..-,€,0 ) and (€gy,...,€,, ) Can
be chosen to be

R(Im], . 1ipeensipsi)
=(1-6)(—-D*
;oo (e — 1) 7z
- ll‘,n+1 )

440y

, (3.94)

n
Iz #i=1 (en 41
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S( [m]n+1;i11--')i1v;i)
=0,(-D"Y gL+ D

n ) 172
o | MM im s i = i) , (3.95)

1 PN (R Y

It is not difficult to check that the expressions (3.94)
and (3.95) satisfy the first three equations (3.86)—(3.88).1In
the proof it is convenient to use the following representation
of the reduced matrix elements:

R([m], T SN 45 )

_ (1 -—6,)( _ 1)9.+~-'+9,-_,
/) -1 1
X kn+1 LIn+1 + , (3.96)
H€(Ey,00ipy) lk,n +1 = ll'.n +1
S(Im], o 13fninsd)
=6,(—~DOT T+ D)
l _ I _ 1 172
x kn+1 in+1 (397)
(i 1,menip) Ik,n+1 "‘li,n+1

To prove that the relations (3.94) and (3.95) also satisfy Eq.
(3.89) we use the following identity.

Proposition 16: Let A,,...,A,,B,,...,B, be, in general,
complex numbers such that

A, #4;, if i#j=1,..n, (3.98)
A, — B;eZVi, j, = 1,..,n. (3.99)
Then
n "= Ai —B ) n
— 1 =3 (4,—B).  (3.100)
i=1nk;éi=l(Ai—-Ak) i=1
The proof is given in Appendix D.
If B, = 0 then (3.100) reads
z M;-1(4, —B nol
4, k=i L) -3 B. (@3.10D)

i=1 k;éi=1(Ai'—Ak) i=l j=1
Suppose that the numbers 4,,...,4,,,B,,....B,, _, aresuch that

A, —AeN Vick=1,.,n,

A, —B.eZ, Vi<k=1,.,n—1, (3.102)
B, —AcZ, Vk<i=1,.,n.
Then
A, —B A. —B
S ’ Lkl Witk =1,..,n,
A, — A, A, — A,
and, therefore, (3.101) takes the form
n n:- 1 A n—1
3 4, | =34-3 8,
=1 iz (4; —A ) =1 =1
(3.103)

Consider an arbitrary I-pattern (2.54) of degree N and
let

{01y-560, 3 = (i1yeenin) (3.104)
be the O-tuple corresponding to it (Proposition 5). From
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(3.96) and (3.97) one derives

R([m], ; y5inenin \Ei)

— ( _ 1)9|+"'+ei—l
Hn . I __l 1 172
k#t—l( kn in + ) , (3105)
z#i=l(lk,n+l _li,n+l)
S([m]n+l;i1"",iN’j;j)
=(— 1)9.+---+9,-_1(1‘"+1 +1)
_ l 1 172
k=1 Ui — ) , (3.106)
Hk;éj=1(lk,n+l _lj,n+1)

where, we wish to underline, everything in (3.105) and
(3.106) is expressed in terms of /,,,,...,/,, and the &-tuple
(3.104), corresponding to the initial /-pattern. Inserting the
expressions (3.96), (3.97), (3.105), and (3.106) in the left-
hand side of Eq. (3.89) [ = 1hs(3.89)], we have

1hs(3.89)

z:} (lkn—l —‘lin)

Uinsr + 1)
e —li,n+l)

n
I-Ik F#i=1 (lk,n+1

+ z (lj,n_'_] +1)

]E(h ----- in)

Hi;}(lk,n—l _ljn - 1) }

- (3.107)
nk;éj=l (lk,n+1 - lj,n+1 )

The relations (2.63), (2.6), and (2.9) yield

ll = m+1 +1-—N, iE(il,...,iN),

2o (3.108)
— N, Jje(ijy.sin).

lj lj n+1
Combining Eqgs. (3.107) and (3.108) we get
1hs(3.89)

z(ltn+l + 1)

i=1

—1
Z—l(lkn—l -

li,n+l +N_ 1)

Hz#i=l(1k,n+1 -li,n+1)

(3.109)

Introduce the notation

A=l .+, B.=l, ,+N,

i=1l,...n k=1.,n—1

In terms of these notation (3.109) reads

n n:l A

Ths(3.89) = Y 4, I ’((A A))
i=1 k;éi:l i Ak
— My 1 €4 . Therefore

— k + 1)eN,

(3.110)

Fori<k,m;,
(mi,u+1 — i+ 1) — (mg,
ie.,
A, —A,eN Vi<k=1,..,n.
From (2.63) and (2.6) we have

A, =1, +N+1—6,=m, —i+N+1—6,.

(3.111)

(3.112)
If i<k = 1,...,n — 1, then [see (2.57)]
A, —B,=m;, —my,,_, +1 -0, +k—
(3.113)
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Ifk<i=1,...,n, then R([m], . ;i1ein.i) and S([m], . 1;iy..0n,i) satisfy also
B, —A. =m —m, +6, —1+i—keZ. . Eq. (3.89) and, therefore, these expressions can be accepted
Pt no +(3_ 114)  as reduced matrix elements of the gl(r) irreducible tensor

operators (e,q,-.-s€,0 ) and (€g;;...,€0, )-
Hence, we can apply to (3.110) the identity (3.103): pe €10 0 opmTo

Ihs(3.89) — 2 4, — "2‘ B = Z m, — "i‘ My 1. E. Typical representations
=1 i=1 i=1 Inserting (3.94), (3.20), and (3.24) in (3.27) we obtain
(3.115) the transformation of the I-basis (2.54) under the action of

Thus, the expressions (3.94) and (3.95) for the odd positive root vectors:

|
r[m]n-;»l-
[m],
E n n—1 . X H |—(ln_tn) 12
ol Iml, =3 'S S a-0)(—D" T % a1k
[m] . =1i, =1 'p=l Hk;éi,,=l(lk,n+1 —li,,,n+1)
p—
L Mua
" I‘Ir—‘! (l r— —li - )Hr i, = (l r_Ii r— ) 172
X H S rrlr—l uka 5 : 11 k#’ : b - :
r=p+1 ;;e. —l(lkr - )Hz;i,-,——-l(lk,r—l _li,_l,r—l -1
B [m]n+l T
[m—1]7
iUy =1, — 1) L
[m_.l]l'f , p=1,.,n (3.116)
nk;él -l(lkp lp)
[m—11,_,
L my—1
Similarly, inserting (3.33), (3.35), and (3.95) in (3.38), we obtain
-[m]n+l-
(m],
: n n—1 R
eOp [m]p = z 2 Z 0 (_'1) " (li",n+l +1)
=1, 1=1 =1
[m]p—l
L. My
i SG ) n;;.l ,=1(lk,r —li r)H;c¢i,=1(lk,r_li,_l,r-1+1) 12
X Y
r=p+1 ' k#x _l(lkr —Il r)H;;},_,=l(lk,r—l —li,_l,r—l + 1)
r [m]n+l i
[m+11,"
1 P ln_lin) 172 r[p;l 1 _ —li ) 172 .
L G ~ ’; A e [m+1)7%]. (3.117)
k;éi,,=l(lk,n+l _li,,,n+1) Hk;éip=l(lkp —-lip,p) [m+ 1]p_1
| my+1
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The transformations (3.116) and (3.117) [see also (3.58) and (3.59) ] take a particularly simple form in the case p = n:

[m]n+l [m]n+1
-1y
[m] O+ -+ 0, ;:}(lkn—l _lin —1) 172 [m ]n
€no [ml,._l = 21(1—0)(—1) O ) m—11,_, | (3.118)
i= k#i=1\kn+1 = 4in+1 .
my my —1
[m], ., [m], 44
- : o+ 10, M-l 1l (v2] i
eon | Iml,_y | = X 6,(=D” ““wir + 1) ~— —— ) lm+1],_, |- (3119
. = ¢.=1 kn+1 —ting .
mll m11+1

The transformations (3.118) and (3.119) together with the expressions (3.1)~(3.3) for the even generators determine
uniquely all other generators. In this sense the relations (3.118) and (3.119) determine the representation of the LS sl(1,n) in

W([m], 110

For any n-tuple [m,, , 1M, 1seesMpn i1 s Miniy — My 10 1€L,, i=1,..,n — 1, the formulas (3.116), (3.117)
define completely the induced representation of sl(1,n) in W([m],, ) [the transformations (3.1)-(3.3) for the even
generators follow from (3.116) and (3.117), since E; = {e,o,eoj}]. This representation is irreducible and, hence, typical if
and only if (Proposition 1)

m, 1 #k—1, k=1,.,n. (3.120)

Iffor certain k = 1,...,n, m,, , , = k — 1, the representation is indecomposible. In this case W([m], . ) contains a maximal
invariant submodule /¢ ([m], ., )and at the same time there exists no compliment to ¥{ ([m], . ;) subspace, which is invariant
with respect to sl(1,n). The factor module w([m] na )/1( [m],, ) carries an irreducible nontypical representation. The
maximal invariant subspaces, the factor modules and their transformation under the action of the s1(1,n) generators will be

given in Ref. 1.
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APPENDIX A: A PROOF OF PROPOSITION 10
Consider first the commutator

[enOvEn,n—l ] = enOEn,n—l - En,n— 1€no- (Al)

Acting with the right-hand side of (A1) on an arbitrary I-pattern and using Egs. (3.2) and (3.58) we have
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[m]n+l
[m],

(enoEnp_1 —E,._1€0) | [m],_,

my,
-[m]n+l
[m],
="_1 —l(lm_Jn—l+1)H:l—_12(1i,n—2_1j,n—l) e [m]n—l
Jj=1 n?;é_jl=l(li,n—l _ljn+1)(li,n—l _lj,n—l) " [m]n—Z
. My
[m]n+l
[m—1],
Hz—}(lkn—l _lln - 1)
R([m]n ;l 9 ’l )l) En,n— [m_ 1],._
T e T M G = 1) ‘ T
my;—1
="il (lin —ljn—l + l)nzaél-l(lkn - jn—l + 1)I]:k=l(lkn--2 _lj,n—Z) 2
j=1 Z;jl—l(lkn—l—lj,n—l+1)(Ik,n—l—lj,n—l)
B [m]n+1 i
[m—11,
I8 —IL —DIZ U Y A | -
x z R([m]n+l>llx 9’N9’) (J'n_l = ) k#]_l(k'"_l = ) [m I]n—l
€ yyensi ) n2¢i=l(1kn _ll'n) [m - 1]n—2
L my—1
. .. (l'n— _Iin - 1)lFI"_‘]= (l n— _lin —1)
- Z R([m], ; 13i1esinsd) Lk - FRim Lo n
W€(iyein) Hk;ei=|(lkn _Il'n)
i [m]n+l i
[m—1];
X"E—:‘ Uiy =y + DM oy i =Gy + DI 2 =) [P | I =117 | _ (A2)
i=1 nzséj—l(lkn—l_lj,n—-l+1)(1k,n—1_lj,n—l) [m—1],_,
[ my —1
which is in agreement with (3.63).
By a straightforward computation one proves also that the following commutation relations hold:
[eno,Ek’k_l] =0, k = 1,..-,” - 1, (A3)
[enO’Ek—l,k] =6knen—1,0! k= 1)'“’”9 (A4)
[nosEwx] = (1 —=8n)en, k=1,.,n. (AS5)

The rest of the relations (3.63) follow from (A3)-(AS5) and the gl(n) commutation relations. The proof of the commutation
relations (3.64) is similar.
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APPENDIX B: DERIVATION OF EQ. (3.70)
Applying twice Egs. (3.2) and (3.61) we arrive at the expression

[m]n+1
[m]n n—1n—1 . o
(B)=[e€on_1:Enn_1] i = Y 3 3 SUUml., sipeini)
: ie(imniy) J=1 s=1
my,

M Gy =L + DI 23Uy =L 1) |2
e L
Hk#j:l(lk,n—l _lj,n—l)(lk,n—l _lj,n-l + 1)
Hz;sl=l(lk,n—l _lin _6kj)nz;éi=1(1kn _ls,n—l +6sj + I)HZ;%(lk,n—Z _Is,n—l +6sj) 12
I oo U — LDTR = L =8 + 0 ks —liuy =85 +65;+ 1)
_ Hz;sl=1(1k,n—l .—lin)nz;éi=l(lkn _ls,n—l + I)Hz;%(lk,n—Z _ls,n—l) 2
Hz#i:l(lkn _Ii,n+1)Hz;sl=l(lk,n«l _ls,n—l)(lk,n—~l —lx,n—l + 1)
i [m]n+1
[m+1],;°
l H'l:=l(lkn_lj,n—l _5ki+6js+1)nz;%(lk,n—2_lj,n—l +5js) 1/2] [m'{"l]n_;i’].s
Hz;jl=1(lk,n—1 — iy 1 =8+ 8V Uiy — L — 8 + 65+ 1) [m+1],_,
L my+1

Denote the expression in the curled brackets in (B1) as
F(j:s;[m]n)[m]n— l’[m]n—Z;i)

and represent the sum as

B)= 3 Sml,yisiieiy)

i€ (iypming)

n—1 n—1
x[‘z S(i,8)F(j, j;lml,,[m], 1, [ml,_2sD) + Y [SGSF(js;[m],,[m],_,[m],_,:0)

i=t s<j=1
[ [m]n+1 T
[m+1],°
11755
+S(i,j)F(S,j;[m],,,[m]n_1,[m]"_2.,,-)]] [m+ 11,4
[m+1]n—2
= m11+1 o

After some calculations one obtains
F(j,jlml,,[m],_,,[m],_50) =0,
S, DF(js;...) +S3U,)HF(s, J;...)
_ G(jsm],,Im], ;i)
G ooy =y AR —2)

n-1 (lk,n—l_lin)
x| 11
k#s=1 (lk,n——l — din—-1 + 1)(lk,n—1 _lj,n—l)(lk,n—l _ls,n—l + 1)(lk,n—1 _ls,n—l)
k#j
n ln_l_"_ +l)(1n_lsn— +1) n—2 172
(k - : - : : H (lk,n—2_Ij,n—l)(lk,n—Z_]s,n-vl) ’
k#i=1 (hew — 1in) K=1
where

G(js;lm],,[m], _ 30
=S(i’s)l1in _lj,n—ll(ls,n——l _lj,n_l + 1) _S(i,s)lli,, —bin—1 + ll(ls,n—l _lj,n—l —_ 1)
+S(i’j)|lm _ls,n—ll(ls,n—l _lj,n—l - 1) _—S(l’j)llm _ls,n—l + 1|(ls,n—1 _lj,n—l + 1)'
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To get rid of the modulus in (B5) consider the following cases.

(a) i<s. Since s <, also i <j and, therefore, S(J, j) = S(i,;s) = 1. From (2.57) and (2.6) we conclude that/,, — /;, _, >0,
l,, — I ._,>0. Therefore,
G(js;[ml,,[m),_ ;D)

= (lin - lj,n— 1 )(Is,n—l - lj,n—l + 1) - (lin - Ij,n—l + 1)(ls,n-l - lj,n-l - 1)
+ (lin - ls,n-l )(Is,n—l - lj,n—l - 1) - (lin - Is,n—l + 1)(ls,n—l - lj,n—l + l) = 0 (B6)

In a similar way one shows that

G(.I’s;[m]n’[m]n—l;l)=0' (B7)
In the other two cases,

(b)j<i,

(c) s<i<].

Hence, (B7) holds for arbitrary values of the indices 7, j,s. From (B3), (B4), and (B7) we get the desired result

[eO.n—I’En,n—l] "_‘0' (Bs)

APPENDIX C: EQUATIONS FOR THE REDUCED MATRIX ELEMENTS

Acting with e, e,, on an arbitrary I-pattern and using (3.58) one derives the expression

[m]n+l
[m],
el | [Mm],_, | = _ Z _ z R([m]n+1;i19'-"iN;i)R([m]n+l;il,'"’iN’i;j)
X 1 (iyyip) JEU omnning)
my,
[m]n+l
[m—21%7
n—1 _7 _ 7 _ 172 n
X Hk:l(lk,n—l lm 1)(lk,n—l I]n 1) [m-—-2]n_l , (Cl)
HZ#i:l(Ikn _lin)r[;;éj=l(lkn _Ijn +6ik) .
mll _2
which can be written also as
[m]n+l
[m]" HZ;}(lk,n——l _lin_l)(lk,n—l _ljn-l) 12
enoeno [m]n-l = _2 n
. i< je(iy,niy) (li,, '_ljn)nk=1,k;éi,j(lkn "‘Iin)(lkn _lj )
my,
X[R([m]n+1;i1’-'~’iN§i)R([m]n+l;il»"',iNai;j)
Ili,n+1 —lj,n+l + 11”2
[m]n-+-1
. S m—2]%
R([m], , i3ivesins DRIM], o 315ensings i) [ ]
Loy =linyr + 1I1/2 [m-2],_,1- (C2)
jn in .
m;, —2

In obtaining (C2) we have used the circumstance that 6, = §; = 0 and, hence,
I} A L

in+1 " tinr1 = tin _ljn' (C3)

Since, as a consequence of Proposition 6,

Z;}(Ik,n—l _—lin - 1)(lk,n—l _Ijn - 1) 2
(lin _ljn)nz=],k9éi,j(lkn _lin)(lkn —Ij )

#0, i<j,

the operator relation (3.83) holds if and only if the expression in the curled brackets of (C2) vanishes, i.e., if
R([m], ;. |sip-iy;f) satisfies Eq. (3.86).
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The relation (C3) holds also if i, je(iy,...,iy, ). Using this one derives from (3.84) and (3.59):

[m], 1
€5, € [[’7]1]n Z M ey — L) w1 — 1) 12
n“0n mp, _ =
o - pjelituin | Ty = LR sy gy B — 1) (B — )
: o
my,

X{S( [m]n+l;ili"')iN;i)S([m]n+l;il""’iN\i;j)
Ilj,n-+-l _li,n+1 + 1|1/2

[m]n+1
A oy [ mr2)
S([m]n+1;’1’-'-:’N§J)S([m]n+1211a---”N\J;’)] [m + 2] (C4)
Vins1 = Lnsr + 11172 ot
my +2

Therefore, Eq. (C4) holds for any I-pattern iff the Eq. (3.87) is fulfilled.
Consider Eq. (3.85). Acting with the right-hand side of it on an arbitrary I-pattern and applying (3.1) for X = n we have

[m], 1 [m],
[m], . . [m],
E,|[ml,_, =(Z m;,, — Z mj,n—l) [m],_, |- (C5)
my, my,

Acting with the left-hand side of (3.85) on an arbitrary I-pattern and taking into account (3.58) and (3.59) we obtain

[m]n+1
[m],
C= (enoeon + eOnenO) [m]n— 1

my,

= Y Y SUmlay i RUM, o 5ieniy N )
(i) JEUiymig\D)

[m]n+l
-—l,j
HZ;}(lk,n—l_lin)(lk,n—l_ljn +6; —1) 2 [[m]],,
ml,_
00 ey Uiy — L) i iy — Ly — 81+ 85) o
my,

+ > > RUml, iy DSUm],  iyeesdn, /50

JEU el ) 1€ i )

[m]n+1
[m1, %
m-tyu b~y =l — 6, 12 n
e = WCen s o) [m],_, =C,+ G, (C6)
HZ#j:l(lk" _lf")nz?éi=l(lkn _lin +5kj"‘6,j) .
iy,
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C= 3 3 stml. i

H€(H1sernsipy) JECh1yeeniy)
H'I:.:_:(lk,n—l — L)y =1, = 1)
Hz;éi= 1 (lkn - Iin )Hz#j= 1 (lkn - Ijn - 6ki)

172

R([m], , 1siiesin \GJ)

+ R( [m]n+ l;ily--"iN;j)S( [m]n+ 1 ;ily-"riN’j;i)

[m]n+l
ml
Py A U0 A S T W i
p n [ml,._. > (ChH
Hkaéj-—-](lkn —ljn)nk;éi=l(lkn —lin +6ki) .
my,
Mz Uewoy — 1)
C, = S([m]), 15D )RUIM], o 1 shise-ooiy \EE) i .
2 [iE(ingny) A N - N I Hz;éi= 1 (lkn - lin ) (lkn - Iin + 1) I 12
[m]n+l
[m]
M2} G =L — D) "
+ R([m], 4 v5ivsenins NS(IM, o 15tiseensiins 3 ) | = L .
!EU;JN) [ ] 1 w3l i v 1 II—[Z;éj‘=l(1kn—ljn)(lkn'_Ijn_]-)ll/2 [m]. l
nmy,
(CB)
The term C, may be written as
C. = Hz;}(lk,n—l—lin)(lk,n—l _ljn_'l) 12
! €(iyyrnsip) JEU pemriy) (lin - Ijn )(lin -1, — I)Hz#i= 1L,k #J'(lk" - li" ) (lk" - lf” )
X{S( [m], + 1ol ) R( [m], 41580 dn NE )
[m]n+1
[m],;
+ R([M], 13i1edns DSUIMY, 4 y3iseins 5D } [ml,_. |- (C9)
my,
From (C5), (C6), (C8), and (C9) we conclude that the Eq. (3.85) is fulfilled if and only if
C,=0, (C10)
[m]n+l
n n-—1 [m]n
CG=|Y m,— 3 m,-,n_l) i . (C11)
i=1 j=1 .
my,
One easily derives that if
[m], ., [m], 1
[m], (m], "

[m]n—l and [m]n—l ’ i#j’
my, my,
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are I-patterns, then
HZ;}(lk.n—l D1 (A —ljn -1
(lin - ljn)(lin - ljn - I)HZ #i= 1,k ;éj(lkn - lin)(lkn _Ij )

Since, moreover, the right-hand side of (C9) is alinear combination of linearly independent I-patterns, Eq. (C10) holds iff the
reduced matrix elements satisfy Eq. (3.88). Equation (3.89) is an immediate consequence of Eqs. (C8) and (C11).

#O0. (C12)

APPENDIX D: A PROOF OF THE IDENTITY (3.100)

This identity can be derived in different ways. Here we follow a proof, which was suggested to us by D. Pfeil (University of
Clausthal). In the cases n = 1,2, (3.100) is evident. We prove by induction on #. Suppose (3.100) holds for a given ».
Consider 2 + 2 numbers 4,, B;, i = 1,....,n + 1, which satisfy the conditions (3.98) and (3.99). Using the identity

(4, —B, )4, —An+1)=(A1_An+1)(An_Bn+1)—(Ai—An)(An+l~Bn+1)’
we have
DE"il H::}(A,—Bk) ="_'1 (A,—Bn)(A._Bn+1)H'I:;}(A1—Bk) _An_An+l
i=1 Hz;il=l(Ai_Ak) i=1 (Ai—An)(Al‘_An+l)HZ;il=l(Ai—Ak) 4,—4,.,
(An—Bn+l)nz=l(An—Bk)+(An+1 —Bn)nz;rll=l(An+l _Bk)
(A, — A, DI (A4, — 4,) (Apsr =AM (4, —A4L)
ol MR21 (4, — By) . A4; — B, [An_Bn+1_An+1—Bn+1]
i=lH2;iI=I(Ai_Ak) An—‘An+1 Ai_An Ai—An+l
(An—Bn+1)Hn=1(A"—Bk)+(An+l_Bn)H:;rlt=l(An+l_Bk)

: - =D, —D,, (D1)
(An —An+1)HZ;I(An _Ak) (An—l-l_An)n’I::l(An-kl_Ak)
where
A, — B -t Il _,(4, —B %-,(4,—B
= n n+l[ k_l( i k) + k—l( n k) ] (D2)
An—Bn+l i=1H2¢i=1(Ai“Ak) Z#n:l(An—Ak)

The expression in the brackets of (D2) reduces to (3.100) in the case n, which holds by assumption. Therefore,

A, —B,, , &
DA A AT >
2=An+l_Bn+l ["‘1 I _, (4, — By) (An+l_Bn)H2;{(An+l_Bk) (D4)
An _An+1 i=1 (Ai—An+1)H2;il.—_1(Ai—Ak) Hili(A,.+1—Ak)
Introduce a new notation
A, =4, 4,=4,.,, k=1,.n—1 (D5)
Then D, reads
D2=An+l_Bn+1 c r_ (4, —By)

4, “An+1 i=1 Hz#i=l(zi _Zk) ’

and since 4 ,,...,Z,, B,,....B, satisfy the conditions (3.98) and (3.99) and since, moreover, in this case (3.100) holds by
assumption, we obtain

D2=An+l_B Bn+1

n A —

n+1 - n+1

(A’. _..B’) = e
4, A, 2 A

Inserting (D3) and (D6) in (D) we obtain the desired result
nel [I2+1(4, — B n+ 1
ez O _ > 4, —B). (D7)
i=lHZ;,~1=1(Ai_Ak) i=1

Hence, if (3.100) holds for certain #, it holds also for n + 1. Since (3.100) is an identity for #» = 1, it is an identity for any
integer neN.

n—1
S, (4 =B) 44, — B, | (D6)

n_An+l i=1
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It is shown that the Clifford algebra unitary group approach, which is based on the subgroup
chain U(2" ) DS0(2n + 1) 3SO(2n) DU(n), may be described in terms of the para-Fermi
algebra. Applications to the development of efficient algorithms for the evaluation of matrix
elements of U(n) generators and of their products are also briefly discussed.

I. INTRODUCTION

The unitary group approach (UGA) to the many-elec-
tron correlation problem'= provides a versatile formalism
enabling an efficient exploitation of the invariance proper-
ties of a nonrelativistic, clamped-nuclei, electronic Hamilto-
nian in quantum-chemical calculations of the molecular
electronic structure. It represents an outgrowth of the for-
malism initially laid down by Moshinsky* in the context of
the nuclear shell model and is based on the fact that the spin-
independent many-electron Hamiltonian may be expressed
as a bilinear form in the spin-free (orbital) U(#) generators.
It enabled the development of efficient methods for the
evaluation of Hamiltonian matrix elements using the algo-
rithms for matrix elements of U(n) generators' and of
products of generators® and proved to be particularly useful
in large scale quantum-chemical configuration interaction
(shell model) calculations.®!! A detailed account of these
developments can be found in numerous reviews'?"'> and
monographs.'®!’

Thus, from the viewpoint of the many-electron (and,
generally, many-fermion) problem, it is essential to develop
efficient and versatile algorithms for the evaluation of matrix
elements of the U (#) generators and of their products. In the
UGA formalism it is traditional to adopt the Gel’fand-Tset-
lin basis although it is sometimes more convenient to adopt
other bases.'®*2° (This is particularly true for the “group”
function type approaches'®?® when a molecular wave func-
tion is built from the wave functions of subsystems.) This
problem dates back to the original work of Gel’fand and
Tsetlin?' and Baird and Biedenharn®? who developed explic-
it formulas for matrix elements of all U(n) generators in the
Gel’fand-Tsetlin basis. More recently an alternative alge-
braic approach to this problem was developed.?® The general
formalism of Refs, 21-23 considerably simplifies for the
many-electron problem since at most two-column irreps of
U(n) need be considered. This sirnpliﬁcation"2 together
with its graphical representation® has led to the development
of numerous computational implementations.*"

Recently a new approach to the evaluation of the U(n)

*) Permanent address: Department of Applied Mathematics, Department
of Chemistry and (GWC)?, University of Waterloo, Waterloo, Ontario,
Canada N2L 3G1.

2304 J. Math. Phys. 28 (10), October 1987

0022-2488/87/102304-06%$02.50

generator matrix elements was undertaken,’*? following an
earlier work of Nikam and Sarma,?® which exploits the im-
bedding of U(n) in the much larger group U(2") via the
subgroups SO(2# + 1) and SO(2n). The main advantage of
this approach,?*?* which is referred to as a Clifford algebra
UGA (CAUGA) in view of the role played by spin represen-
tations, is that the U(n) generator matrix elements may be
efficiently evaluated by exploiting the simple action of the
U(2") generators on the basis states of the totally symmetric
tensor representations. This approach also enables the treat-
ment of particle-number-nonconserving operators and cou-
pling schemes other than the canonical Gelfand-Tsetlin
scheme,? thus providing a greater flexibility in the construc-
tion of many-electron bases and in the development of perti-
nent computational algorithms in general.

It is our aim here to investigate this problem from the
viewpoint of parastatistics, first introduced by Green?” as a
generalized method of field quantization that includes nor-
mal Fermi and Bose statistics as a special case. (For a de-
tailed account of parastatistics and its applications in quan-
tum field theory see Ref. 28 and references cited therein.)
We shall demonstrate that, from the viewpoint of the U(n)
generator matrix element evaluation, it suffices to consider
the pth spinor representation of SO(2# 4 1), which always
occurs exactly once in the symmetric pth-rank tensor repre-
sentation of U(2”). This in turn enables the CAUGA for-
malism to be described in terms of the para-Fermi algebra.
We have previously demonstrated®® that parafermions of or-
der 2 occur naturally in the spin-independent many-electron
correlation problem, where this approach provides addi-
tional flexibility and convenience. However, it is felt that the
same should hold for a general many-fermion problem since
the CAUGA imbedding enables one to reduce the evalua-
tion of U(n) generator matrix elements for any p-column
irrep to that for the totally symmetric p-box irrep [p,0] of
u@2r).

Il. THE CAUGA FORMALISM

In the Clifford algebra unitary group approach?%2+25
(CAUGA) we exploit a realization of the spinor algebra of
the rotation group SO(2n + 1) in the covering algebra of
U(2n) to obtain explicit representation matrices for the
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SO(2n + 1) [or SO(2n) or U(n)] generators in the basis
symmetry adapted to the chain

U(2")D2S80(2n + 1) ODSO(2r) 3U(n),

supplemented, when desired, by the canonical Gel’fand-
Tsetlin chain.

The above chain has been first employed by Moshinsky
and Quesne®® in connection with a study of dynamical or
noninvariance groups for a general n-level many-fermion
system and of the concept of complementary subgroups
within a given irrep of a larger group. The SO(2n + 1) part
of the chain was introduced even earlier by Helmers®! and
Judd.*?

To achieve a desired realization of the SO(2n + 1) gen-
erators that also establishes the relationship with parastatis-
tics formulation we employ the second quantization formal-
ism and introduce p sets of fermion annihilation operators af
(a=1,..,p,i=1,...,n), which satisfy the commutation and
anticommutation relations

[ar.?] = [a7a'f] =0, aB,
{a2af} =0, {ata'c} =6,
together with relations conjugate to these. Throughout, we

assume the existence of a unique vacuum state |0) on which
all the fermion annihilation operators a vanish, i.e.,

(1)

a0y =0, a=1,.p, i=1..n

We shall find it convenient to define fermion operators
a‘; (p = 1,...,2n), according to the convention

a?:aT?, 7=l+n (i:l,...,n).
With this notation the relations of Eq. (1) may be conve-
niently expressed as

[45.05] =0, a#B, {afas}=4,,. 2
where g, is the (symmetric) SO(27) metric defined by
if |p — o| =n,

_ [ L,
8po = 0, otherwise.
If g7 ( = g,, )} denotes the inverse metric, we may raise and
lower the indices according to

(a*)’ =gay, a, =g,,(a%)°, etc. (3)

For each @ = 1,...,p the operators }[a;,a7 ] and a,‘f/\/f
(u,v = 1,...,2n) form the generators of an SO(2n + 1)
group,>* herein denoted as SO, (2n+1). We let
SO(2n + 1) denote the diagonal subgroup of

P
® SO, (2n+1).
a=1

This is, in fact, the SO(2n 4+ 1) group considered ear-
lier.?*?® The generators of the U(n) subgroup of
SO(2n + 1) are then expressible as?

E;= zp: at fay. 4)
a=1

We denote the Hilbert space of all polynomials in the

fermion creation operators a'® (a = 1,...,p) acting on the

vacuum state |0) by 5. The set of all polynomials in the

fermion creation operators a'® (of a fixed type a) acting on

the vacuum state |0), herein denoted 7#°,, constitutes the
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2"-dimensional fundamental spinor representation of
SO, (2n + 1). At the same time, the space 5, constitutes
the vector representation of a U(2" ) group,?*-2® herein de-
noted U, (2*). The full space of states #° may then be iden-
tified as the tensor product space

%=%l®%2®"'®%p, (5)
with
dim 77 = 2",

The space of states 57 clearly carries a reducible representa-
tion (by tensors of rank p) of the diagonal subgroup U(2")
of

p
® U,(2").
a=1

The CAUGA formalism exploits the fact that all irreps
of U(n) with at most p columns in the Young tableau occur
(at least once) in the pth fundamental symmetric tensor
rep [p,0] of U(2"). Thus the fully symmetric component
7, of the tensor product space 7, Eq. (5), plays a funda-
mental role in CAUGA. Clearly, the space #°; is spanned by
all polynomials in the fermion creation operators a'?, acting
on the vacuum state |0), which are totally symmetric in the
superscripts a, and carries the symmetric pth-rank tensor
rep [p,0] of U(2"). It should be remarked that we could also
employ other components of the tensor product space %
such as, for example, the antisymmetric rep [17 ,0] of
U(2"). However, we are only guaranteed to get all the U(n)
irreps with at most p columns in the Young tableau if we
employ the fully symmetric component #°; of #° (cf. Refs.
20, 24, and 25).

The space 77, constitutes a reducible rep of the sub-
group SO(2n + 1) of U(2"). The branching rules for the
reduction of 77 into the irreps of SO(2n + 1) are clearly
given by the reduction of the symmetrized pth power of the
fundamental spinor rep (4,4,...,1) of SO(2n + 1). In general,
the U(2" )1SO(2n + 1) branching rules present a formida-
ble problem, which dates back to the pioneering work of
Brauer and Weyl,>* Murnagham,* and Littlewood.? These
earlier results have been recently extended by Butler and
Wybourne®’” and King et al.*®*

The U(2")1SO(2n + 1) branching rules for the [2,0]
and ( 12,0] irreps of U(2" ), which are relevant to CAUGA,
were shown by Brauer and Weyl** (see also King ez al.*®) to
be

[2,0]180(2n + 1)

=(Me{e[(1I" 3 *0e"—*-*0)]} (6
[1201180(2n + 1) = o [(I"~ '~ ¥,0) @ (1"~ 2~ *,0)].

These results are sufficient for the many-electron problem
where it suffices to consider®®?* the [2,0] irrep of U(2").
The process, however, quickly becomes complicated for
higher tensor reps of U(2" ) although a general prescription
for obtaining the U(2")ISO(2n + 1) branching rules for
the symmetric reps of U(2" ) has been outlined by King ez
al>
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Although the general U(2")ISO(2n + 1) rules are
complicated it can be shown that the symmetric irrep [p,0]
of U(2") contains precisely one representation of
SO(2n + 1) with the highest weight (p/2) = (p/2,p/2,....0/
2). This rep of SO(2r + 1) will be explicitly constructed in
the subsequent section using the methods of parastatistics.
Using the representation theory for the para-Fermi algebras
we shall find that, from the viewpoint of the evaluation of
U(n) matrix elements, it suffices to restrict ourselves to the
irreducible SO(2n + 1) subrepresentations (p/2) of the
(symmetrized) space 7.

In this context we should note that the dimension of the
SO(2n + 1) irrep (p/2) given by Bracken and Green* (sec-
ond equation on p. 353 of Ref. 33) is, in fact, the dimension
of the totally symmetric p-column irrep [p,0] of U(2"),

. : 2" +p—1
dnm[p,O]Um=( ; )

The dimension of (p/2) of SO(2n + 1) cannot be easily ex-
pressed by a simple formula. Designating this dimension by
D, we can find, however, the recursion formulas

=2((0%)

when p = 2k + 1 (odd),

(D

(8a)

and

_al(2k+n) —1\(n+k—1\"!
o =2~ ) o

when p = 2k (even). (8b)
Since
Dy =Dim(0) =1, (9a)
we find easily that

n=3: U(8)DSO(7)DS0O(6)DU(3):
[2,01480(7) = (1) + (0),

(36) (35 (1)
[1201180(7) = (1%) + (1),
(28) 1) (7

D, =2" (9b)
2n 41
D2=( " ) (9¢)
! (2n+ 1) od
S=ui2\ n )’ (9d)
2n + 3\/2n + 1 2\-!
D4=< )( "t )<"+ ) , etc. (%)
n n n

It is also instructive to examine the actual subduction
for the irreps [2,0] and [1%,0] of U(2") to both SO(2n + 1)
and U(n) subgroups. [The latter can be easily obtained by
considering the symmetric and antisymmetric components
of the second tensor power ([0]e®[1]e[1%]
@ --®[1"])®? using the Littlewood—Richardson rules.]
We note that only in the lowest-dimensional case, i.e.,
U(2) D80(3)DS0(2) DU(1), are both subductions mul-
tiplicity-free since [2,011SO(3) = (1) and [12]1SO(3)
= (0) with corresponding dimensions 3 and 1, respectively.
Subducing to the Abelian group U(1) we have [2,0]1U(1)
= [0] + [1] + [2] and [1?]4U(1) = [1]. The case n =2
yields already two irreps for the [12,0]1SO(5) subduction,
namely (1) + (0), while [2, O]LSO(S) = (1%). Thus [2, 0]
1u(2) =10] +11] +11%) 121 + (211 +[2*] and
[120] = [1] +2[1%] + [2,1]. However, starting with
n =3 both subductions yield multiple irreps. We present
below cases » = 3 and 5 as examples. Note that while the
symmetric irrep {2 0] of U(2") contains all possible two-
columned irreps of U(#n), this is not the case for the [1%,0]
irrep of U(2"), which has the irreps of the type [2"] (and
the scalar irrep [01) missing. For simplicity we drop zeros in
the SO(2n + 1) and U(n) irrep labels. The dimensions of
the respective irreps are indicated in parentheses.

[2,014U(3) = [0] + [1] 4 [12] + 2[13] + [2] + [2,1] + [2,12] + [22] + [231] + [2%],

(36) (1 3 (3 2X@)y (6) (8)

(3 (6) (3) (1)

[12011U(3) = [1] 4 2[1%] + 2[1°] + [2,1] +2[2,1%] + [221].

(28) (3) 2X@3) 2Xx(1) (8) 2X(3)

n=35: U(32)DS0(11)DS0(10) DU(5):
[2,00180(11) = (1%) + (1%) + (1),

(528) (462) (55) (11)
[1201480(11) = (1*) + (1®) + (0),
(496) (330)  (165) (1)

2306 J. Math. Phys., Vol. 28, No. 10, October 1987

(3)

M. D. Gould and J. Paldus 2306



[2,000U(5) = [0] + [11 4 [12] + 2011 + 3[1%] + 3[1°] + [2] +[2,1] 4 [2,1%] + 2[2,1%] +3[2,14]

(528) () (5) (10) 2X(10) 3X(5)

IX(D)

(15) (40) (45) 2X(24) 3X(5)

+ [22] + [251] 4+ [23,12] 4 2[23,1%] 4 [2%] + [23,1] + [23,12] + [2*] 4 [241] + [2],

(50) (79) (45) 2% (10)

(50)

(40) (1) (15 (5 (1)

[12014U(5) = [1] 4+ 2[17] + 2[1°] + 2[1*] + 3[1°] +[2,1]+ 2[2,1°] + 2[2,1°] +2[2,1*] + [2%1]

(496) (5) 2xX(10) 2Xx(10) 2X(5)

3X(1)

(40) 2X(45) 2X(24) 2X(5) (75

+2[2312] + 2[25,17] + [23,1] + 2[23,1%] + [241].

2X(45) 2X(10) (40) 2x(10)

Note that the dimension of the irrep (p/2) of SO(2n + 1)
for the case p =2, i.e., of the irrep (1" )‘of SO(2n + 1),
which is always contained in the irrep [2,0] of U(2") [cf.
Eq. (6)] and whose dimension is given by Eq. (9c¢), i.e.,

n=3, dim(1®*)= (Z) = 35,

11
5

equals the sum of the dimensions of all the two-column ir-
reps of U(n), as may be easily verified in the case of the
examples given above.

n=35, dim(1%) = ( ) = 462, etc.,

lil. PARA-FERMI ALGEBRAS

Following the ansatz prescribed by Green?” we define
the operators a, (p = 1,...,2n),

P
8, =2 4, (10)
a=1
which satisfy the relations
[aﬂ’[aﬂ’a"]]=2(gppav —gpva‘;)’ (lla)
a;a’|0) = p5/|0),
i,j =1,..,n, HVp = 1,...,2n, (11b)

where we raise indices in accordance with Eq. (3); i.e,,
(12)

Equations (11a) and (11b) are the defining relations for
parafermions of order p.?’* We note that parafermions of
order 1 correspond to normal fermions.

In the following we denote the space of all polynomials
in the para-Fermi creation operators ¢’ =a; (i = 1,...,n)
acting on the vacuum state [0) (i.e., the para-Fermi Fock
space) by # »- Since the para-Fermi creation operators, as
defined by Eq. (10), are symmetric in superscripts a, it fol-
lows that the para-Fermi Fock space %, is contained in the
fully symmetric component #°; of the full space of 7.

Using commutation relations of Eq. (11a) it may be
easily verified that the operators

2 = 5[“#’”1']

satisfy the following commutation relations:

[a;nﬂapa ] = gvpa;;a + g,ucravp - gypava - gva'a;tp’
(14a)

o =g, etc.

(13)

[au.a,] =8,.8, —8,a,. (14b)
The commutation relations of Eq. (14a) show that the oper-
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(3

ators (13) constitute the generators of the group SO(2n)
while the operators

Qs 8,/\2 (15)

constitute the generators of the group SO(2n + 1). It thus
follows that the unirreps (unitary irreps) of the para-Fermi
algebra are to comprise finite-dimensional irreps of
SO(2n + 1). The representation carried by the Fock space
& ,, for parastatistics of order p is uniquely characterized as
that representation which admits a unique vacuum state sat-
isfying the conditions of Eq. (11b). We remark that it is also
possible to introduce the pseudo-orthogonal group
SO(2n + 1,1) into the parafermion algebra,”® although this
will not be done in the present treatment.

The SO(2n + 1) group with infinitesimal generators
(15) constitutes the SO(2n + 1) subgroup of U(2") em-
ployed by Sarma et al.>*?® As a Cartan subalgebra of
SO(2n + 1) [and of SO(2n)] we choose the operators

(16)
which serve to uniquely label the weights of SO(2x# + 1). It

is easily seen®® that the vacuum state |0) constitutes a mini-
mal weight state of SO(2n + 1) weight

(—p/2,—p/2,..,—p/2).

It thus follows that the space of para-Fermi states ¥ , C 7%,
carries the SO(2n + 1) irrep with the highest weight

(p/2,p/2,...p/2)=(p/2). (17)

This is precisely the SO(2n + 1) irrep referred to in Sec. I1.
The para-Fermi number-preserving operators

bj=14[d\q] (18)
constitute the generators of the unitary subgroup U(n) of

SO(2n). Following Refs. 29 and 33 we work instead with the
shifted U(n) generators (cf., also, Refs. 20 and 24)

E};=}[d'a;] +1p8, (19)

where p is the order of parastatistics. It is easily demonstrat-
ed?® that the U(n) generators (19) agree with the prescrip-
tion of Eq. (4) and hence constitute the generators of the
U(n) subgroup of U(2") considered in CAUGA,**?% as
required. The para-Fermi Fock space .# , possesses the re-
markable property that it decomposes into a direct sum of
U(n) irreps of the form A = (4,,4,,...,4, ) with

h,=al, i=1,.,n,

P3A13A> 34, 30, (20)

and that all such irreps occur exactly once.?®3* In other
words, all irreps of U(n) with no more than p columns in the
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Young tableau occur in ¥, with unit multiplicity.

Since ¥ , C#’;, the above results imply that all p-col-
umned representations of U(n) occur in the [p,0] irrep of
U(2") at least once, as noted earlier in Refs. 24 and 25. In
fact, our approach demonstrates an even stronger result,
namely that from the viewpoint of U(n#) matrix element
evaluation it suffices to work in the subspace ¥, C#°, cor-
responding to parastatistics of order p.

IV. CONCLUSIONS

Wehave shown that the CAUGA formalism (or its gen-
eralization to fermions with p internal degrees of freedom)
may be described in terms of the para-Fermi algebra of order
2. Thisadds a new insight into the CAUGA and opens up the
possibility of exploiting the existing extensive work on para-
Fermi algebras (cf., e.g., Ref. 28). It is believed that the
CAUGA approach is of particular relevance for the spin-
independent many-electron correlation problem where the
second-order para-Fermi creation and annihilation opera-
tors, corresponding to the creation and annihilation of spin-
averaged paraparticles, occur naturally.?®

Finally, we remark that from the viewpoint of Clifford
algebras, an alternative (but equivalent) representation of
the para-Fermi algebra (11) may be given in terms of the
elements of a generalized Clifford algebra (cf. Ramakrish-
nan*’)

=j4+n j=1,.,n
(21)

B=a,+d, Bi=ila,~d),

This defines Clifford algebra elements B, forp = 1,...,2n. It
is easily verified, using the para-Fermi relations (11), that
the Clifford algebra elements of Eq. (21) satisfy the general-
ized Clifford algebra relations

[ﬂp,[ﬂuﬂv]]=4(5p#/3v —6,,B8.). (22)
The relations of Eq. (14) show that the operators
v =3[Bub] (23)
satisfy the relations
[Buv’ﬂp ] = 6pvﬂy - 6pyﬂv’
(24)

[Byv ’Bpa ] = 6pvﬂyo - 6,uaﬁpv - 6p;4ﬂva + 5vaﬁp,u »

which we recognize as the SO(2r + 1) commutation rela-
tions, with choice of metric ggs = 8z (R,S = 1,...,2n + 1).
The elements of a normal Clifford algebra,*® which corre-
sponds to a generalized Clifford algebra of order 1, satisfy
the relations of Egs. (22) and (24), as required.
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On the initial value problem for a class of nonlinear integral evolution
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A method for solving a class of nonlinear singular integral evolution equations for decaying

initial values on the line is presented. The underlying scattering problem is a matrix Riemann—
Hilbert problem. Scattering analysis shows that the spectrum is purely discrete. An application
is to the so-called sine—Hilbert equation Hf, = — ¢ sin 8, where c is a constant and H denotes

the Hilbert transform.

|. INTRODUCTION

The inverse scattering (or spectral) transform (IST)
method has been shown to be a powerful tool for solving
suitable initial value problems for certain nonlinear evolu-
tion equations (see, for example, Refs. 1 and 2). All of the
physically interesting equations solvable by the inverse scat-
tering transform take on a very simple form. Indeed often the
work of the asymptologist is to derive special, simple equa-
tions in a suitable asymptotic zone. The governing equation
here [see (5) below] is a particularly simple one. Although
Eq. (5) has not yet appeared in a concrete physical situation,
it provides a simple solvable model for a nonlinear evolution
equation with a dispersion relation w(k) = a sgn(k). Per-
haps publication of this work might motivate asymptologists
to look for such a system. It should be pointed out that the
mathematical structure of the direct and inverse scattering
problem associated with this nonlinear equation is quite dif-
ferent. Given the fact that the inverse scattering transform is
associated with many physically relevant problems, we feel
that researchers would want to be knowledgeable about such
novel features of related problems. Indeed it can be expected
that such situations would arise in other problems as well.

1. THEORY

In this paper we present the IST associated with the
following class of matrix nonlinear evolution equations®*:

Q. =03p(L)Q, Q=0(x1), (D

where
LF=ioy(1+ Q>HF — JQH([Q,F1/{1+ 0?%)),
V1+ 07 =1 4+ q:9,;-

Here F and @ are off-diagonal 2X2 matrices,
o, = diag(1, — 1) is the usual Pauli spin matrix, p(p) is an
arbitrary polynomial in y, [ , ] is the usual commutator,
and

(2)

(Hf)(x)z%JC dy(y — x)" () 3)

is the Hilbert transform.
Equation (1) is the first known example of a class of

® Permanent address: Dipartimento di Fisica, Universita di Roma, La Sa-

pienza, 00185 Roma, Italy.
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nonlinear evolution equations which are purely integral in
space. Itis solvable via a purely local Riemann—Hilbert spec-
tral problem. Its introduction® was originally motivated by
the discovery that physically relevant integrodifferential
equations such as the intermediate long wave equation®® are
solvable via differential Riemann-Hilbert IST schemes. '*-'2

It is known that (1) possesses an infinite family of con-
servation laws.’ The derivation of this result requires only
the use of the elementary properties of the associated scatter-
ing problem.

As alluded to above, this scattering problem is an exam-
ple of a pure (nondifferential) Riemann-Hilbert (RH)
problem'? in configurational space x. The solution exhibits,
as we will see below, a new type (for problems on the infinite
line) of singularity structure in the spectral variable z, con-
sisting only of polar singularities clustering at finite points of
the z plane.

Before describing these properties in detail, we briefly
discuss the first element of class (1), obtained by choosing
p(y) = —icy,

le, =1+ Q20,HO,,, (4a)
Q21, =cy1 + Q1,05 HQ,,, (4b)

which, in the obvious reduction Q,, = Q,, = v, can be writ-
ten in the following suggestive form (taking account of the
property H?> = — 1):

HY, = —csinf, v(x,t)=isinO(x,t). (3)

The analogy between Eq. (5) and the sine-Gordon equation
0., = sin 6 led us to refer to it as the sine-Hilbert equation.*
We also note in pasing the compelling analog with the
Korteweg—de Vries equation and the Benjamin-Ono equa-
tion whereby going from the KdV equation u, + uu, +u,,,
=0 to the Benjamin—-Ono equation u, + uu, + Hu,, =0
we simply replace one of the x derivatives by the Hilbert
transform H.

The solution of the initial value problem associated with
the linearized version

HE, = —c6 (6)
of Eq. (5) is given by
O(x,t) =4 " (x) +e 4~ (x), (7)

where A * (x), defined by
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+ oo
AT (x)= + f 9K bk,0ye", (8)
o 27

are the boundary values on the line Im x = 0 of functions
holomorphjc in the upper and, respectively, lower half x
plane, and 8(k,0) is the Fourier transform of the (localized)
initial condition #(x,0).

The peculiar time dependence of the general solution
(7) corresponds to the dispersion relation

w(k) = —csgn(k), 9)

in which the frequency @ depends only on the sign of the
wave number k& and not on its magnitude. The independence
of  from |k | is, for instance, a property of the wave propaga-
tion in some fluid dynamical systems'* and seems to allow
the possibility of a physical interpretation of Eq. (9) and,
perhaps, of the full nonlinear equation (5); these two ques-
tions are still open.

The Lax pair associated with Eq. (1) is given by the
following 2 X 2 matrix equations>*:

Y (xt02) = G(x,tz)Y" (x,t,z),

G(x,t,z)=1I + zo, + U(x,t), x€R, (10)
a, {, no o

UE(x,tz) = > (z o3+ ,;o Z/(PEVE) (x,t))
XY (x,12). (11)

In formula (10) 7 is the identity matrix, z plays the role of a
spectral parameter, and U(x,t) is a z-independent 2 X 2 ma-
trix given in the form

U(x;t)=VI+Q (-x’t _I+ Q(x9t), (12)
where Q, introduced in (1), is the off-diagonal part of U. In
what follows we take the p(y), introduced in (1), to be
p(y) = a, y", neN; this is for convenience only. We have

ViE= Tl FANTHEDIQL" 710,
(13)
LQ is given by (2), and the P * are the usual projection
operators

(PEf)(x)= + ﬁf Ay — (x £ 0))~ ).
B (14)

Given a Holder matrix function U(x), Eq. (10) defines
a homogeneous matrix RH problem on the line Im x = 0 of
the complex x plane, and ™ (™) is the boundary value of a
function holomorphic in the upper (lower) half x plane.
Equations (11) describe the corresponding time evolution of
AR

Equation (12) implies that

det[7+zoy + U(x,t)] =1 — 2%, (15)
with the following important consequences*: (i) the matrix
I + zo, + U(x,t) is invertible for every xcR [this is a neces-

sary condition for the solvability of (10)]; and (ii) the total

index « of the matrix RH problem (10) is zero, since
x = (1/27)[arg(det( + zo5 + U(x,0)}}1= ,, (16)

where [ f(x)]1= . =f(w) —f( — ). Then an important
theorem due to Gohberg and Krein'® shows that “generical-
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ly” the two partial indices «, &, (¥ = k; + «,) are both zero.

This fact guarantees the existence and uniqueness of the
fundamental matrix solutions ¢ * (x,z) of (10) (here and in
the following we omit the time dependence when not need-
ed), satisfying the following boundary conditions:

— I+ZO'3,

%] = oo

¥ (x,2) - I, ¥ (x2) (1n

|x|— o0
which are a consequence of the requirement that Q(x) van-
ishes as |x| — o sufficiently rapidly. Equations (17) suggest
the introduction of functions p*(x,z) defined by
pt(xz)=¢*(xz) and p”(x2)=¢ (x,2)(I +2z203) "
They obviously satisfy the RH boundary value problem

pr(x,z) —pm(x2) + z(os u ™t (x,2) — p 7 (x,2)05)

+ Ux)u* (x,2) =0, (18a)
pExz) - I, (18b)
%] = o
and have the following interesting property:
detp* (x,2z) =1, (19)

which is a direct consequence of Eq. (15) (see Proposition
IV of the Appendix).

If (18) has a unique solution then it can be given in
terms of the following matrix integral equations:

prt(xz) + U +z205) " 'PT(Upt)(x2) =1, (20a)
po(x2) =P (Uu*)(x2)T +20,) "' =1 (20b)

These equations can have homogeneous matrix solutions
$*(x), j=12,.. (corresponding to the eigenvalues
z = z;) that satisfy the equations

47O + T+50) T PHTPT )@ =0, (21a)
¢~ P(x) —P(Up* ) (x)(I+205)"' =0, (21b)
with the boundary conditions

pEN(x)=0(x""Y, |x|>1 (22)

Because of (22), the eigenvalues z; are bound states of
(18a); they correspond to the nongeneric case in which the
partial indices «, and «, are different from zero
(x, = — Kk,#0), when there does not exist a unique solution
of (18).

For suitable potentials Q(x) the structure of (20) and
Fredholm theory'® imply that the matrices u * (x,z) are ho-
lomorphic in the complex z plane except for possible poles
that generically cluster at 4 1. A sketch of the proof is given
in the Appendix (Proposition I and its consequences). The
poles of u * (x,z) correspond to the homogeneous solutions
of Egs. (20). Here we assume that they are simple (with a
genericity argument) and that the following representation
formula holds:

oo L))
prExzy=I+ Y E;—%

== j

z -
J—= +

+1, Jjek.

(23)
The first consequence of Egs. (21) is that the 2 X2 ma-
trices ¢+ (x) are singular; precisely

(¢1§ D (x)

¢2§m(.’€) (24

) =afM*"(x), Iz,
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where IT + ¢ indicate the first column vectors of the matri-
ces g =:

nl:t(l)(x)) ( 1:il:(l)(x))
TN (x) = = , 25
n=*"(x) (Hzi”’(x) =0 (x) (25)
and
ar =[(1+2)/(1—2z)]a*. (26)
Equations (21) also imply that
lim xII;* @(x) = lim xII; P (x)=c, (27)

x|~ oo |x}— o0

(1 —z) lim xII;t P(x) = (1 +2z,) lllim xI1;- P (x),
|x] = x| — o0
(28)

while Egs. (19), (23), (24), (25), (26),and (27) imply that

lim xIEP(x) = —c/ait. (29)

|x] — e
Finally, useful information about U(x) is obtained by ex-
panding Eq.(18a) for large z and by using Eq. (23);

o0

Ux) = 2

Jj= — o
Significantly it turns out that the vector solutions
II* ®(x), leZ, of Eqs. (21) satisfy the following infinite-
dimensional algebraic system:

[~ P (x)g3— 0+ P (x)].  (30)

(x 4+ v P (x)
1 ) > af —aF .
_ + ni(/)(x) ,
CI[( -l J'=z—oo ai (2, ~z;)
Jj#l
IeZ. (31)

The proof amounts to showing that the right- and left-hand
sides of Eq. (31) satisfy the same integral equation. Here we
givea sketch of the proof for Eq. (31) * [the analogous proof
for Eq. (31) ™ is omitted].

Using Eq. (21) " and the asymptotic properties (27) ©
and (29)*, one can show that xII* °(x) satisfies the fol-
lowing nonhomogeneous vector equations:

xI*P(x) + (I + z,05) " 'PHUKIT* ©))(x)

1
=cl(_.l/al+), IGZ.

On the other hand, manipulating Eq. (21) ¥, one obtains
v+t P (x) + U +203) POV D) (x)

(32)

1
— + (D
_c,(_l/al+)+v0 (x), lez, (33)
where
+ D) 1
vire=ea |\ e
- 1
0 + _ +
+ 3 224 _grow|, (34
=2« ai (2, — z)
Jj#l
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o +
v P(x)=¢ (I+z,(73)“‘(a3 S (1 -~ a’+ )
=== 2]

1
+) +
XN+ (x)+ P (U(—l/a,+))(x))'
(34b)

Since the ( + ) part of Eq. (30) implies that v; " (x) =0
the vector functions xIT* ’(x) and v* " (x) satisfy the
same nonhomogeneous integral equation (32), then their
difference is proportional to the corresponding homogen-
eous solution I+ (x); v*P(x)—xII+P(x)
=y, II*+ P (x), which is Eq. (31)*.

The constant y* may be evaluated from Eqs. (31) for
large x and making use of Egs. (27),

Lo af —at
Yr =

+ G
=== ai (2 "'Zj)

J#1
+ )
+ lim [x(l————xn' (x))], lZ.  (35)
X|— o0 Cl

Equations (35) %, (27), (18a), and (30) finally imply that
y;© and y; are connected through the following simple
expression:

7/[+ _7/,_ =2C,/(1~—Z?), IEZ. (36)

Conversely, one could prove that if the [T+’ (x) are solu-
tions of the «-dimensional algebraic system (31), and (26)
and (36) hold, then ¢* P (x) and U(x), defined by Eqgs.
(24), (25), and (30), respectively, satisfy Eq. (18a) [with
p* (x,2) replaced by ¢*”(x) when z is replaced by z,].
Moreover the reconstructed potential U(x) satisfies Eq.
(15). A sketch of the proof'is given in the Appendix (Propo-
sitions II-IV).

The direct problem is a linear mapping from the poten-
ial Q(x) to the scattering data

S={z,,c,,a; ,y/; IEL}. 37N

More precisely, given Q(x) [and then U(x) through Eq.
(12)],u* (x,z) and the bound states z, are in principle given
by solving Egs. (20), and then the ¢* ’(x) are obtained
taking the limit ¢+ (x) =1lim,_, (z —z,)u * (x,2). All
the scattering data S can be constructed through the follow-
ing sequence of steps: ¢, via Eq. (27); af via a/f
= —¢/lim,_, , xI1;" P (x) [consequence of Eq. (297 ];
y;* viaEq. (35)* and the @~ and y,~, which are not inde-
pendent data, can be obtained using Eqgs. (26) and (36),
respectively.

The inverse scattering problem, a linear mapping from
the scattering data S to the potential Q, if formally per-
formed by solving the infinite-dimensional algebraic system
(31) and then by making use of formulas (30), (24), and
(25).

The time evolution of the scattering data is obtained by
observing first that the solutions #* of (18) evolve in time
according to the following equations:
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uiE(xtz) = %"— (2"[03,,u * (x,t,Z)]

n—1

+ ¥ (Pt V,fj)(x,t)),ui (x,1,2).
j=0

(38)
The data evolve as follows:
z,(t) =2,(0) =z, ()= C[(O) =y,
ait (1) = aft (0)e, (39)

vE @) =y (0) — na,c,z; 't

In order to obtain the above equations for the time evo-
lution of the scattering data we first substitute Egs. (23) and
(30) into (38). This yields z, = 0. The other relationships
can be found by taking the time derivative of (31) using (38)
at z = z;, with u*(x,t,z,) replaced by ¢ * " when z is re-
placed by z, and evaluating the results as x — 0.

Equations (39) complete the IST scheme

evolution of
scattering data

*S(t)

direct problem

*S(0)

inverse problem

ﬁQ(xyt),
(40)

which reduces the solution of the Cauchy problem for Egs.
(1) to a sequence of linear steps.

The pure soliton solutions associated with the class of
Egs. (1) correspond to a finite number ¥ of poles in formula
(23). IfN=1 (¢; =0, | j|>1), Egs. (31), (30), and (39)
yield the following one-soliton solution:

Q(x,0)

2co05" (2
le(x’t) = —M (x +7/0+ (t) _ cO )
1—2z 142z

X[x+7 Dx+75 @)]~', (41a)

2c, <
0 (X,t)=————9-————(x+ + (1) — G0 )

& (A tzag (L ° -z,

X[x+7v OD)x+75 ()] (41b)

It should be mentioned that in the reduction case
Q1> = @», [which is allowed for all the evolution equations
(1) corresponding to n odd] the singularities of u * (x,t,2)
come in pairs z_,= —z, and, correspondingly,
af(Oat,(0)=1,c_,=¢, and y*,=y"; if I=0,
2z, =0, and a5 %(0) = 1.

Ill. LINEAR LIMIT

We conclude this paper by noting that the one-soliton
solution (41) (when n = 1) provides, in an appropriate lim-
it, a particular solution of the linearized sine-Hilbert equa-
tion. The choices ¢, = i€, z, = 1 — €, € €1 imply that

Qo= —2ie™'(x + y5 (0))7'
and

Qs = — iee ™ (x + y5" (0))~!

are particular solutions of the linearized version of (4). Then
the linear combination

Qxt) =b*te "(x + 75 (0))7"
+b "™ (x + 5 (0))7 ]
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b * arbitrary constants (42)

is the particular solution of Eq. (6) coming from (41); it
coincides with (7) and (8) through the identifications
A*(x)=b*x+ys(0))" " and ¢ =ia,.
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APPENDIX: RELEVANT PROPOSITIONS

In order to prove that the matrices u* (x,z) are holo-
morphic in the complex z plane C\ { + 1} except for possi-
ble poles that generically cluster at + 1, we first convert the
RH problem (10), (17) into the linear integral equation

n(x2) + (Kn) (%,2) = h(x,2), (A1)
where
7(x2)=G(x2) Y+ (x2) —I)=G(x2)u™ (x,2) —I),
(A2a)
(Kf ) (x2) = f K, (xp.2)G ~'(».2)f(»)dy, (A2b)
K (xp.2) =2mi(y — x)) " (G(y:2) — G(x,2)), (A2¢)
h(x2)= — (21ri)“f (y — (x +i0))"'U(y)dy.
(A2d)
The procedure is standard."' We define
i =yt -1
v{z_(x,Z) ¢_(x,2) (A%)
v (x2)=9¢ " (x2) — (I +203);
then
¥~ (x,2) = G(x,2)¥* (x,2) + U(x), (Ada)
P (x,2) o0 (Adb)

where 17/+ (x,z) and 1}‘ (x,z) are ( + ) and ( — ) functions,
respectively, then

F (¥ — (xFi0)~'P* (r.2)dy

=Jf» (v —x) "' * (p2)dy Frig = (x.2) = 0.
(AS),
Multiplying from the left Eq. (A5), by G(x,z) and sub-
tracting it from Eq. (A5) _ [in which ¢ ~is replaced by for-
mula (A4a) ], we finally obtain Eq. (Al).
Proposition I: The hypotheses on U(x),

U(-x),Ux (X)GL w9 (A6a)
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tr(o, U(x)) = tr U(x) + det U(x) =0, (A6b)

Uix)=0, |x|>M, M>0, (A6c)
imply that (a) the operator e ,, defined by

(Rof) (x2) =6 "} (x2)f(x), (AT)
is bounded in L ?; (b) the operator K,, defined by

ROeD=[" KiGpafo)d, (A8)

is compact in L 2. In the above z is fixed. Furthermore, it can
be shown that (A6) are preserved under the time flow.

Remarks: Hypotheses (A6a) and (A6b) imply that
there exist three positive constants b,,b,,b; such that

sup|G ~'(x,2)| <b;, x€R, (A9a)
|Ky(x,p,2)| <by  (xp)€ER, (A9b)
IG(pz) — G(x,2)| <bs, (x,y)eR% (A9c)

Finally, the compact support potential U(x) in (A6c) yields
a compact support kernel K, (x,y,2):

Kl(an) =O, (x,Y)GAoE{(X,J’)/|x|>M, |y|>M}

(A9d)

Proof of Proposition I: (a) is a direct consequence of
(A9a):

121 = (L dx|G ~(x)f(x) Iz)m

<oy ([ axlsor)”

= bl“f”z’ fEL 2,
(b) follows from the fact that K, (x,y)eL *(R?). Indeed
(A9d) implies that

ff |K,(x,p) | dx dy=ff |K,(xp)|Pdxdy, (A10)
R? A

whered = U}_,4,,and 4, ={(x)/|x|>M + 1, ]y| <M},
1

—at wit W _ a~
Ux)=Y

J

+ (D

D D
ot m;

+ (D) - P
4y a” m,

It should be observed that since

£ ko
T
rED

afmrE®
(33) is equivalent to

¢+(1) _¢_“) +21(0'3¢+(” “¢_(1)03) + U¢+”) =0, IeZ

— N

As={(xp)/|x| <M, |y|>M + 1},
A, =R\4,U4,.
Then (A9) implies ff, |K,|*dxdy<bi(M+1)’< w,

and (A9c) implies
Mb’ b
K,|*dxdy< 3(f —M| %4
[ mpaxar< (], b-mie

—(M+1)
+J IJ’+M|‘2dy)<oo.

Since an analogous formula holds for the region A4, then
S| Ky |Pdxdy< . .

Consequences: (i) The compactness of K, and the boun-
dedness of K, in L ? imply that K = KK, is compact in L *
(Ref. 16); (ii) the compactness of the operator K and the
particular z dependence of its kernel

K(xyz) =K, (x32)G ~'(»,2)

= (1 ‘ZZ)—I[Bl(xzy) +ZBZ(x’y)]s
Bi(xy)=2mi(y — x)) (U(x) + o:U(y)o;
+ U(x)o3U(y)os),

Bo(xy)=2mi(y — x)) " (Uy) — U(x))os,
imply that the solution 7 (x,z) of Eq. (A1) is holomorphic in
the complex z plane C\{ + 1}, except for possible poles
clustering at z = + 1, which are the singularities of the ker-
nel in the complex z plane.'*

Proposition II: If the II* ’(x) are solutions of Egs.

(31) within conditions (26) and (36), then the IT* ’(x)
also satisfy the equations

EVP=I +z0,+ DI*? — (I +z0,)

1 0

m-v=90, (All
X(o (1+z,)/(l—z,)) 0. (AlD

with U(x) given by

)

). (A12)
(A13)
(Al4)

The above assertion is demonstrated as follows. From (31) we have

_ 1 0 —w
(x+y )T +z03) |, (1+2z)/(1=2z) n

— U4z )(1 0 )( ¢ )
=UI+z0)\g (14270 -2\ —evar) T
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cl(az‘—aj‘)(1+za)(l 0 )H_(D
a2 —z N0 (1 +2)/(1—2) ’
(A15)
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(x+y+)(l+za)11+‘”=(1+za)( “ )+ @’ —a) (I + zyo)II* P (A16)
1 193 103 —c /et &tz —z) 103 ,
cl CI (a,+ —a]_) ;
x+yt UII+"’=U( )+ ke My B 75 | 4V (A17)
Hn) —aler) & oaf(z—z)
Adding (37a)—-(37c) yields
cla/ —at) ; d{’
(x + 7 )ED — EYD = , (A18)
v ,Z‘z at (2 —z;) ds
where
d{ 1 0 ) ( 1 )
W — (gt _a— —w
d _(d;“)_ " =y U +205) (o 42070 —zp) T TV yjap
claf —at) ) ¢ laft —a™t) 1 0
+ 0.H+(J)+ J (I+ZU)
j#zl ait ’ J;’ a1+(zl_zj) 7737\0 (1+Zj)/(1_'zj)
Cl(a,_ —'al_) (1 O ) —p
-——_—— ) | AR Al9
ar =z T 0 (+zy/a-2) (Al9)

Thus if a * ¥ and y*  satisfy (26) and (36) then d'” =0
and E” = 0 for /€Z since it satisfies
< (a1+ — aj+ )

(x4+97)EP =%

— EWYW = 0,
= ap (z _Zj)

(A20)

i.e., the homogeneous version of (31).Then (A11) follows
from the assumption that the infinite-dimensional system
(31) has a unique solution. Proposition II immediately im-
plies that u* (x,z), defined by Egs. (23), satisfy the RH
boundary value problem (18).

Proposition III: If the I1* °(x) are solutions of Egs.
(31), then they satisfy the following equations:

Hlj: (1)(x) + ali Hzi (O] x)

o0

aif — aji (szt (1)(x)nl:t D (x)

z,—z

—MEPx)EP(x))=0, IZ. (A21)
It should be observed that Eqs. (A21) are equivalent to the
equation det £ * (x,2) = 1.

In order to demonstrate Proposition III we manipulate

Egs. (31):
(x + )T E Dx) + af I+ ”)(x))

@ aleF —aF)

= ait(z—z)

X(MEP(x) +af1F P (x)), IeZ, (A22)
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r
+ __ 4t
(x+77*) 2 i (I3 2 () I E P (x)
J#l 21— .
—_ H]:t(j)(x)nzi(l)(x))

c{afr —a*) . )
%——(HF“’(x)+a,iH2i“’(x))
Froair(z; —z;)

+ Y AF D(x), Iz, (A23a)
j#l
v#EL
where
AxD(x)= ¢ (af —aF)(aF —ak)
I ait (zy —z)(z;—z,)
X (I @ (x)ILE P (x)
—MFY)IED(x)), lZ. (A23b)

Since d " (x) = — A4 } P (x), then

Z Aja: (1)(x) = 09

jEl

vl
and the difference between Eqs. (A22) and (A23a) gives
just Eq. (A21).

Proposition IV: The soutions i * (x,z) of Eq. (18) satisfy
the equation det £ * (x,z) = 1 if and only if the potential ma-
trix U(x) satisfies the following basic constraints:

tr(o,U(x)) =0, (A24a)
tr(U(x)) + det(U(x)) = 0. (A24b)
Santini, Ablowitz, and Fokas 2315



The above equations are equivalent to Eq. (15), or to Eq.
(12).

In order to prove Proposition IV it is convenient to in-
troduce the functions F*(x,z)=u*(x,z) and F~(x,z)
= + z0;) " 'u~ (x,2) (I + 20,); then the F * (x,z) satisfy
the RH boundary value problem

F~(x2) =[I+ I+ 2z0,) " 'U(x)]F " (x,2), (A25a)

Ft(xz) - I (A25b)

[%[ = o0
and, obviously, det F * (x,z) = det u * (x,z). If Egs. (A24)
hold, then Eq. (A25a) implies det F ~(x,z) = det F * (x,z)
which, together with Eq.(A25b) implies det F * (x,z) = 1.
Conversely, if detF*(xz)=1, then det[I+ (J
+ z0,) ~'U(x)] = 1, which is equivalent to Eq. (15), or
Eq. (12), or Egs. (A24).

Recapitulating, we have shown that if the IT+ ¢’ (x) are
solutions of Egs. (31) and the matrix functions u * (x,z) and
U(x) are defined in terms of IT* ”(x) through Egs. (23),
(A13), and (30), respectively, then (i) u* (x,z) and U(x)
satisfy the RH boundary value problem (18) (Proposi-
tion II), (ii) detu* (x,z) = 1 (Proposition III), and then
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(iii) tr{o3U(x)) = tr{U(x)) + det{(U(x)) =0
(Proposition IV.)
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Exact solutions for the nonlinear Klein-Gordon and Liouville equations
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A systematic method for constructing particular solutions of the nonlinear Klein-Gordon and
Liouville equations in four-spatial dimensions is developed. The method of solution presented
here first consists of reducing nonlinear partial differential equations to ordinary differential
equations (ODE’s) by introducing symmetry variables and then seeking exact solutions for
more tractable ODE’s. Various exact solutions are presented, in which new solutions with
nonspherical symmetries are included. Furthermore, the exact method is applied to the above
equations in general n-spatial dimensions. Among them, a conformally invariant nonlinear
Klein—Gordon equation is particularly interesting from the viewpoint of field theories. The
exact solutions for these equations are generalizations of those for the corresponding equations

in four-spatial dimensions.

I. INTRODUCTION

In this paper, we shall construct exact solutions for the
following nonlinear Klein-Gordon equation:

O +467=0, p#0,1, (1.1)
and the Liouville equation
Oy + € =0, (1.2)

in four-dimensional Euclidean space. Here, ¢ = ¢(x,) is a
scalar function of the Euclidean coordinates x,, (1« = 1 ~4),
the symbol (], denotes the four-dimensional Laplace opera-
tor defined by

4 a 2

O,=3

, (1.3)
p=1 axz

and A and p are real parameters.

These equations play an important role in various fields
in physics.'™ In particular, Eq. (1.1) with p = 3 is closely
related to scalar ¢* theory” as well as the Euclidean Yang—
Mills equation with the t’Hooft ansatz® while Eq. (1.2) rep-
resents a four-dimensional version of the Poisson equation.
Therefore the investigation of exact solutions for these im-
portant equations may lead us to a deeper understanding of
underlying physical phenomena.

Although various exact methods such as the inverse
scattering method,>”’ Bicklund transformation,®® and bilin-
ear transformation method'®'’ etc. have been developed for
analyzing nonlinear wave equations, the applicabilities of
exact methods available nowadays are mainly restricted to
lower-dimensional equations, namely those with one- or
two-spatial variables in addition to one time variable. As for
the higher-dimensional cases, however, there exists an exact
method called “symmetry reduction.”'*"'> This method
consists of reducing partial differential equations (PDE’s)
to ordinary differential equations (ODE’s) by considering
symmetry groups acting on the space of independent and
dependent variables. The solutions constructed by this
method are a generalization of so-called similarity solutions.

Recently, the method of symmetry reduction has been
applied to Eq. (1.1) with p = 5 and various special solutions
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have been presented.'® On the other hand, to our knowledge,
exact solutions for Eq. (1.2) have not been found in the
literature except for a few works'” while the Liouville equa-
tion in three-spatial dimensions has received much attention
in connection with the soliton theory.!*!?

The purpose of the present paper is to construct exact
solutions of Eqgs. (1.1) and (1.2) by reducing them to non-
linear ODE’s. The basic idea is to introduce the following
elementary symmetric functions of four Euclidean coordi-
nates x,, as symmetry variables:

Sy =X, + X+ X3+ X, (1.4a)
Sy = XX, + X, X3 4+ X X4 + X;X3 + XX + X3X,, (1.4D)
53 == Xy XX + X1 XXy + X X3%,4 + XoX3Xy4, (1.4c)
$4 = X XXX 4, (1.4d)

and to rewrite Eqs. (1.1) and (1.2) in terms of these inde-
pendent variables. It should be noted that the symmetry
variables (1.4) are different from those due to Grundland et
al.'® The equations thus obtained are then reduced to nonlin-
ear ODE’s by introducing a new independent variable
y = 5,/s7. By solving these ODE’s, various exact solutions
are constructed for Egs. (1.1) and (1.2).

In Sec. II, we present exact solutions of the nonlinear
Klein—Gordon equation in four-spatial dimensions by re-
ducing it to a second-order nonlinear ODE and study the
properties of solutions. In Sec. III, the same procedure is
applied to the Liouville equation in four-spatial dimensions
to construct exact solutions. In Sec. IV, we discuss the non-
linear Klein-Gordon and Liouville equations in general -
spatial dimensions and present some exact solutions for
these equations. In particular, a conformally invariant non-
linear Klein—-Gordon equation considered here will be quite
interesting from the viewpoint of field theories. Section V is
devoted to concluding remarks.

II. NONLINEAR KLEIN-GORDON EQUATION
A. Reduction to ODE

In this section, we shall consider the nonlinear Klein—
Gordon equation (1.1). Since the operator [J, is invariant
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under all possible permutations of the four coordinates x,,,
the solutions of Eq. (1.1) may be expressed as functions of
the elementary symmetric functions defined by relations
(1.4). In terms of 5,,, the operator [J, is written in the form
a 2 a 2 a 2
O,=4—+ (357 —25,) — + (257 — 25,5, — 4s,) —
a szl, 1 2 a S% 2 13 4) a S2
a 2 a 2 a 2
+ (55 — 25,5,) — + 65,
2 Js2 Js,0s 2 8s1 Js,

2 2
9 + 2(2s48, — 3s3) 9

+ 255

s, 955
2 2

+ 2(5,8; — 35,8,)

+ 2(5,5; — 4s4) .
55 ds,

2.1)

s, 35,

Introducing (2.1) into Eq. (1.1), however, yields a quite
complicated nonlinear PDE and a reduction to an ODE
seems to be very difficult although the possibility cannot be
denied. Therefore, in this paper, we shall confine ourselves to
seeking solutions that are functions of only two independent
variables s, and s, and the more general cases will be treated
elsewhere. Then, Eq. (1.1) takes the following form:

2 2 2

3% % ¢
4 6s, 32 —2s A$? =0,
Fra aaz+( 2)as§+¢

p#0,1. (2.2)
At this point, one should remark that Eq. (2.2) is invariant
under the scale transformations, s,—ys,, s,—¥%,, and
$—y~¥®~ D4 (y: constant). Keeping this property of Eq.
(2.2) in mind, we introduce the ansazz function f of one
variable y as follows:

¢=[VAs f)]->¥"", y=s/5. (2.3)
It then turns out that Eq. (2.2) is transformed into the fol-

lowing nonlinear ODE for f:

2y — 1) (8 — 3)(17" - %f’z)

8(3p+1 12
(p + ) _12p ] 7
p—1
-t 1)fz—” =0, pAO,
p—1 2

where the prime appended to f means the differentiation
with respect to the independent variable y. This abbreviation
will be used throughout the paper. Equation (2.4) is a basic
equation that we consider in Sec. II B hereafter.

-+

(2.4)

B. Construction of exact solutions

Now, let us seek exact solutions of Eq. (2.4). First of all,
one readily notices that Eq. (2.4) possesses a constant solu-
tion, namely,

f=xip—D/NBP+1), (2.5)
which, when substituted in (2.3), yields an exact solution of
Eq. (1.1) in the form

d=[+ilp—D[A/8(p+ 1)]"%,]"¥%-D,  (2.6)
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We shall discuss the property of solution (2.6) in a special
case of p = 3 later.

Next, we shall seek solutions of Eq. (2.4) that behave
like f~y® when y—» — oo. One finds that a is determined by
the following algebraic equation:

(a—NDae—-@E+1)/4)= 2.7

Various possibilities arise according to the values of @ and p.
We first investigate the case of @ = }. For this case, we as-
sume the solution in the form

f=+ (@ +0"? (2.8)

and substitute (2.8) into (2.4), where a and b are unknown
constants. Then, it readily follows that g and b are deter-
mined by the following system of algebraic equations:

a=[(p—-1/pl(—4b+ (p—1)/2), (2.92)
P—2)(p—3)b>—}p—1D*(5p - 12)b
+4(@—1*=0. (2.9b)

There exist three possible solutions of Eq. (2.9) according to
the values of p, namely p£2,3, p = 3, and p = 2, respective-
ly.

1l.a=4 p#23

In the case of p#2,3, we have two pairs of solutions for
Eq. (2.9). They are given by

a= —(p—1*(p-13), (2.10a)
b=3ip—D¥@-NI, (2.10b)
and
—(p—-1D¥2(p-2), (2.11a)
b=i[-D¥p-2)], (2.11b)

respectively. Substitution of (2.8) with (2.10) and (2.11)
into (2.3) yields exact solutions of Eq. (1.1) in the forms

p=[+ VI p-DNBP-3]

X (357 — 8s,) V3~ ¥, (2.12)
$=[+ V1 -DANIE-D)]
X (] — 25,)1/?] =¥ =D, (2.13)
It follows by the definition of s, and s, that
4
51 —=25,= 3 xi=x’ (2.14)
u=1

and hence, expression (2.13) is the spherically symmetric
solution of Eq. (1.1). This solution has already been ob-
tained by Burt.* On the other hand, we obtain

R

mv =1
(p<v)

and accordingly, expression (2.15) cannot be reduced to the
form (2.14) by means of any transformation that leaves Eq.
(1.1) invariant under four-dimensional Euclidean groups.
This fact implies that (2.12) represents a new exact solution.
For p>1, solution (2.12) is singular at x, =x,
(u,v = 1~4) whileforp < 1, itis regular for all values of x,, .
As already mentioned in the Introduction, Eq. (1.1) with

— 85, = (2.15)
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p = 5 has been discussed by Grundland ez al.'® However, it
should be remarked here that the solution (2.12) withp =5
does not belong to the category of solutions that they have
obtained.

2 o=} p=3

This special case is of considerable physical interest,
since Eq. (1.1) with p = 3 becomes the field equation of the
familiar scalar ¢* theory.” It is a well-known fact that Eq.
(1.1) with p = 3 is invariant under the following specific
conformal transformation’:

x,~%, = (x, +¢,x*)/o(x), (2.16a)
B(x) > d(x) = d(X)/0o(x), (2.16b)
with
4 4
o(x)=1+23 ¢,x, +x° (02= > cf,) ,
o =t 60

where ¢, is a constant four-vector.
Now, we shall begin to discuss the solutions. As already
shown in (2.6), the equation exhibits a solution of the form

8 4 -1
b= +i \/:( z xp) )

A S
At first sight, this solution seems to be a trivial plane-wave
type one. However, if we apply both the conformal transfor-
mation (2.16) and the translation of the coordinates x, —x,,

+iB/2 (u=1~4) to (2.17), the solution can be trans-
formed into the form

d=+ (8B [1I/(X¥*+B8D ], (2.18a)

where f3 is a real constant related to a four-vector ¢, by the
relation

4 -1
= (3)"
=1
The solution (2.18) is nothing but the well-known instanton
solution first derived by Belavin et al.*®
Another solution of Eq. (1.1) with p = 3 is obtained
from (2.8) and (2.9). The result is expressed in the form

¢=+ [AGst —25)]7 V2= £ (AxH)~VL  (219)

This solution is spherically symmetric and is called the
meron solution in gauge theory.>

2.17)

(2.18b)

3 a=4 p=2

In this case, an exact solution is given by (2.6) with
p =2, namely,

_ 24 4 )—2
B A (ﬂgx i .

The solution is real, but singular on a four-dimensiona}

(2.20)

plane, 2;= 1%, = 0. On the other hand, another solution
follows from (2.3), (2.8), and (2.9) with p = 2 in the form

8 4 2 -1
¢=_~7[ > (x#-—x,,)] ,

(2.21)

Hv=1
(p<v)

which seems to be a new exact solution. It is interesting to
observe that spherically symmetric solutions of the form
(2.13) do not exist for p =2 in a striking contrast to the
other cases.

4. a=(p+1)/4, a: integer

In the preceding subsections, we have investigated the
solutions for the case of @ = §. Here we shall discuss another
possibility, namely, @ = (p + 1)/4 [see Eq. (2.7)]. First,
consider the case where « is an integer. In this situation, the
value of the parameter p can be takentobe p = 4m + 3 (m:
integer) without loss of generality, so thata = m + 1. Now,
we assume solutions of Eq. (2.4) with p = 4m + 3 in the

polynomial form
m41

f=3 aqyt'7 ay#0, (2.22)
i=0

which is consistent with the asymptotic behavior of solutions

S~y™* !, and substitute (2.22) into Eq. (2.4). The resulting
equation is the algebraic equation in y of order 2m + 2.
Equating the coefficients of y’/ (j=0~2m + 2) to zero,
respectively, results in 2m + 3 algebraic equations for un-
knowns a; (j=0~m +1). However, the equation that
stems from the coefficient of y*"*?2 is satisfied identically
because of Eq. (2.7). Therefore the number of independent
equations for g; is at most 2m + 2 while the number of un-
knowns is obviously equal to m + 2. Hence, if the inequality
m + 2>2m + 2 holds, solutions of the form (2.22) would
exist. The only possible value of m is m = 0, namely, p = 3,
or equivalently a = 1. Indeed, we have found the following
exact solution of Eq. (2.4) with p = 3:

f=+(=-3+). (2.23)

Substituting (2.23) into (2.3) with p = 3, we obtain a new
exact solution of Eq. (1.1) with p = 3 in the form?*'

¢ =+ (1/J1)[45,/(55 — 125,)]

4
= 42 Zim 1%y . (2.24)
VA X4 4Z0 1 (x, —x,)?
This solution is regular except for the origin x, =0
( & = 1~4) and decays asymptotically like ¢ ~4/ (5J4 x,)
whenx, —» + .

Furthermore, if we notice the invariance of Eq. (1.1)
with p = 3 under the conformal transformation (2.16), an-
other new exact solution can be generated starting from
(2.24). The explicit form of the solution is written as follows:

p= +— bt L7 (2.25a)
T VA (58 —128,)x* +2(62 _ ¢, x, —EZh_ x, )X+ 6x3 — 3% x,x,
where I A
' 4 Gy = c,cC,. 2.25¢
6=73 c, (2.25b) 2= X (2:25¢)
p=1 (p<v)
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At the present time, solutions of the form (2.22) have not
been found except for m = 0 although we generally cannot
deny the possibility of the existence of solutions.

5. a=( p+1)/4, a: noninteger

Finally, we shall briefly discuss solutions of Eq. (2.4)
that correspond to nonintegral values of «. The simplest as-
sumption for possible solutions may be of the form

f= (@ +b)P+P7% p=£0,1.
Substitution of (2.26) into Eq. (2.4) yields
B+ —Nd*+6(p>—Dably—[3(p+1)

X(3p—1)a®+3p(p+ Dab+4(p+ 1)b?]

—{p—D¥ay+b)~ P92 =0 (2.27)
There exists only one possibility in order for this equation to
be satisfied for arbitrary values of y; one must choose p = 3.
However, for p = 3, a becomes 1 and it must be excluded by
the assumption of nonintegral values of . Thus we can con-

clude that solutions of the form (2.26) with nonintegral val-
ues of ( p + 1)/4 do not exist for Eq. (2.4).

(2.26)

i1l. LIOUVILLE EQUATION
A. Reduction to ODE

First, we introduce the dependent variable transforma-
tion

¢=(1/A)ng, (3.1)

to recast the Liouville equation (1.2) into the following
form:

3.2)

4 dg \?
Q¢ — +1g>=0.
£-8 y;] (6xu )

Assuming that g is a function of the two variables s, and s,,
Eg. (3.2) takes the form

d’g d’g 2 d’g
4 6s + (357 — 2s
g[ 3s? + O S s, (31 = 252) asg]
2
_4(i€) 65, 58 %8
s, Js, ds,

2
— (35 — 25,) (gsi) +Ag* =0. (3.3)

2

Moreover, we employ, by noting that Eq. (3.3) is invariant
under the scale transformations, s,—¥s,, 5,—%°s,, and
g— v g, the following ansarz:
g=[AsT /] y=s/si. (34)
With the aid of this ansatz, Eq. (3.3) is transformed into the
nonlinear ODE for f as follows:
2y —D(EB =3 ~f
+ 12y —-1)fFf — 82 —f=0. (3.5)

One may also observe by introducing a new dependent vari-
able & through the relation

f= h 2’
that Eq. (3.5) is reduced to the form

(3.6)
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(y—-1)(8y~3)(hh" —h")
+12(2y — Dhh' — k2 —§=0. (3.7)

The resemblance of Eq. (3.7) to Eq. (2.4) should be re-
marked.

B. Construction of exact solutions

The simplest solution of Eq. (3.5) is a constant solution
given by

f=—14 (3.8)
which yields an exact solution of Eq. (1.2) in the form

- o -4(3 2]

Next, we shall seek solutions of Eq. (3.5) with an
asymptotic form f—y* (y— — oo ). As easily confirmed, the
only possible value of « is given by a = 1. This situation is
different from that of the nonlinear Klein—-Gordon equation
where there exist two possible values of a [see Eq. (2.7)].
Keeping the asymptotic form of the solution in mind, we
take the solution in the form

f=ay+b, a#0, (3.10)
and substitute (3.10) into Eq. (3.5). It turns out that the
unknown constants a and b are determined by the following
system of algebraic equations:

b= —a/4+1, (3.11a)

(2a+ D@+ 1)=0. (3.11b)
Equations (3.11) have two pairs of solutions, namely
a= —1,b=3}and a= —, b=1, respectively. We shall
treat the two cases separately.

(3.9)

1. a= -1, b=§
In this case, it follows from (3.1), (3.4),and (3.10) that

1[4 & ,
b= —hlT 3 xo-x) ] (3.12)

Hyv=1
{(p<v)

The solution (3.12) is
=x, (uv=1~4).

regular except for x

"

2.a=-3 b=}
In this case, the solution is expressed in the form
¢ = — (1/)In((A /4)x?), (3.13)

which is spherically symmetric and is regular except for the
originx# =0(u=1~4).

IV. GENERALIZATION TO n-DIMENSIONAL
EUCLIDEAN SPACE

In this section, we shall generalize the solutions present-
ed in the previous sections to those for the nonlinear Klein—
Gordon and Liouville equations in n-dimensional Euclidean
space. Since the procedure for constructing exact solutions
for these equations is almost the same as that for correspond-
ing four-dimensional equations, we shall not discuss the de-
tails and present only the main results.
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A. Nonlinear Klein-Gordon equation in n-spatial
dimensions

The equation that we consider reads

0,6 +A4462=0, p+#0,1, (4.1a)
with
n 82
a, = , (4.1b)
,ugx (?x,z,

where [J, is the n-dimensional Laplace operator. If we intro-
duce the dependent variable transformation

¢=[Visif)l=>e=D, p=s/s, (4.2)
Eq. (4.1) is transformed into the following nonlinear ODE
for f:

[4ny* —2(2n — Dy +n—1)
X(F" = Hp+ D/ —DU?)
+[2/(p— 1D} [nBp+ Dy —2(n— )pl g’
— [+ 1)/ @—-D]fP—@p-1)/2=0. (43)

An exact solution of Eq. (4.1) that corresponds to a
constant solution of Eq. (4.3), namely

f=+ip—D/A2n(p+ 1), (4.4)
is given by the form
d=[+i(p—1[A/2n(p+ 1)]"%,] - ¥®-1,
(4.52)
with
5= E Xy (4.5b)
p=1

Expression (4.5) is a generalization of (2.6) in n-spatial di-
mensions.

If we seek solutions of Eq. (4.3) with an asymptotic
form f~y® (y— — ), we find two exact solutions. The
first solution is given by the expression

f= 2=l
Qm)'?[(p — Dn —3p + 1]"2
X(=2np+n—1"% (p—Dn#3p—1,  (46)

which, substituted in (4.2), yields an exact solution of Eq.
- (4.1),

- VAp—1)
¢ = j: 1/2 1/2
Cm)"[(p~Dn—3p+1]
—2/(p—1)
X [(n—1)s} —-2ns2]”2] ,
p—Dn#3p—1, (4.7a)
with
S;= Y XX, (4.7b)
V=1
:‘u<V)
and s, given by (4.5b). It is worthwhile to see that
(n—1sf —2n5,= 3 (x, —x,)%, (4.8)
myv=1
(p<v)

which is an analog of (2.15) in n-spatial dimensions. One
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readily notices that the solution (4.7) is a generalization of
(2.12).

On the other hand, the second solution of Eq. (4.3) is
written in the form

= p—1
f' 2”2[(17 —1)n— 2P]1/2
X(—2+ D2, (p—1)n#2p. (4.9)
Substitution of (4.9) into (4.2) yields an exact solution of

Eq. (4.1),

\[’1—(}’—1) (2 1/2]_2/("—1)
= \ —Zs H
¢ [—2”2[(p—1)n-—2p]l/2 5 2)
(p — Dn#2p, (4.10)

which is seen to be the n-dimensional generalization of solu-
tion (2.13). Expression (4.10) represents the spherically
symmetric solution due to the relation

st —25,= Y xi=x> (4.11)
p=1
Among ?arious exact solutions presented here, a par-
ticularly interesting case arises for a special value of
p=(n+2)/(n—2).Inthis case, Eq. (4.1) becomes

Dn¢ +/'L¢(n+2)/(n—-2)____.0’ (4.12)

which is known as a conformally invariant nonlinear scalar
field equation in #-spatial dimensions.”? Equation (1.1) with
p =3 is a special case of Eq. (4.12) with n = 4. With this
choice of the parameter p, the solutions (4.5), (4.7), and
(4.10) are reduced to the expressions

ofe2 (5 )] wn

n n—2 =1
(4.13)

2JA
[n(n—2)(n—4)1"?

n 1/2y —(n—2)/2
X[ Z (x,‘ —xv)z:l } ’ n#294a

d=1+

oy =1
(p<v)

(4.14)
p=(x [HNA/(n =) ]VxH)~ =272 nx2, (4.15)

respectively. Of course, one can use conformal transforma-
tions in n-spatial dimensions to generate new exact solutions
of Eq. (4.12) starting from (4.13)—(4.15). But the details
will be omitted here. Finally, it should be pointed out that
Eq. (4.12) never possesses solutions of the form (2.24) ex-
cept for n = 4. This fact may indicate a peculiar aspect of
four-dimensional Euclidean space.

B. Liouville equation in n-spatial dimensions
The equation that we will consider is written

0,6 + ¢ =0. (4.16)
Introducing a new dependent variable f through the relation

= — (I/)In[4s} f() ], y=s/5, (4.17)
transforms Eq. (4.16) into the nonlinear ODE
Y. Matsuno 2321



[4ny? —2Q2n — Dy +n—1](fF" —f)
+ [6ny —4(n— )] ' —2nf* — f=0. (4.18)
We have found three exact solutions of Eq. (4.18) as follows:

f= —1/2n, (4.19)
f=[/(n=3)](~y+ (n—1)/2n), n#3, (420)
F=120 =) =2+ 1), n#2, (4.21)

which, substituted in (4.7), yield exact solutions of Eq.
(4.16) as follows:

A (58]

(4.22)

1 A 2
= ——In|—"— —x)?|, n#3,
¢ y) n[Zn(n—3)W§;,(x” xv)] n#
(p<v)
(4.23)
6= — (I/)In[[A/2(n —2)]x*), n#2. (4.24)

The solutions (4.22)-(4.24) are generalizations of the solu-
tions (3.9), (3.12), and (3.13) in n-spatial dimensions, re-
spectively.

V. CONCLUDING REMARKS

In this paper, we have developed a systematic method
for constructing exact solutions of the nonlinear Klein—-Gor-
don and Liouville equations in four and general n-spatial
dimensions. These equations are of course physically impor-
tant and various particular solutions obtained here may be
employed to elucidate the physical phenomena governed by
the equations. The method of analysis presented here may
also be applied to other types of nonlinear PDE’s of physical
interest such as the Yang-Mills equation,-the Einstein equa-
tion of general relativity and other gauge field equations.

From the mathematical point of view, the broader
classes of solutions may exist if we introduce other symmetry
variables in addition to s, and s,. In this respect, it should be
remarked that the number of independent variables in Eqgs.
(1.1) and (1.2), for example, can be reduced to three by
introducing the new independent variables y, =s,/s7,
Y, = 55/53,and y; = 5,/s}. Furthermore, one may pursue the
possibility of generalizations of our solutions to elliptic func-
tions. For this purpose, it will be useful to refer to several
works concerning elliptic solutions of Eq. (1.1) withp = 3,
5.3,16,23,24

Various problems proposed here will be dealt with in the
near future.
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Tensors with icosahedral symmetry that are invariant under a certain wreath
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Adalbert Kerber and Thomas Scharf

Lehrstuhl I1 fur Mathematik, Universitat Bayreuth, Postfach 101251, 8580 Bayreuth, West Germany
(Received 12 March 1987; accepted for publication 27 May 1987)

Faithful icosahedral symmetry exists only for tensors of rank higher than 5. The most relevant
tensor of this type is the one for third-order elastic constants C {3}, defined by the series
expansion T; = C Z)€y; + AC $3)nn€x1€,nn + *+ Of the stress tensor T in terms of the
deformation tensor €. A basis for those tensors in (R*) ®¢ that are invariant under a certain
action of both the icosahedral group .S, X 45 and the wreath product S, 1 S; of the symmetric

groups S, and S, are evaluated.

I. INTRODUCTION

H.-R. Trebin has drawn our attention to the following
problem concerning the elasticity of quasicrystalline struc-
tures: Faithful icosahedral symmetry exists only for tensors
of rank higher than 5. The most relevant tensor of this type is
the one for third-order elastic constants C 3},,, defined by
the series expansion

T; = ngjigekl + %Cl_gi:;c}mneklfmn +
of the stress tensor 7 in terms of the deformation tensor €.
Hence the question arises of how one can get a basis for those
tensors in (R®) ®¢ that are invariant under both the icosahe-
dral group S, X4 and the wreath product S,1 S, of the
symmetric groups S, and S,, which acts on (R?) ®¢ via per-
muting in C {3}, the elements in the pairs (i, j), (k,!), and
(m,n) as well as the pairs themselves among each other (i.e.,
S, 1 S, is canonically imbedded into the Sg).

This problem can be attacked and solved in the three
steps we shall describe in this paper. At first we formulate the
situation in terms of representation theory, so that the space
of invariant tensors is just the subspace of tensors that afford
the identity representation.

Il. THE REPRESENTATION THEORETICAL
FORMULATION

S, X 45 affords on R? the faithful representations’
[1°14#[3,1°]" and [1%]#[3,1°]".

The wreath product’ S, 1 S, affords on (R?)®® the repre-
sentation'

Ve

#[21e (3],
which induces in Sy the plethysm' [2]1®[3].

Thus in terms of representation theory the desired space

is the subspace affording the identity representation in the
representation

([121403,121£)H)3([21003D.

But we can simplify the considerations as follows.

The restriction of this representation to the subgroup S,
is the identity representation since S, acts diagonally on R?
and the power 6 of R® is taken, which is even. Therefore the
factor [ 12] can be neglected. Furthermore it does not matter
whether we take [3,12]* or [3,12] ~ since the corresponding
matrix groups are the same—these representations are con-

2.1)
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jugate® with respect to Ss—and the construction below does
not need further information. Thus we have obtained the
following corollary.

Corollary 2.1: We need only to consider the representa-
tion [3,12]1 TE([21O[3]).

1ll. THE SUBSPACE OF INVARIANT TENSORS

Corollary 2.1 has shown that we have to find a basis of
the subspace of (R?) ®® whose elements are 0 or can afford
the identity representation. In order to get it we evaluate a
generating system (in three steps) and finally pick a basis.
The steps to be peformed use the following lemma.

Lemma 3.1: If a group G acts on a vector space ¥ and if
Nis anormal subgroup of G, then we have a natural action of
G /N onthespace V, of vectorsinvariant under N. Therefore
the corresponding spaces of invariants satisfy

NV R LT
In the present situation we can use the following chain of
normal subgroups:

S, X8, X 8,5, 1S, U5 XS, 1 S,,
where

(AsXSzl S3)/S2 IS3EA5, S2 I S3/(S2XS2><S2)ES3.

IV. PICKING A BASIS

Let us first describe (R*) £$ 5, . As one of its bases R? has
the set of standard unit vectors {¢;|1<i<3}. Thus

(R*)®% = ((e; @ ¢;|1<i, j<3) )g.
Hence the subspace of tensors invariant under S, is
(R*)*?)s, = ((i(e,; 8¢; + ¢, ®¢,)|1<I<j<3))g.  (4.1)

This shows that we may identify the elements of this space
with the linear combinations of indeterminates y,, 1<k<6,
where k=1,..,6 corresponds to the pairs (i)
= (1,1),(1,2),(1,3),(2,2),(2,3),(3,3).

Now we form the tensor cube of this space obtaining
((R?)®%)g,s,xs, and symmetrize it with S, getting the de-
sired space

(R *%)s, s,

Thus we have obtained the following corollary.
Corollary 4.1: This space (4.2) can be considered as be-

4.2)
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ing the space of homogeneous polynomials (in the indeter-
minates y, ) of degree 3.

The representation [3,12]+ of 45 gives in an obvious
manner a representation in the space V of polynomials in the
¥, homogeneous of degree 3. By Corollary 4.1 it is sufficient
to evaluate a basis of the subspace of this representation
space affording the identity representation.

Consider a fivecycle 7e4s and a oe€ds such that
p: = oro~'#7 for all i. This means that p, 7 are rotations
corresponding to different axes of symmetry. Hence p and 7
generate A5: A5 = {(p,7). By restricting the representation of
As to the subgroups (7) and (p), it is easy to evaluate a basis
of the subspaces V,, ¥, that afford the identity representa-
tion of (7) and (p), respectively. The intersection of these
spaces is just the desired space.

A generating set of ¥, will be obtained by applying the
so-called Reynolds operator

R:VoViv—

'(T)I 0<i<4
|

corresponding to (=) and ¥ to the standard basis of mono-
mials. A generating set of V, will result from a base change.

We chose a realization of the representation [3,12]*
such that the corresponding matrix representation 6—rela-
tive to the ¢,—has a nice structure’:

1 0 0
(r)=|0 a —b|,

0 b a

d —(14d)/2 —1/(2b)
0o)=|2d (1+d)/4 1/(4b) ,

0 —2ab (1+1/d)/4
with  a:=cos(27/5), b:=sin(27/5), d:=1/\f5.

(4.3)

A computation with the help of the MACSYMA programming
system gave a basis of ¥, and ¥V, and finally we obtained the
following corollary.

Corollary 4.2: A basis of the desired space ¥, NV, is the
set {b,,b,,b5,b,}, where

by:=L(Ve + Wa Vi + T, Ve — 493¥s + TVive + 4201 ¥4 Vs — 4V3V6 — 2893 V6 + TV Ve — 404 V3
— 28y, y5 + 48y, p, ¥s + i + Ty Vi — 28Y3ps — 4V3ys + Vv, — 1 Vi — 49 5 + 1),

by = 1(57% + Ve Ve + 39, Vi + 1202y6 + Wivs + 180, Va Y6 + 1203y6 — 120396 + 39ips + 120,93 — 129, 3
+ 48y, ya ys + SV2 + 3 2 — 12020, + 12029, + 393y, + 120,12 + 120,12 + 5%,
byi= —2p,y4¥6+ 2)’%}’6 + 2y1)’§ —4p, y3 s+ 2)’%)’4,

by =420, + 91 Ve + 8V3 Vs Vs — 42 Va Ve + 691 Va V6 + W3 Vs — 43V — ViV — 892 V3 — 49, 33

— 83 Vs Vs + 160, Y3 ¥s + 20, 5 + V1 V3 — W5V + A5y — Viva— W Y — 33 + 1),

In Sec. VI we will be able to give a nicer basis.

V. A GENERALIZATION

This method can be applied analogously for any wreath
product S, 1 S; and icosahedral symmetry. To cover these
cases we need only to consider the algebra of polynomials in
the y;, 1<i<6.

In this case the Molien series’

P, (T):=Y dim(Z,) T’eR[T], (5.1)
i»0
where [; is the space of invariant polynomials of degree, can
be evaluated in order to get the dimension of the spaces in-
variant under S, ! S; and the icosahedral group. We will
apply Molien’s formula®
1 s 1

|As| &, detld — Tu(g))’
where I denotes the identity matrix and ¢z a matrix represen-
tation of A5 on the span {(y;|1<i<6))z. We may clearly
pass to C. Once for each ged; the eigenvalues of u(g) are
known, we are able to compute (5.2). But g has been con-
structed from [3,12]* and the eigenvalues of the matrices
corresponding to this representation can be easily recon-
structed from the well-known character table' of 45. The
first of these dimensions (starting with j = 0) are

1,1,2,4,6,10,17,24,36,53,74,102,141,
186,246,322,412,523,661,820.

(5.2)

PAS(T) =

(5.3)
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VI. ANOTE ON ORTHOGONAL INVARIANTS
Consider the following polynomials:
cp=y;+ys+JYs
e =yl + 25 + 5+ + W5 4%,

e =1 + 311 + 305 + Wiy + 60,02 )5
+ 3¥3Vs + i + 39455 + 3¥ivs + vi-

(6.1)

It should be noted that the ¢, are also invariant, if the full
orthogonal group O(3) instead of S, X A, is taken, but b, is
not. Furthermore we have

IL={c))n, L= ((C:;,Cz)xa,

6.
I, = <<Ci €1€2:C3,04) g . (6.2)

Hence we obtain the following corollary.
Corollary 6.1: Three is the smallest positive integer,
where the icosahedral case differs from the O(3) case.
Thus Corollary 6.1 shows the importance of the third-

order elastic constants C 3}, for icosahedral symmetry.

!G. D. James and A. Kerber, The Representation Theory of the Symmetric
Group (Addison-Wesley, Reading, MA, 1981).

2P. Kramer, Z. Naturforsch. 40a, 775 (1985).

3R. P. Stanley, Bull. Am. Math. Soc. (New Series) 1, 475 (1979).
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The local Green’s function is used in many physical problems. In this paper, the properties of
the local Green’s function are studied, and it is proved that the N X N local Green’s function
can represent the results of the full ¥, X NV, Green’s function, where A is small (or at least

finite) and &, is large (or infinite). The accuracy of cutting the general Green’s function into

the local Green’s function is also discussed.

I. INTRODUCTION

The Green’s function G is an infinite matrix in the repre-
sentation of a complete set. Usually we know G ! of a phys-
ical system from the requirement of satisfying physics. The
eigenvalues and eigenvectors of the system correspond to the
condition Det G ~! = 0. Generally speaking, it is very diffi-
cult to find exact solutions, because the system is infinite. In
many physical problems, however, we can use the approxi-
mation of cutting the infinite matrix into a finite matrix, i.e.,
let H,,, = 0 when n,m > N, and this is the main idea of the
subspace Hamiltonian technique.' Here we will prove that
under a certain restriction, the inverse matrix of the local
Green’s function—i.e., the finite submatrix on the diagonal
of the whole Green’s function matrix—can represent all the
results of the original Green’s function (i.e., it gives all the
eigenvalues of G ~'). (For simplicity, we will say that G,
represents G in the rest part of this paper.) Therefore the
solution of the local Green’s function is equivalent to the
solution of the full Green’s function. We will also discuss the
accuracy of cutting the full Green’s function into the local
Green’s functions (later on we will refer to this as the cutting
approximation).

ll. LOCAL GREEN’S FUNCTION

The local Green’s function Gy, is a submatrix on the
diagonal of the whole matrix. Suppose that in the representa-
tion of a complete set of orthonormal functions (|n),
n = 1,2,...), the Green’s function can be expressed as'™

G—1=(G'_111 G'_III' )_EI_(HII HII‘ ) (2)
' G._llc] G._lrlc HI‘I HFF ’

where I is the unit matrix

I, O )
1=(
0 Irg

and /;; is the unit matrix of order N,

1-N
1 0
I 1
1=\ .. ’
1
N+l-oow (3)
1
1 0
IICIE l
0 “

The inverse of the local Green’s function is G, ~!, which
satisfies
Gy 'Gy=1Iy. 4)
Theorem 1:
det G ~'(E) =det G, (E)detG "' ,.(E). (5)
Proof: First we prove that when E¢J = J,UJ,, where
Jy={EdetG ', (E)=0} and J,={EdetG,(E)
=0}, Eq. (5) is true.
Notice that G(E)G ~'(E) = I, we can obtain

Gy(E)G ™'y + G (E)G ™ ' (E) =0,

G, Gp E ~1 G 1 —7 (6)
G = s () Gr(EYG ™ i + Grp (E)G ™ pp (E) =Ipp .
Gri Grr Owing to E¢J, Eq. (6) can be written as follows:
where I,I° C N, ./V: {1,2,3,..}, IUr .=./V, and INF Gy~ "E)Gyp(E)= —G G L " YE),
= (. Here I is a finite subset of .#". For clarity let us suppose . L
that 7 = {1,2,3,....N}. Gri(EYG ™'y G ™ T (E) + Grp (B) (7
Normally, in physical problems, G is the matrix to be =G ' THUE).
solved for and G ~' is given by Using Eq. (7), we have
Gy(E) 0 I Gy UE)Gy (E)\]
det G~ Y(E) = [det( uw(B) ) det ( ol " "
0 Irr G, (E) Grr (E)
Iy -G G e T HEN] T
=det G, (E) [det(
" Gr1(E) Grr (E)
det G;; = '(E) [dt( Tu 0 )]“l
=de ] e
" Gri(E) Gr(E)YG ™' G 'pp " Y(E) + Grp (E)
=detG"._l(E) detG._lchr (E).
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Second, when EeJ, it is not difficult to prove that Eq.(5)
is still true. In fact, sincedet G ~ ' (E) and det G,; (E) are
a polynomial and a rational function of E, respectively, the J
would be a numerable set. In the physical sense, it is obvious
that J is not dense in any subregion of complex plane of E.
For any E,, €/, thereis always a small circle U (E,, ), which
is centered at E,, and with radius 8,( >0), and U (E,,)
NJ = E,, . Since det G ~'(E) is a polynomial function of E,
det G ~!(E) is an analytical function in the £ complex plan.
For any € > 0, there is a small positive number 6 (<6,;), when
|E — E,, | <8, we have

|det| G ~(E,,) —det G ~1(E)| <€.
If E #E,,, then Ed¢J, according to the above proof,

det G ~Y(E) =det G,,~ (E)det G " 'f 1 (E) .
So, when |E — E,, | <8, we have

det G ~\(E,,) — det G, '(E)det G = ' (E)| <€,
then

lim det G, Y(E)det G = ', (E) =det G ~Y(E,,) .

E-E,,
That is,
detG~YE,)=detG, '(E,)detG ~'fr (E,).

This is the complete proof of Theorem 1.

From Theorem 1 we can obtain three important proper-
ties of the local Green’s function as the following.

Remark 1: Since det G ~ ' . (E) is a polynomial func-
tion of E it is always limited by any |E|< c. When
det G,; ~'(E) =0, from Theorem 1, det G ~'(E) must be
zero. The roots of det G ~'(E) are real, so the roots of the
inverse determinant of the local Green’s function must be
real and a part of the roots of the inverse determinant of the
Green’s function. That is,

{E,,det G,,~ (Ex) = 0}C{E,, det G ~'(E,) =0} .
(8)

Remark 2: Since
{E,,detG,(E,) =0} ={E,,detG,;~"(E.) = 0}

and det G ~!(E) is limited, by Theorem 1, we have J,CJ,,
ie.,

{E,,det G, (E.) =0}YCH{E,,det G ~ ' (E;) =0}

s0 the roots of the determinant of the local Green’s function
are real.

Remark 3: Since the set of the roots of the inverse deter-
minant of the Green’s function is determined, the total num-
ber N, of the roots of the det G;; ~ ' (E) is equal to the dimen-
sion N of the local Green’s function G,; (E) plus the roots
number m of the determinant of the local Green’s function
G (E), that is,

N,=N+m. 9

Here, saying that the local Green’s function G;; repre-
sents all the solutions of the original general Green’s func-
tion just means that all the solutions of the equation
det G;; ~ 1(E) = 0 will be exactly the same as all the solu-
tions of the equation det G ~'(E) =0, i.e.,
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{E,,det G, '(Ex) =0} ={E,,det G ~'(E,) =0}.
From the preceding remarks, we can get the sufficient
and necessary condition to represent G ~' by G, ! as fol-
lows:
{E,,detG,(E,) =0} =A{E,,det G ~ ' (E,) =0}.
(10)

On the other hand, we must find G;; ~ ! from G ~!, since
we only know G ~'. So we have Theorem 2,

Gy~ '=6G =G GGy, (11)
Proof: From the equation G-G ~' = I we have

GuG 'y +GyG =1 .

Multiplying by G,;.~ ' from the left, we have

Gy '=G 'y +Gy Gy Gy (12)

By using Eq. (7), and substituting G, ~'G,. for
-G 'y G T, we obtain Eq. (11).

Equation (11) is an identical equation, with only the
requirement that Det(G ~ ', ) #0. It looks as if we have
found G;; ~ ! from G ~' by using Eq. (11), because [ is finite.
We certainly can find G;; as a part of G. But the really diffi-
cult problem has not been solved yet, because I° is infinite,
and there is a sum over infinite terms in Eq. (11). So the real
task is to find the exact form or an approximate form of
G,; ' by using Eq. (11). By using the projection operators,
we can write Eq. (11) in another equivalent form.

Let us use {|n>, ne#"} as a set of complete orthonor-
mal functions

(min) =6, ,

Y |n)(n|=1.
ne V"
Also define
P= Z|n) (n|,
nel
(13)
0= 2 |} (n| .
nel©
Thus P and © are projection operators, and they satisfy
PP=P, PO=0, GO=0, P+0O=1. (14)
The submatrices of G and G ~! can be expressed as
G, '=(PGP)!,
G 'y=PG7'P,
G.“lll\c =PG—l®,
G Yy =0G'P,
G L '=(OGT'@) .
Equation (11) can be expressed in the form
(PGP)™'=PG ~'P— PG~ 'O(OG'0)"'0G 'P.
(16)
In a more general matrix representation, suppose there
exists the inverse matrix 4 ! of 4, and det(®4 ~'0@) #0.
There then is a relation as follows:
(PAP)"'=PA ~'P— P4 ~'0(04 ~'®)"'04 ~'P.
(17)

(15)
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IIl. THE APPROXIMATION METHOD OF THE LOCAL
GREEN’S FUNCTION (THE CUTTING APPROXIMATION)
We have
Hy= — (#/2m)V? + U(x),
H=H,+ V(x), Hyn)=E,|n),
S In¥nl =1,

net”

(m|n) =6,,.,

and
Vr = m|V|n) .
Suppose that
[Vin | €|E,| (n=12,.,N).

Then the “cutting approximation” of the previous section is
given by the matrix representation

(18)

m n VitseesVin
1 | R 0 Vi 0
Vi 4 A vV =(o o)’

o 0 0
GO~I=E‘”I}0’ (19)
G'=E-H

Using Eq. (18), we obtain
PG~ '®= —PVO, OG 'P= —@VP. (20)

Substituting into Eq. (16), we have
(PGP) "' = PG ~'P - PVO(OG @)~ '0VP.

By using the above cutting approximation, we get
PO =0, OVP=0

s0
(PGP) " '=PG~'P.
This is the method used most frequently. When
det(PGP) '=det(PG ~'P)

is fulfilled, we can obtain N first-order energy eigenvalues £
of accuracy V,,, (m,n<N). Equation (21} is called the
first-order approximate equation. We can obtain the second-
order approximate equation by using Eq. (16).

Lemma 1: We have

] Vm,n I -0
Proof: Clearly, we have

@2n

(morn-ow).

KIV2kYy =3 (k|Vis)ésiV k)

s=1

=S V=S VuVE. (22)
s=1 s=1
Since (k|V?lk) is infinite, when s—co, |Vy], or
{ V ks i "'*0.
Roughly speaking, we can always divide V,,,,, into pow-
ers of a small quantity 4. Suppose

N<N,<Ny<+ -,
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Vll ~A ’
an (m9n<N])~A )
Vin (Ny<m or n<N,)~A2,

(23)

Using the projection operators,

N, 3
|n){n|, ©; = =;

Pl = Z §n><nf » (24)
4+ 1

n=N+1 ”

where we have
PP =P, PP=0, PO =0,
0,0,=0, P+0,=0.
The second-order equation is
(PGP)~'=PG ~'P— PVP,(OG ~'®)"'P,VP. (25)

Since PVP, and P, VP are of the order of A, we need only
take the zero order of P,(®G ~'®) " 'P,.
Let (OG ~'®) ! = 4. By using Eq. (17), we obtain

[P(®G~'@)"'P] !
=PlG_1P1 —'PIV@l(@lG_l@!)-!@lVPI
=P,G; P, — P,VP,

— P VO,(0,G7'0,)"'0,VP,. (26)
The zero order of [P,(®G ~'©)~'P,] " !is P,G 4 'P,.
Lemma 2: If the zero order of matrix B is B, then the
zero order of matrix B ~lis B, .
Proof: We have

B=Bo+/lBl+12B2+ Tty
B '=Cy+AC, +A%Cy+ -+,

where C, is the zero-order quantity of B ~'. By using
BB —' = I we obtain

C():Bo_l,

C,=B;'BB;! @n

Using Lemma 2, in P,(®G ~'®)~'P, the zero-order
quantity is (P;G ;" 'P,) !, so the final form of the second-
order equation is

(PGP)~'=PG~'P—- PVP,(P,Gs 'P,)'P,VP. (28)

Since Det{ PGP] ! = 0, from the second-order equa-
tion we can obtain N eigenvalues with an accuracy of the
order of V'3,. The advantage of using the Green’s function is
that the number of eigenvalues that we can obtain from the
determinant is bigger than the order of the determinant.

Usually the variation of V,,, ,, is not very obvious, so the
number of &, is not very accurate. If we write the second-
order equation as

(PGP)~'=PG ~'P— PVP,(P,G ~'P))"'P,VP,  (29)
without distinguishing the quantities of different order in A,
from Det[ PGP] ~! = 0, we can obtain N, eigenvalues of E,
which actualy are N, eigenvalues of the first-order equation
(P'GP’) '=P'G~'P’, when N is taken as N,, where
P =P+ P,
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Since
Vi Vin,

Vv

[

, (30)

VairsVan,

0 0,

larger values of NV, obviously give both more eigenvalues E
and higher accuracy in the lowest-order eigenvalue, at the
expense of a more complicated calculation.

IV. CONCLUSION

The above cutting approximation is a very simple and
general method, previously used in many physical applica-
tions to find the approximate solutions. Its biggest weakness
is that the accuracy cannot be estimated exactly, and the
number of eigenvalues is the same as the order of the deter-
minant. But there is one important point: We can obtain Eq.

2328 J. Math. Phys., Vol. 28, No. 10, October 1987

(29) by using the local Green’s function, in which case we
will not lose eigenvalues when we solve the high-order deter-
minant by using the low-order determinants.
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As shown in the preceding paper [J. Math. Phys. 28, 2325 (1987) ], the local Green’s function
can represent the results of the original general Green’s function. However, it is difficult to find
the exact local Green’s function in the general case. In this paper, a special case—*“the chain
matrix”’—is studied, which is a generalization of the tridiagonal matrice.

I. INTRODUCTION

In solid state physics, when studying electrons or pho-
nons, one often assumes that each atom interacts with only a
finite number of neighboring atoms. In this case, one obtains
a “chain matrix” of the form

V(1) 0
| (1)
0
where
V(K)o VIK) 14
V(K) = :

V(K)p1se VK wn

The elements in the overlap of V(k) with V(k — 1) or
V(k + 1), are the same, even though their indices are not the
same. ( The total number for overlap matrix elements of each
of the two matrices are not larger than }N2.) In a surface
problem, the deeper the layer from the surface, the bigger the
value of k£ and the smaller the difference between V(k)’s
with different values of k. So in a certain approximation, we
have V(k,) = V(k,) when k,,k,>M, where M is a positive
integer. We will then obtain an equation, which we call the
chain equation, and by solving the chain equation, we will
obtain the exact local Green’s function. Although we cannot
prove in general that it will represent the whole general
Green’s function, in principle, we can discuss the exact solu-
tion of the eigenvalues of the original general Green’s func-
tion.' For convenience, we will treat an N X N matrix as a
vector of N X N dimensions in the linear space, and the prod-
uct of matrices can be treated by defining the product of basis
vectors. This approach makes our discussion much simpler
and clearer.

. MATHEMATICAL PREPARATION

Then N X N matrix is treated as an (N X N)-dimension-
al vector. The basis vectors of the linear space, e
(i,j = 1,...N), have components

(€;)im =6i16jm' (2)

The multiplication of the basis vectors is defined as the
multiplication of the basis matrices, so we have

ij

€€k — 5jkeil- 3)

Generally, an N XN matrix can be written as

2329 J. Math. Phys. 28 (10), October 1987
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Apppeerlyy
A= =Y a;e;. 4)
Ay seesBNN
Let /" ={1,2,...,N} be a set of N integers, and I be
subsets of A", I = {i,,iy,...,i, }, where i,,i,,...,i, are different
numbers between 1 and N.
Definition I: The dimension of the subset I={i,,
Iy..od, } is defined as n(I) = r.
If LJC.#", the submatrix of 4 is

Ay= 3 age;. (5)
icl, jeJ
Definition 2:
A@I = Am =0, (6)
where @ is the empty set.

Definition 3: The right inverse matrix of 4, if it exists,

is written as 4 5!, which satisfies

AyAs =Y, N
o

The left matrix of A, if it exists, is written as 45,77,
which satisfies

Af,“'A,,=Zejj. (8)
i

It is not difficult to prove that the following properties
hold for the submatrices.

(1) An arbitrary matrix can always be written as the
sum of the submatrices

A=3A1,

where
Ul, =4, Ypp, I,NI, = &, 9)
UJ, =4, Vg4, J,NJ, = 2.
(2) The product of the submatrices is given by
AIJBLK = AImLB.mLK = 5mL Cixs
8ioL = [1’ JNL #0, (10)

0, JNL=D.

(3) The inverse of the submatrix 4,,, supposing the or-
der of the submatrix is min{n (I),n(J)}, satisfies the follow-
ing: if n(I) <n(J), there is no left inverse, and the right
inverse is not unique; if n (1) > n(J), there is no right inverse,
and the left inverse is not unique; if n (I) = n(J), I #J, there
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exist a unique left inverse and right inverse, which are not

equal to each other; and if 7 = J, there exists a unique and

equal left and right inverse.
(4)
A”;_1=A._1"—A__l AA_II _IA__llc

e ere. I° (11)

The proof of Eq. (11) is given in Ref. 1, where it is
supposed that determinant of the matrix A4 is not zero. The
inverse of the matrix 4 is 4 ~ !, the inverse of the submatrix of
AisA; " 'andd 7' ., 4 7. ,A " . allare submatrices
of the inverse of 4. The only condition for Eq. (11) to hold is
that det 4 ~ 1101,7’:0, where IUI =4, I°‘NI =0, ie., I
is called the supplemental set of 7, 4" = {1,2,3,...} is the set
of all natural numbers. )

L

lll. LOCAL GREEN’S FUNCTIONS AND CHAIN
EQUATION

The Green’s function satisfies G ' =E—H=E—T
— V. In the representation where the kinetic energy is diag-
onal, the submatrix of the matrix Tis
T(K),, 0
T(K) = (12)
0 T(K)yn

which is the same as V(k). The overlaps of T'(k) with
T(k+1) and T(k) with T(k — 1) are the same even
though the indices are not the same, and the bigger the value
of k, the smaller the difference between T'(k). For k,,k,>M
(an integer), T(k,) = T(k,). So G ™! also has the chain
form shown below:

I
[

I3

. 13

L —
I @

o<}

[ —— I, —— I —pe— [, —g— I, —y P
] -J = ~J,~ > o
. . I f |
G 'y - ' , ' !
1 : ' G, . !
! G~ ‘“) f ' LIy |
LSRR v !
] J' - VJ:’: ! ! I
3 S I Sy st
1 .
\ i
" Gyt
L J Var, L
-I + ; T . (13)
I ' |
4 G
1 - M3
i {3 - V-’s’nl e e
T
Gl
]
(I, '__Vb_-’s _ _
@ Gl
Ig J_
1
] |
«© 5hy :
| ) |
i
|
0
Y
* r
Here all the areas are zeros except the area with shadow. G ! rers. ! we only need its submatrices G ~! s, 'L, be-
The local Green’s function can be written as cause
- -1 —1 -1 —1py —1 —1 —1 _ —1 —1
GI.I,. ! =G LI, _G Ill‘i'G. 1515 G 151, VJIIZG' IfI1§- VIZ"I - VJ|12G- 1§15 LI, VIle'
where The inverse of G ~! rirs. '.1, can be obtained by using
Eq. (11).
—1 _ —1 —_—
G. ns - VJJ:’ G. 147 A VIzJI’ Let
so we obtain 1; =I(i‘ '_12='/V<_II_IZ, A=G.-11€I€.— l’ (15)
GIJ.-—1=G-—11.I. —VJlIZG.—lliIT._lVIZJI. (14) G-! =1, =1
- I{I§- 242
From Eq. (14) we see that if we substitute G, ; ~' for =G, -G, .G~ TG,
. . . . - 22 : 2 ‘ . 242
G ', the only modification is the lower right corner of G- = _¥ G 2 =2 > v (16)
G ~';,,, the part in the J, row and J, column. From the L s 1 J:”’ g’ 130 "J’I l
property of the product of the submatrices, i.e., Eq. (10),for G e ™ rr,” =G 7 1, = V51, G 7 g™ Vi,
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-1

For the same reason if we substitute G ~! rrs. L.

forG —! 11,» We need only to modify the J, column and theJ,
row, and for G ~! s !, we only need its submatrix
G! s 1.1, Similarly its inverse can be obtained by using
Eq. (11).

LetI§=I5—I, A=G~', . ~\

515
We can obtain

-1 -1 —l_p-1 —1 -1
G - IS LI,. =G . LI VJ,I‘G -ryIs- VI‘J,
(17)
and we can continue with this procedure.
We have
—1 —1 -1
G. )57 ST PG /O
- —1
=G Dy I 41
_ V —1 -1
e+l FSANRY S R Tt 2dic1?
where
k
Ii=Ii_-I,=4— 3 I,
L=1
(18)

c _Jc
k+1 —Ik_]k+l'

Since /" is an infinite set, n(l,) = n(l,), n(J;)
= n(J,) (k =2,3,...). From the assumption, when k is large

enough, G ~ Ilili’ G 11 Vig,, »and ¥, arenot re-
lated to k. If this is satisfied when k> M, then

G . 117”1;{‘_ IIM+ arsn "XII’

G- 1,5“ 115«4+r— IIM+21M+2 =Xy,

G~ 11M+1IM+,—'BII’ (19)

V-’M+ /YT Vi,

v, V..

eI
Finally we can obtain the equation of X,;, i.e., the chain
equation

Xu._l =By — VJIXII Vir

This can be treated as the natural cutting equation. It
can also be written as

VJIXII VIJXII - 'BIIXII +1I;=0. (20)

Wealsohaven(l) =N — n(J), where N=n(l,), I, is
a unit matrix, and B;;, V,, are known matrices. To solve the
chain equation is actually to solve the set of n(J) xXn(I)
second-order equations and the set of [#(]) — n(J) ] xXn(l)
first-order equations.

After we obtain X, we substitute it into the equation as
follows:

G—l —1 —1

IS JS_y  Ivdm-
-1 _ -1
=G, Inglye — VJMIM+ ,Xn V1M+ I = Xu ™5

from which we can obtain the inverse of

—1 —1
G‘ Iy ol 2 Im—dum-2?
—1 —1 —1
G‘ IS ods_2 Iu—ily—-
— -1
=G Iy Iy VJM—11X" VUM-l'

Then we obtain
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G—l —1

I o d%_2 Im-dm—
—-1 —1
=(G. Iy _dpyg_y VJM_lIXnVuM_,) .
Continuing with this procedure, we have
G —1 —1

Ihe_ oIy _2-

G—l -1
=0, Iv_Ih_3

Ing_Ipg oy

_—_> e :> see

I _2Ip—2

-1 —1 -1 -1
=G, 1515- ”3:>G- 1§15 LL:

3

Substituting into Eq. (14), we can obtain the exact form
of the local Green’s function.
It is difficult to prove mathematically that

{E,,det G ~(E,) =0}

N{E},detG ', (EL)=0}=0,

141
because we do not know the actual form of the elements of
the matrix [even though after the I,th columns and the rows
of G 'and of G ! r¢r¢ the matrix elements are exactly the

same, i.e.,, G ~ 11515 =(G~ ‘Im)mg]. Roughly speaking,
G 'and G ! rgrs Ay represent different surface costruc-

tions of the same crystal in physics, so they will not have the
same eigenvalues. If this can be proved exactly, then from
Ref. 1, we can know that the local Green’s function reserved
all the information of the original Green’s function.

1V. CONCLUSION

In the general case, we can only obtain an approximate
form of the local Green’s function, and the chain potential
we discussed in this paper is the only case of which we can
find the exact solution. In addition to requiring the chain
form of G ~', we also require the following.

(a) The ring submatrix on the chain of G ~!

G (k) 11300 G TN (KD 1y
G (k) =
G _l(k)N“---’G _l(k)NN

has an overlap with its neighbors G ~'(k—1) or
G ~'(k + 1), which is less than one-fourth of the matrix ele-
ments.

(b) When k is large enough, all the G ~'(k) are the
same. If (a) is not satisfied, then Eq. (14) is not true, and all
the later derivations are not true. If (b) is not satisfied, then
we cannot obtain the natural cutting equation, and we can-
not obtain the exact form of the local Green’s function.

Suppose H = H,, + V, and in the representation of the
eigenstates of H,, ¥ is a chain potential. Then if (a) is satis-
fied and (b) is not, but we can treat V as a perturbation term
and can cut it artifically we can still obtain a good approxi-
mate form of the local Green’s function by using a similar
method.
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In this paper a way of solving for the local Green’s function by means of a projection operator
method is presented. Both a procedure for attacking the problem and a general formula for
calculation are obtained. It is also proved that the calculation can be done with a finite number
of basis functions. A short discussion of the accuracy is also presented.

. INTRODUCTION

Under certain conditions, the local Green’s function can
reproduce the results of the complete Green’s function,
therefore, to solve the local Green’s function precisely has
long been a goal. However, it is very hard to do this except in
some very special cases (Ref. 1). The most used method is
the “cutting approximation” (Ref. 2). This method neglects
the higher-order terms in ¥,,, (m,n> N). It has the advan-
tage of simplicity, but it is not quite accurate. It also cannot
reproduce the results of the complete Green’s function. The
method we use here has certain advantages. It avoids the
summation of an infinite series, and the results can be ob-
tained by an analytical method. Another difference from the
cutting approximation is that in the approximation method,
the number of the eigenvalues equals the number of the
states participated the calculation, but we do not have such a
restriction in our method. In principle, we can obtain all the
eigenvalues if we continue to do the calculation. This is also
very tempting.

il. SPACE RESOLVE

Definition I1: Define R tobe a Hilbert space spanned by a
complete orthonormal state function set |1),[2),...|N),....
Set

{(m|n) =6,,, Z [n}(n| =1 H

n=1

Definition 2: Define R # to the N-dimensional subspace
spanned by the basis {|0,k ),|0,k ) = |k ), k = 1,...,.N}.

We have projection operators

N N

Po= 3% |n){n|= 3 [0n)(0n],
n=1{z n=1 (2)
Q= Y |m{n, Po+0Oy=1

According to the properties of the projection operators,
R 7 can be rewritten as

R”=P,R, R® =0O,R. (3)
It is easy to verify that these two subspaces are orthogonal
and

R® 4 R»=R. 4)

Definition 3: Define R” to be the N-dimensional sub-
space of R spanned by basis {|1,K );|1LK) =0O.H |K),
K = 1,2,...,N}, where H is the Hamiltonian representing a
certain physical system.
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It is obvious that R # is also a subspace of R ® because
V|LK)eR?, H|0,K)eR,
©,H|0,K) = |1,K)e®,R =R®>, R”CR®.

It is very easy to find a reciprocal vector in R #* and find
the projection operator from R to R # through the reciprocal
vector.

Definition 4: Define the reciprocal basis in R ?* to be

_ N
ILKY =3 ((Lm|1,m)) %' 11J).
J=1
The dual reciprocal basis is
— N ’
(LK|= 3 ((1m|L,n)) ' (1J]. (5
J=1

AccordingtoDefinition4, | 1,K }eR 7 and (1,K | belongs
to the dual space of R 7. Evidently we have

(LL|LK)Y =6, (LK|LL)=205. (6)
The projection operator in R ' is

N — N _

=1 K=1

It is easy to verify the properties of the projection opera-
tor P;:

PP =P, PO;=0,P =P, PP,=PP =0,
V|l,a)eR?, Pjla)=|la). (8)

Then R # can also be written as R? = P,R.

Let ®, = @y — P, = 1 — P, — P,. One can verify that
0, is also a projection operator, and it satisfies the following
relationships:

0,0,=0, ®1('30 = ®o®1 =0,
®1Pl =P1®| :0.

Here ®,R =R®CR® and R® is orthogonal with
both R” and R 7,

R=RP+RP+R®. (10)

In the same way we define the N-dimensional subspace
R*”:in R ®, and it is spanned by the basis

{|12.K); 12K) =0©,H|1,K), K=12,..N},
and we can define the reciprocal vector in the same manner,

(9

— N
12.K) =¥ ((2m[2n))'|2J)

J=1

and its dual form
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(2.K|= z<<2m|2n>) (2 . (11)

The projection operator from R to R is

N — N -
P=3 RK)QK|= 3 2E)QK| (12)
k=1 k=1
satisfying
P2P2 Pz, P2®1=®P2=P2, 13
P,P,=P,P,=0, P,P,=P,P,=0. (13)
Here R P can also be written as R 7> = P,R. We now

again define ®, =0, —P,=1—P,— P, — P, and it is
easy to verify that
0,0,=0, 0,,,=
0,0, =0,0,=0,.
Also @, is the projection operator
O,R =R®:CR®CR®.
One can see from the preceding that we can define all
these in a more general way.
Definition 5: R*™ is the N-dimensional subspace con-
structed by the basis

{mK); mK)=0,,_

with projection operator

P,®, =0,

H|m—1K), K=12,.,N},

P, = Kil |m,K Y(mK | = Killm,l—()(m,K L,  (14)
reciprocal ve—ctor )

mE) = 5 (mLimS) i im),
dual reciprocal ;ector

(mE| =J§l (m L |m,S)) ' m J |, (15)
and )

®, =©,_,—P,.

From Definition 5, if ®,, _, is a projection operator,
then both P,, and ®,, will satisfy the properties of a projec-
tion operator, and they are orthogonal with each other
PO, =0,P, =0. Since we took @, to be a projection
operator. Using Definition (5), we can get the bases

{lo.k)} {|LK)} {)2.K)} {3.K)}
and the projection operators

P, P, P, P

6 0, 6, 0,
with resolving subspaces

R?»=PR, R"=PR, RP=P,R,.. . (16)

Theorem 1: The resolved subspaces R%, R?, R”,...
are orthogonal with each other and R can be expressed as the
direct summation of these subspaces:

R=RP0+RP1+RP2+RP3+... . (17)
Proof: Using the inductive method, R can be expressed
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following the direct summation of these subspaces that are
orthogonal with each other,

R=R»+RP+RP+ -+ +R™+R°" (18)

If we prove this for any m, and then set m — o0, the theorem
is true.

Weknow that for m = 0,1 the statement is true. Now we
suppose form — 1

R=R”™+RP 4 RP 4+ F R4 RO
=(P0+P1+P2+"'+Pm_1+®m_1)R (19)
is true, where Py,P,,P,,...,P,, _,,®,,_, areprojection opera-

tors independent of each other. So,

PP, =PP, =05;P,

U

PO, ,=0,_P=0, 0<ij<m~—1, (20)
m—1
®m—l(’am-l =®m—l =I- Z I,j‘
j=o0
From Definition 5,
N _ N _
=y |mK)mK|= Y |mK)(mK],
k=1 K=1

using the definition of the reciprocal vectors, we have
{(m,K |mL) =06y, {mlL |m,1_() =68,

Obviously P,, is a projection operator,

p P =P,

and
N —_—
0,,_,P z @, _,|mK)mK|=P, (21a)

For the same reason

PO, ,=P,. (21b)
Also from Definition 5,

0,=0,_,—P,,
so ®,, is also a projection operator,

0,0, =0,, (22a)

e, P,=P.0, = (22b)
and

0,0, _,=0,_,0,=0,. (22¢)

Now we prove that
PP,=P,P,=$,P,.

When j = m, it is obvious. When j < m we have
PP, =P0O, P, =0,
P.P,=P,0, ,P,=0.

Formulas (21a), (21b), and (20) have been used in the
preceding proof. We can also prove that

PO, =06,P =0.

Whenj = m, that is true, whenj < m, using (22c) we get
Pj®m =Pj®m— 19, =0,

0,P=0,0,_,P,=0.
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Combining the preceding together, we have
PP, =P,P, =6,P,

gty

P®, =0,P, =0, 0<ij<m,
0,0, =0, =1-3 P,
j=o

So

Py+P + - +P,+0, =L

Therefore

R=RP 4 RP 4 RP 4 -+ 4 RPm 4L R®

is true.

(23)

lil. APPLICATIONS OF THE FORMALISM

In the R space constructed by the complete orthonor-
mal function set, the system’s Hamiltonian can be expressed
as

H=

H,, |m){n|, (24)

M=

m,

1

where H,,, = (mlf]ln). When m or n>N, |H,,,| can be
viewed as small compared to |H,|.

The inverse of the system’s Green’s function can be writ-
ten as

G '=E-H
and the inverse of the local Green’s function is
(PGP)™'=PG ~'P—- PG ~'O(OG ~'©) " '0G ~ 'P,

(25)
where
N N
P=3 |n)(n|=3 [0n)(On|=P,
n=1 ne=1
@:]—P:l_Po___@o’
and
PG._X®= —-Pﬁ@o
N P
= — 3 |0K){0.K[HO,
K=1
N
=— ¥ [0K)}{LK]|
K=1
d A
= — 5 10K)1K|P,= —PAP,
K=1
In the same way, we have
©G~'P= — PP (26)

Formula (25) can be rewritten as

(PG ~'P)~' = PG ~'P— PHP,(®G ~'@)~'P,HP,
27

where P,(®G ~'®)~'P, can be obtained from its inverse
operator

[P (®G~'®)~'P]!
- PlG . lPI - PlG . 1®1(®1G = l@]) _l®]G = l},l.
Again we have
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P,G~'®,= — P,HP, ©,G-'P,= — P,HP,.
The preceding formula can be expressed as
[P (OG~'@)~'P] !

=P,G~'P,— P,HP,(0,G ~'®,)"'P,HP,.  (28)
Again we have
[P,(©,G ~'©,)"'P,] "' =P,G " 'P,

— P,HP,(®,G ~'0,)~'P,AP, (29)
[Pk(®k—-lG~—l®k—1)—1Pk]_l =P.G'P,

—P.HP,, (0,6 '0,)"'P,, HP,, (30)

If we regard PHP,, P,HP, P,HP,, P,HP,,... as of the
same order, then the following is true.

The biggest contribution of P,G ~'P, to (PGP)~! is
second order.

The biggest contribution of ®,G ~'®, to (PGP) ' is
fourth order.

The biggest contribution of P,G ~'P, to (PGP)~!is
fourth order.

The biggest contribution of ®,G ~'0, to (PGP) ' is
sixth order.

The biggest contribution of P, G ~'P, to (PGP)™'is
(2k)th order.

The biggest contribution of ®, G ~ '@, to (PGP)'is
(2k + 2)th order.

If we terminate our accuracy of calculation at (2k)th
order, then

[P(®y_,G~'O,_,)"'P, ] '=P,G P,
[Pe_1(®p_,G 'O _,)"'P_, ]!
=P, _,G 'P,_,
_Pk—IEIPk [PG~'P ] 'P.HP,_,,
[Pe_2(04_3G7'0_3) P _, ]!
=P,_,G 'P,_, "Pk—zﬁpk—l [Pc_.G 7P, _,
~ P HP.(P,G "'P) P HP_, ]!
XP._HP,_,,
(31)

Allthe calculations are N X N matrix calculations: addi-
tion, subtraction, multiplication, and inversion. In principle
we continue to perform these operations until we get the
exact expression of (PGP) .

Theorem 2: In the expression of (PGP) !, all the calcu-
lations can be done in the space R > = PR.

Proof: The construction factors in the expression of
(PGP)~' are P, PHP,,,, P, ,HP,, P.HP,,.
(k=0,1,2,3,...).

If the calculation of P, can be done in R?, then it is
obvious that the other calculations can be done in R . Now
we use inductive method to prove this.
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Suppose the calculation of P,, (m<k) is only related to
the states in space R #, then the calculation of the P, , ,’s is
only related to them, too. Obviously this is true for k = 0.

The calculation of P,,P,,....P, is only related to the
states in space R 7, which means that the calculation of the
space basis of R”,R?,....R** is only related to the basis of
R %, also, and the calculation of P, H |17} (IKK, L<I) is
only related to the states in R 7,

K +1J)=0,H|KJ)

A X A

=HKJ)- S PHIKJT). (32)
L=0

It is natural that the calculation of the |K + 1,J)’s is

only related to the states in R #. According to the definition

N —
Pooi=Y K+ 1I)K+17|

J=1
N

=Y ((K+LmlK+ 1)z |K+1J)

JL=1
XK+ 1,L1.
Obviously the calculation of P, , , can be done in R .

If the initial states |0,/ ) are not orthonormal, then the
expression of the P, projection operator will be

P°=J§; [07)(0.T | =”§‘, 1 ({0,m|0,n))5'|0,K Y (0.7 |.
_ o (33)

According to Theorem 2, it is not required that we know
all the initial states, but it is required that {0,/ ]H [0.K)
(n=0,1,2,...) be finite. Otherwise the (PGP) ~! factor will
diverge (which has no physical meaning), so we can get the
following deduction.

Deduction: Given N independent state functxons
{|0J), J=12,.,N}, if only the (0K 1H |0,J)
(n =0,1,...) are all finite, then, in principle, we can get the
matrix expression of the local Green’s function (PGP) ~'.

IV. DETAILED CALCULATION

The second-order accuracy local Green’s function is

(PGP)~'= PG - 'P— PHP,(P,G —'P,)~'P,HP.
(34)
From the definitions (2) and (7) we have
~ N
PHP, = Y |0J)(1J|,
J=1
~ N
PHP=Y |1J){(0J], (35)
J=1

N R
6P~ =3 6 DulLRITI)

K,J

S 61 |LE NI,

KJ

il

where
G_l(l)_l(] = (LK!GAW‘“J) =EB(1)x;, —H(1)g,,

N
B(I)KJ = (I»K“,J) =H2KJ - 2 HKLHLJ’
L=1
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H(1)g, = (LK |H|1J)
(36)

=H;(J 2 (HKLH%,J + H keHy)

N
+ z HKIHILHLJ’

LL=1
N
S G, G (1) =8,
L=1
We have used the following relationship in the proof of
(36):
(P,G~'P)"" (PG~ 'P) =P,

This is the general expression of the local Green’s func-
tion to second order. We have
N

(PGP)~' =
KJ=1
N
-3 B(l)KLG<1)L,B(1),,]lo,K><o,Jl-
LI=1
! a7

If H= Ho +V, and |0,K) is the eigenstate of
Ho (HO{O,K) = € fO,K}),
then

N
B(1)g, = (Vfa - 2 Vic Vu)’
L=1

{EaK.I - HKJ

~ N
H()g, = (VH V) ks — Z e ViVis
- . (3%)

+ Vi — E(VKLVL+V Vis)

N
+ ¥ VaVuVu

LiI=1
The local Green’s function under the accuracy of fourth or-
der is

(PGP)~! = PG ~'P — PHP,(©G ~'©)~'P,HP,
[P,(0G ~'®)~'P,]~"
=P,G~'P, — P,HP,(P,G ~

(39
1p,)~'P,HP,.

From the definitions (12) and (7) we have

PHP = 3 21(T|, PHP= $ 1T) ),
== 1 J=1

—1

N o a—
R e B RGNy STEx ) LY
K,J=1

)’f G(2)xs 2K ) (2T .

K,J

-

Using
(P,G = 'P,) ~(P,G
we deduce that

- le) = Pz
N

Y G(2)g G(2) 7y = by,

L=1

where
G ')k, =(2,K|G'2J) =EB(2)x; — H(2)gs»
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B(2)g, = (2.K|2.J)

N
=H*(1)g, — Z B(1)g  B(1)y,
£=h

N
— 2 H(I)KLB_I(I)LIH(I)IJ’

LI=1

H2(1)g, = (LK |H?|1,)

N
=H:(J'_ 2 (Hia.Hu +HKLH2J)
L=1

N
+ z Hy H?  Hy,

LI=1

H(Z)KJ = (2,K |H|2J)
= (0K |H(1 —P)H(1 —P—P,))
xH(1 —P—P)H(1 —PYH|0J).

By following the previous method we can continue the
calculation. Only at P, does the factor of B ~'(1) appear. Itis
similar to the last term in the expression of B(2);,

[P,(©G ~'®)~'P,] !

N
T =

K

[EB(I)K, —H(1)g,

—

M=

B(2>KLG<2>L,B<2),,]|1,1‘<><1,7 |

oy
Il

1

L,
N — —_
= 3 CT'@gILENLT], (41)

KJ=1

C ' (2)x; =EB(1)g, —H(1)g,

It

N
~ S B(2)xG(2)BQ2)y.

LI=1

Then
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k 1

N
P(OG'O) TP = ¥ C(Q)g|LKX1J|, (42)
=
where
N
S C)C7'2) s =bxs-
L=1

Finally we get the formula for the local Green’s function
under fourth order:

N
(PGP)~ ' = . [Eém — Hy,
J=1

L

M=

B(I)KLC(Z)L,B,,(I)]|O,K 2{0J |.
1

(43)
V. CONCLUSION

The method presented above is able to give a solution for
the local Green’s function, though it is a bit complicated. In
principle, besides the requirement of the finiteness of
(0K |[H™"0J) (KJ=1,.,N, n=0,1,...) for the initial
states, there is no other restriction imposed. In actual calcu-
lations, we always want higher efficiency, so it is better, of
course, if we can choose a set of initial states close to the
eigenstates of the Hamiltonian.
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The “spectral Wronskian” tool and the d investigation of the KdV hierarchy

M. Jaulent and M. Manna®

Laboratoire de Physique Mathématique,® U.S.T.L., 34060, Montpellier Cedex, France
(Received 18 December 1986; accepted for publication 29 April 1987)

The recently introduced “spatial transform” (ST) method for providing solutions to nonlinear
evolution equations is developed when the basic d equation is the “spectral Schrodinger”
equation (S). A fundamental tool is the “spectral Wronskian,”” which allows one to take
advantage of the structure of a two-dimensional module for some set of solutions of (S). This
leads easily to the KdV hierarchy. Contrary to the usual spectral transform (or inverse
scattering transform) method there is no a priori assumption on the long distance behavior of
the solutions. A recursion operator is exhibited. Local conservation laws and Backlund

relations are also derived.

I. INTRODUCTION

In a previous paper' we introduced the “spatial trans-
form” (ST) method for investigating nonlinear evolution
equation (NE’s). We can summarize the method as follows.
Let % and # be sets of complex vector- (or matrix-) valued
functions whose elements are denoted, respectively, by U(x)
and R (k); x is the real “space” variable and & is the complex
“spectral” variable. In the following, Srefers to spatial and .S
to spectral and we sometimes point out that a letter occuring
in an expression plays the role of a parameter by underlining
it. A “3” (DBAR) problem means any problem that con-
sists of finding a function F(k) in the complex plane from a
relation called the “d equation” involving F(k) and its “de-
fect of holomorphy”

9F (aF .aF) . .
OF\ ki —k ik (kuk,)eRP.

&2 \ak, o, 1tk (ke
(1)

Other conditions such as “normalization at o [i.e., infor-
mation on the behavior of F(K) as |k | - o ] must be added
to this 3 equation in order to obtain the uniqueness of the
solution. Note that a Riemann-Hilbert problem can be
viewed formally as a particular J problem, where F(k) is
analytic everywhere in C except on a contour I where it hasa
jump.
Then, generally speaking, a ST is a map

S R(k)e# - U(x)e¥

defined through a C-linear d equation ﬁqu{;_r,k,R (k)} witha
normalization at « (), where k& is the variable, x is a pa-
rameter, and R (k) (k€C), the “spectral potential,” fixes the
equation. The image of R(k) by ., U(x), is defined from
the asymptotic behavior as |k | > o of the solution F(k,x) of
the d problem [Equ{x,k R(k)},(N)]1. Then F(k,x) should
satisfy a linear differential equation Equ{x,k,U (x)}, where
x is the variable, & is a parameter, and U(x), the “spatial
potential,” fixes the equation. Tl}\en, introducing the “time”
t, we assume a linear evolution (L) for R (k,t). (Note that as

2 On leave of absence from Pontificia Universidade Catélica de Sao Paulo,
Sao Paulo, Brazil.

®) Unité Associée au Centre National de la Recherche Scientifique n°
040768, Recherche Coopérative sur programme n° 080264.
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a general rule we only write the parameter # when we think it
is necessary.) It is expected that . transforms (L) into a
NE in U(x,?) so that we will then conclude that % provides
solutions to this NE.

We also expect that for some subclass %, of spectral
potentials, . admits a bijective restriction

Fo R(K)eR,CR-U(x)eX %,
which allows us not only to provide solutions to NE’s but
also to solve initial value problems according to

2 @ Fo
U(x,0) — R(k,0) — R(k,t) — U(x,t),

where Y o the “spectral transform” (ST) is the inverse map
of #,. In some way Equ{x,k R(k)} plays the same role for
the ST . that Equ{x,k,U(x)} plays for the ST .#,. We shall
refer to such a fact as an “(x,k)—(x, k) analogy.” This imi-
tates what happens for the direct and inverse Fourier trans-
form formulas.

The ST method was suggested in analogy with the well-
known ST (or inverse scattering transform ) method [see the
monographs (Refs. 2-4) and, in order to take into account
the ever greater importance of the d problem in the field of
NE’s, see the review (Ref. 5)]. There is a connection (see
Ref. 1) with the direct linearization method (Fokas and
Ablowitz® and Ablowitz, Fokas, and Anderson”). Contrary
to the ST method there is no a priori assumption on the long
distance behavior of the obtained solutions. Concerning the
technique of the proofs to be used in the ST method, a “d
analysis” has to be (constructed and) used instead of the
(classical) “differential” analysis of the ST method. Putting
this aside, the general strategy of the ST method is in our
opinion much easier than that of the ST method. This should
appear clearly in the following example.

In Ref. 1 we began the application of the ST method
when Equ{x k, R(k)}, (N), and (L) are, respectively,

= R(K)F( — kx), (2)

(N): F(kx)=e *(14+0(1/k)) as [k|-w, (3)

o, 9
1 — Fi »
(S) gy (kx)

@): %R(k,t) = p(OR(kD), 4)
where xeR, keC, F(k,x), R(k), and p(k) are complex val-
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ued, and p(k) is a given odd polynormial in k, which we
write in the form
N

S @,k (5)

n=0

plk) = — 2k Q(k?) with Q(K) =

Recall that if a function of k, ¥(k,x), can be written in
the form

P(kx) =e~* [P(kx) + O(1/k)]
(x€R), (6)

where P(k,x) is a polynomial in k with x-dependent coeffi-
cients, we say that ¥(k,x) admits a “polynomial normaliza-
tion” and we write Nor ¥(k,x) = e ~** P(k,x). Using an
assumption on R (k) (keC), which needs a further mvest1ga-
tion and is equivalent to demanding that the J problem [ (S ),
(N)] admits a unique solution F(k,x), we have proved in
Ref. 1 that, for any P the d problem [ (S), “Nor ¢(kx)
= ¢** P(k,x)”’] has a unique solution ¥(k,x) and that
¥(k,x) admits an asymptotic expansion (AE)

¢,, (x)

as |k|-—»oo

= (kx)=e~* 3 (NeZ).

n= —N
In particular F(k,x) admits the AE

Fw(kyx)_e thx 2 F( ),
We suppose that F (k,x) and F,, (x) (n>0) admit x-deriva-
tives of any order.

Furthermore, 7 being the commutative ring of even
polynomials in k and Z being (for fixed x) the set of solu-
tions of (S) that admit a polynomial normalization, we have
shown that % forms a & -module of dimension 2 and of
basis {F(k,x),(d /0x)F(kx)},i.e., forany ¥(k,x)eF there
exist & -scalars A (k,x) and B(k,x) such that

P(kx)

The motivation for introducing ¥ is that “(d /dt — 1 p(k))
X F(k,x,t)” belongs to #, so that there exist Z7-scalars
A(k,x,t) and B(k,x,t) such that

with Fy(x) =1.

— A(kx)F(kx) + B(kx) %F(k,x). ™

(L): %F(k,x,t) - (%p(k) +A<k,x,t))F(k,x,t)

+ Bloxn) S Fkx).  (8)
ax

Then, noticing that d /dx acts Z -linearly in %, we have
concluded that it can be characterized by a 2 X2 & -matrix.
This yields that F(k,x) satisfies the (spatial) Schrodinger
equation

(S): [-——+k2 U(x)]F(k,x):O, xeR, keC,

€))]
with
U(x)= — 2iF} (x)
_iﬁ’_(f R(De™ F( —l,x)dl/\d7), (10)
T dx R

where ! = I, + il,, (1,/;)€R? and a prime means the deriva-
tive with respect to x. This result suggests we name (S)
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“spectral Schrodinger” equation.ANote the (x,k)-(x,k)
analogy: the set # of solutions of (S) forms a % -module of
dimension 2; the set of solutions of (S) forms a C-vector
space of dimension 2.

It is well known that a “higher” KdV in U(x,t), corre-
sponding to the given odd polynomial p(k), can then be
obtained as the “compatibility condition” of the Schro-
dinger equation (S) and the “auxiliary Lax equation™ (L).
Note that no assumption on the behavior of U(x) as |x| — o0
is needed (at least surely if we do not demand the existence of
a “recursion” operator). In the logic of our approach an-
other kind of derivation of the KdV hierarchy is needed us-
ing the AE’s. We have outlined it in Ref. 1 and we have
detailed the case p(k) = 8ik >, which corresponds to KdV.

In this paper we complete our investigation of the ST
method when the basic d equation is the spectral Schro-
dinger equation (8). In Secs. III-V we prove that the ST
method provides solutions to a hierarchy of NE’s, that this
hierarchy is purely differential, and that it is the KdV hierar-
chy. A recursion operator (defined in an appropriate space)
is exhibited and local conservation laws are derived. In Sec.
VI Bicklund relations are investigated. Finally in Sec. VII
we consider the case where the solutions go to zero for large
distances, which corresponds to the range of application of
the usual ST method.

A fundamental tool in our & analysis is the “spectral
Wronskian” we introduce in Sec. I1. This develops further
the already mentioned (x,k)—(x,k) analogy, We recall the
importance of “Wronskian relations” in the ST method.? In
some way we have introduced a “d differential version” of
the “spectral integral relations” mentioned in Ref. 3.

. THE SPECTRAL WRONKIAN TOOL; THE “BILINEAR”

RELATION (B)

As g(k) and h(k) (keC) are complex functions we de-
fine their “spectral Wronskian”

g(k) h(k)
g(—k) h(—k)

= [g(k)h( — k) —g(

W [g(k),h(k)] = (2ik) ™!
—kYh(k)]ik) 1.
(11)

This W is an alternating & -bilinear form. We now prove a
“spectral Wronskian property” for the solutions of (8): if
G(k,x) and H(k,x) belong to #, then W[G(kx),H(kx)]
is a & -scalar and

WIG(kx),H(kx)] = W[G= (kx),H= (kx)].
Note the (x,k)-(x,k) analogy: if g(k,x) and A(k,x) are so-
lutions of (S), then their (usual) Wronskian
W (g(k,x),h(k,x))is a C-scalar and

W(g(l_c,x),h(/_(,x)) = W(g(’_(,oo )1h(l_€a°° ))'
Using (§), it is easy to verify that

ad -~
—_— W G k, ,H k =
gy [G(k,x),H(k,x]
sothat W[G(k,x),H(k,x)] isan (even) entire functionin k.
The proof is completed by using the AE of G(k,x) and
H(k,x) and the Liouville theorem.
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A direct application of the spectral Wronskian property
yields

(B): W F(k,x>,-‘9—F<k,x)] -

ie., (12)
WIF(kx),F( — kx)] = 2ik.
Since (S) implies (3 /dx) W[F(k,x),F( — k,x)] = 0, the bi-
linear and first-order (in the x-derivatives) formula (B) can
be viewed as completing the linear and second-order formula
(S). Note the (x,k)-(x,k) analogy: {F(kx),(d/
dx)F(k,x)} is a basis of the Z-module F;{F(kx),
F(— If,x)} (keC*) is a basis of the C-vector space of solu-
tions of (S).
The spectral Wronskian tool allows the calculation of
the & -scalars A(k,x) and B(k,x) in Eq. (7):

B(kx) = W [F(kx)$(kx)],

o (13)
Alkx) = — W[;;F(k,x),w(k,x)].

I1.THE FUNCTIONS @(k,x),¢= (k,X),¢, (x); DERIVATION
OF THE NE [EQ. (17)]

As an application of formulas (13) we find that the Z-
scalar B(k,x,t) in Eq. ( 8) satisfies the relation

p() kot
krp(,x,),

(14)

where @ (k,x) =F(k,x)F( — k,x). A similar relation can be
written for 4 (k,x,t). Since ¢ (k,x) admits the AE

B(kxt) =W F(k,xt), F(k, W)

E ¢n (x)

n=20 k2n

@~ (kx) =

)

with

(15)

2n
P (x)= Y (= D"F, (x)Fy_n(x),
m=0

we find that B(k,x,t) and 4 (k,x,t) can be calculated with the
formulas

B(k,x,t) = NOI'I:L(_k—) ¢oo (k:-x,t) ]:
2ik (16)

1 4
A(k,x,t) = — ——B(kx,t).
(k,x,t) 2O,bc(,x)

The equalization of the terms in 1/k 2 in Eq. (14) gives the
equation

N
Ut=(—'22an¢)n+l)
n=0 x

[recall the notation (5) ], where now lower indices are used
for indicating the derivatives with respect to x and ¢. Since
the @, ’s can be varied freely we have thus obtained a “hierar-
chy” of equations. Now ¢~ (k,x) can be viewed as the “‘gen-
erating function” for this hierarchy. It is not yet clear that
(17) is a NE in U(x,t). To show this we need to investigate
the structure of the @, ’s. This will be done in Sec. IV. As a
consequence we will obtain in Sec. V that (17) is in fact a
“higher” KdV in U(x,t) and that the operators L and L *

(17)
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(defined in appropriate spaces) exist that ‘“generate” the
hierarchy according to @, =Le@,, (@,,.1)x
=L *(@,),. We will also derive local conservation laws.

IV. PROPERTIES OF THE ¢,’s; THE SPACES %, ¢', ¥

We call & the C-vector space of functions f: R —C that
are polynomials in the x-derivatives of U—U, U, U,,,...—
without constant term (this last point is of importance).
Here &’ = (d /dx) (&) is the image of the space & by the
mapd /dx: ¥ - &. Wealsointroduce ¢ = {fc&, U, fc%'}.
We will prove the following properties for the g, ’s

(P)):Vn>1, @,€¥;

(PZ): (¢7n+1 )x = - ‘%(¢n )xxx + U(¢n )x + %wan
= _%(¢n )xxx + (U¢7n )x _%Ux¢)n
(n>0); (18)

(Py): Yn>0, VYVm>0, g,.,=@,.(@,),.€&’;
(P3):Vn>1, ¢@,eY.
Proof of (P,): We use (15) and the recurrence formula
for the F,’s,
F, (XY= —{/Q)F;/(x)+ (i/2)Ux)F, (x),
Fo(x) =1,
obtained from (S) and the AE of F(k,x). As a kind of substi-

tute to the knowledge of constants for integrating (19) we
use the formula

(19)

2n
Py 1 (X)= Y (=D"F,(X)F3, 1 _,(x), 10,
m=0

(20)

obtained from (B) [Eqgs. (12) ] and the AE of F(k,x). [Note
that in the standard case where U(x) goes to zero as |x| — oo,
Eq. (19) can be completed with the boundary condition
F, () = 0.] Because of the structure of (19) we are led to
an “inflationist” proof in the order of the derivatives of the
F,’s, i.e., in order to prove that ¢, €% (n>1) we prove that

N
¢N,q.r = Zo (

for N>0, ¢>0, r>0,

l)mF(q)F(r) eg’

(N,g,r) #(0,0,0).

This can be done by induction: introduce the recurrence as-

sumption
(Hy) (N20): Vg>0, Vr>0,

¢N,q,reg((N!q)r) ?é (0’090)),
then use the identities ¥,,00 =@, [Eq. (15)], ¥on 4 10.
=ip, . [Eq. (20)], and the recurrence formula

i 4 ’
= _7¢N,q,r+2 + > Cr(F; ) g s
k=0

(2hH)

¢N+ lLgr+1

N>0, ¢>0, r>0,

derived from (19) and the Leibnitz formula.
Proof of (P,): Use the AE of ¢ (k,x) in the following
equation derived from (S):

G +4(k2— U@, —2U, =0, xeR, keC. (22)
Proof of (P;): Use gy €&’ and (&nm+1 —8nv 1,m IEE’
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(n>0, m>0) which is a consequence of ¢,€% (n>1) and
(P,). Property (P ) follows from (P,):

Ux¢’n = 2¢n (¢1)x = 2gn,l Egl.

V.CONSEQUENCES: EQUATION (17) IS A HIGHER KdV;
THE OPERATORS [ dx, L, AND L *; LOCAL
CONSERVATION LAWS

Property (P,) implies that Eq. (17) is a nonlinear par-
tial differential equation in U(x,?) and is therefore a higher
KdV [the behavior of U(x,?) as |x| — o does not play any
role in the form of Eq. (17)].

Now we use (P,) for expliciting the dependence of
@n [resp. (@, ), ] with respect to @, [resp. (¢, ), ].
We have to find some canonical way of choosing primitives.
[In the standard case where U(x) goes to zero as |x|— «
this is easily done by introducing §*,  dy.] We remark that
the operatord /dx: & — &' is a C-linear isomorphism, so that
we can define the inverse operator fdx=(d /dx) "' &'~ &
and the C-linear operators L and L*, L: ¥ %, L *:
'€

2
4 dx2 2 (23)
1d? 1 f
LY== ——_——4+U+—U, | dx
4 dx? tUT 2 <
Here Land L * areconnectedby L *o(d /dx) = (d /dx)°oL

(identity on & ). Using (P,) and (P} ) itis easy to verify that

¢n—+—1 =L¢n’ (¢n+l)x =L+(¢’n)x (n>1) (24)
Therefore using @, = 1U [set n = 0 in (20)] and recalling
the notation (5) we find that the higher KdV (17} can be put
into the two equivalent forms:

U +(QUU), =0, U, +QULHU,=0. (25)

Here L * is the “recursion” operator. Note that the generat-
ing function @ satisfies the property L= = k*(p= — 1),
where we have used (¢~ — 1 )E¥ andwehaveset L 1 = g,.
From (L) [Eq. (8)] we derive the following evolution
law for ¢ (k,x): ¢, = By, — B, @, whichyieldsg > =Bp 7
— B_ ¢~ .Inserting (16) we find that (¢, ), is a linear com-
bination of terms g, , . Hence, using (P;): (¢, ), €%’ (n>0),
i.e., there exists 7,€& such that (¢, ), = (7,),. We have
obtained for any higher KdV an infinite set of local conserva-
tion laws. The densities—the @, ’s—are common to all equa-
tions of the hierarchy. This is not the case for the currents—
the y,’s.

VI. BACKLUND RELATIONS

Now we start from two spectral Schrédinger equations
(S ) and (S,) with spectral potentials R,(k,#) and R,(k,t)
connected by the formula

R,(kt) =R, (k,t)G(k)/G( —
with
G(k)

M
gk =3 Bk>,
n=0

= g(k?) + 2ikh(k?),
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N,
h(k2) —_ z ,ynan,
n=0

the B, ’s and the y,’s being time-independent coefficients.
Here R, (k,t) and R;(k,t) satisfy the same time evolution
(L) The ST method provides spatial potentials U, (x,t) and
U,(x,t), which are solutions of the same higher KdV.

Since F,(k,x) and F,(k,x) are the solutions of (S;,1)
and (Sz,l), it is easy to see that both Fz(k,x) and
G(k)F,(k,x) are solutions of (S2) FromEq. (7) there exist
& -scalars C(k,x) and D(k,x) such that

GU)F, (kx) = C(kx)Fy(kyx) + D(k,x) aiszck,x).

(26)
Then using the spectral Wronskian tool and a procedure
similar to Sec. III one can find the implicit “Bécklund” rela-
tion between U, (x,t) and U2(x £):

i E Bu®oni1(x,0) =2 z VaPan 12 (X8) =0, (27)

where the &,’s occur in the AE &> (kx)
=32 $, (x)/k" of §(k,x)=F(kx)F,( — kx).

We consider the particular case g(k?) =2p, h(k?)
= 1. Then Eq. (27) reduces to @, = ip@,, which can be ex-
plicited in the form

U,+U,= _%[J (Un_Uz)(J’)dy_M]
X["‘l’—J (Ul—Uz)(Y)d}"FM],

where a is a chosen real number and M is a constant deter-
mined from a, R,(k), and R, (k).

(28)

VIl. THE SUBCLASS #, AND THE USUAL
SCHRODINGER ST

We consider the subclass 2, of spectral potentials R (k)
(k€C) in the form

R(k) == 80k (k) + S 780k — k),

n=1
with r(k) = O(1/k) as |k |- » (k€R), Im &, >0, which
corresponds to a subclass %, of spatial potentials U(x)
(xeR), which go to zero as |x|— «. Then the previously
defined ST ~* admlts a bijective restriction: “: Zo— % .
Then .7 o=(5,) " 'is exactly the usual Schrodmger ST and
r(k) (keR) is the reflection coefficient, the &, ’s and the C,,’s
correspond to the bound states, and F(k,x) coincides with
t(k) ¢(k,x) for Im k> 0 and ¢( — k,x) for Im k<0, where
t(k) is the transmission coefficient and ¢ (k,x) and ¥(k,x)
are the Jost solutions of (S): @(k.x) ~e~* (x> — ),
Y(kx)~e™ (x- ).
In this case it is easy to find that

([@)r=[ roras=| )y, or e

Hence we find the usual expressions for the operators L and
L *. Thelocal conservation laws can be integrated (the sys-
tem is “closed”), which yields an infinite set of constants of
motion C, =% _ @, (x,t)dx. Since %, is bijective the

(29)

(30)
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Bicklund relations now provide Bicklund transformations.
Note that for a = « in Eq. (28) we have M = 0.
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Jaffe and Taubes [ Fortices and Monopoles (Birkhauser, Boston, 1980) ] have shown the
existence and uniqueness of n-vortex solutions on the complex plane. In this paper, their
results are generalized to an arbitrary U(1) bundle over a compact Riemann surface with a
Hermitian metric. Berger’s “nonlinear analysis™ [ Nonlinearity and Functional Analysis
(Academic, New York, 1977) ] has provided an effective method to prove the existence part of

the main theorem of this paper.

I. INTRODUCTION

Throughout this paper (M,g) will denote a compact
Riemann surface equipped with a Hermitian metric g and
(L,h) will denote a complex line bundle with a fiber metric
h. The Abelian Higgs functional is defined to be

AT) =90 [ + 1% + | V(o1
M

for each connection-section pair (V,g) of (L,h), where |||,
is a suitable L, norm, =y the curvature of V, and
V(p) = (A/4)[1 — h(p,p)]* the Higgs potential with a
constant A, and where * is the Hodge operator of g. Letc, (L)
be the first Chern class of (L,k) and let V" be the (0,1)
component of Vg. If one assumes that ¢, (L)>0and A = 1,
the Euler-Lagrange equations of A(V,e) reduce to the fol-
lowing first-order system (the vortex equations):

VOl =0, iZy =i[1—h(p.p)], (L)

and A(V,p) achieves a topological minimum 27c,(L) at a
solution (V,p) to (1.1)."73

The solutions to (1.1) are called n-vortex solutions
when n = ¢,(L)>0, and the group Aut(L) of U(1) auto-
morphisms of L defines an equivalence relation, called gauge
equivalence, on the set of n-vortex solutions. Jaffe and
Taubes have shown that on M = C, for each effective divisor
D, there exists a finite action smooth solution (V,p) to
(1,1), unique up to gauge equivalence, such that
A(V,p) = 2w deg D and ¢ determines D.” The purpose of
this paper is to prove a compact analog of their resuit.

In what follows, Div(M) will denote the set of divisors
on (M,g), [ D] the invertible sheaf of DeDiv(M), & (L) the
sheaf of sections whenever (L,#) is given a holomorphic
structure, & (U) the sheaf of holomorphic functions on the
open set UC (M,g), H°M,Z (L)) the global holomorphic
sections, (@) the divisor of @eH°M,7 (L)), and
& (D) = £ ([D]) as commonly written.

Main Theorem: Let (M,g) be a compact Riemann sur-
face equipped with a Hermitian metric g. Let (L,h) be a
complex line bundle over (M,g) such that ¢,(L) = n>O0.
Under these assumptions, the following statements hold.

(i) An n-vortex solution (V,p) exists if and only if
n < (47) 7! Vol(M), where Vol (M) is the volume of (M,g).
Note that if the Gaussian curvature &, of g is a nonzero
constant, the above condition is equivalent to
n<(2k, )~ 'y(M), where y (M) is the Euler characteristic
of (Mg).
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(ii) Let DeDiv(M) be an effective divisor of degree n,
where 7 satisfies the condition in (i). There exists an n-vor-
tex solution (V,p) such that @eH%M,Z (L)) satisfies
(¢) = D when L is given the holomorphic structure defined
by V.

(iit) The solution (V,p) described in (ii) in unique up
to gauge equivalence.

Il. PROOF OF MAIN THEOREM

Let DeDiv(M) be an effective divisor of the form
D=3Y ,a;,'p;,a,>0,p,eM, fori=1.2,.,N.Let{f, } bea
set of local defining functions of D w.r.t. some covering
{U,} of M.* We may define a globally defined distribution
8(D)=(27)"'An|f, | on (M,g), where A is the Laplacian
of g. The entire proof of the Main Theorem depends upon
solving the following problem.

Given an effective divisor DeDiv(M), find a function
ucC= (M — D) satisfying

Au = (e — 1) + 27 5(D).

We have the following crucial lemmas.

Lemma 1: A solution to (2.1) is unique.

Lemma 2: A necessary and sufficient condition for the
existence of a solution to (2.1) is that

deg D < (4m) ' Vol(M),

where deg D = 3| q,.

We will prove these lemmas later in the paper.

Proof of (i} and (ii): Suppose we have a smooth solution
(V,p) to

2.1)

Vg =0, (2.2a)
*Ey =4[1—hip.p)]. (2.2b)
Local solutions of V®"s = 0 define a holomorphic structure

on L. Consequently, (2.2a) simply says @eH °(M,& (L)),
and V will be the unique metric connection compatible with
the holomorphic structure. Locally, E; =33 In £ ? when
we write A(s,s) = k> Writing ¢ = f*s for some fe& (U),
(2.2b) becomes

Alnh=1(h*f]?—1). 2.3
Adding A In|f'| to both sides, (2.3) becomes
Alnk|f|=1(R?f?— 1)+ Aln|f],
which is simply
Aln[h(@.@)]1V? = 1[h(p.p) — 1] + 27 8((@)). (2.4)
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Thus u = In[A(p,p)]"? solves (2.1) for D= (@), and
Lemma 2 implies degD<(47)~'Vol(M). But
deg D =deg(p) =c¢,(L) =h, and n < (47) ! Vol(M) as
desired.

Next, suppose n < (47) ~* Vol(M). Given an effective
divisor D of degree n, solve problem (2.1). Since D is effec-
tive, we may choose a global section ¢ 'eH °M, &, (D)) such
that (¢ ') = D. Let s be a local holomorphic frame of [D]
and write@ ' = f. Define a Hermitian metrich ' = e*/|f | lo-
cally. Let V' be the canonical connection of A’ on [D]. It
follows that

VOlp' =0, nEy =4[1—h'(p'e")] (2.5)
holds on ([D],h'). Choose a U(l) isomorphism &:
(L,k) - ([D],A") such that ®*h' = h. Define ¢ = ®*gp’,
V = ®*V’, where ®* indicates an obvious pullback map.
Equations (2.5) give

VOlp =0, #Eq =4[l —h(pp)],
and the (V,p) above defines a gauge equivalence class of n-
vortex solutions. 0

Proof of (iii): Suppose there are two distinct solutions,
(V,wp:),i= 12,10 (2.2a) and (2.2b). Let s; be alocal holo-
morphic frame defined by V,. Write g, = f;e,. By our as-
sumption, we have (@,) = (@,) =D which implies
Alnlfi| = A In|f,| = 27 (D). Equation (2.2b) becomes

Alnhlf| =3 (R2IfE ~ 1) + 208D,
and Lemma 1 says A3[f[P=h3[f5 or
h(@,91) = h(@,@,). Thus we find a smooth function e* :
M- U(1) such that ¢, =e¥@,. Locally, we may define
812 = €% ( fi/f>) so that s, = g,,s,. The connection form of
V; w.r.t.s; is given by 4, = d In h 2. As we change our local
frame from s, to s, A4,=JdInh? transforms into
A;=3Inh? + g, 'dg,,. Compute

Ay — A =3In(h2/h?) —dIn(fi/f,) — idy.
But A% |f}|*> = h3|f,|* implies

dn(h3/hY) =aIn(fi/fy),
and we obtain V, = V, — i dy as claimed. a

lil. PROOF OF LEMMA 1

Here we prove the uniqueness of a solutionn to the prob-
lem (2.1). In what follows, ||-||, will denote the norm in
L,(Mzg) and ||| 5 will denote the norm in 7 whenever #°
is a Hilbert space. First, consider the Poisson equation

Aug= — 27w ¢~ '(deg D)F + 278(D),
where FeC= (M) such that §,, F+1 = ¢> 0. Thereis a solu-
tion u,€C> (M — D) uniquely determined up to the addi-
tion of a constant.>® Fix a pair (F,u,) on (M.,g). Let
= — 14 47 ¢~ '(deg D)F. Equation (2.1) is equivalent
to
Av = }(e*-e” + K), (3.1)
where v=u — uy,cC* (M). Let H be the Sovolev space
W, (M,g) of functions on (M,g). Define a functional a:
H-R by a@) =43+ i(p.e®) +}(Kv), where
p = €**>0 is smooth, (-,) is the obvious bilinear pairing,
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and V is the gradient operator of g. We will prove Lemma 2
in the following steps.
Step 1: a(v) is defined for veH.
Step 2: a(v)eC ' (H,R).
Step 3: a(v) is strictly convex.
As a result, a weak solution to (3.1) will be proved unique.
Proof of step 1: We have the following inequalities.

@ [Ivoll<livflx-

(ii) l(p,ez”)|<s11‘xlpp-f e¥vlx]

M

<sup p{y exp[2[3] + (2||Vo||)*/48 1}

for some ¥, 5, where

5=J-MU*(J;,*I)-I

(see Ref, 7). Note that
loll, <ep*(Jjvll, + IVoll2),  forp>1

(see Ref. 7).

(i) | (Ko0) <K [l <K [l O

Proof of step 2: Write a(v) = a,(v) + a,(v) + a;(v),
where  a,(v) = 3||Vv))3, a,(v) = }(p,ez" ), and a;(v)
= }(K,v). Obviously, a,,a,C'(H,R), and it suffices to
show a,(v)eC'(H,R). To this end compute the Gauteaux
derivative at veH for heH as
i i 2(v+thyy if 2p
dt ’=04(p,e ) 2 Mpe hel,
where the last step can be justified by a standard theorem of
calculus.®

Next, we show da, (v, )eH * is continuous in order to
guarantee the Fréchet derivative a; (v) exists and contin-
uous.’ Let v, »v in H. We have

lda,(v,,") — day(v,")| e

da,(v,h) =

. 2v, _ H2v|) .
<bsupp-lle™ — ez sup k|l
and ||e*» — €*’]|,—0 can be found in Ref. 7. a
Proof of step 3: Since a,(v) is quadratic, it is strictly
convex. The linearity of a;(v) implies that a, (v) + a,(v) is
strictly convex. a,(v) is clearly convex because p>0. O

IV. PROOF OF LEMMA 2
Proof of necessity: Recall Eq. (3.1) given by
Av = (e*-e” + K ), (4.1)

where K= — 1 + 477 ¢~ '(deg D) F. Upon integrating (4.1)
over M, we get

f Kx*l= —fez""-ez"*l <0,
M

since e*>0. However, (4.2) implies

deg D < (4m) ~! Vol(M). ]

Proof of sufficiency: For the sufficiency we must show
the existence of a smooth solution to Eq. (4.1) assuming
condition (4.2).

Letting p = ¢** >0 as before, define operators L,P:

(4.2)
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(Lu,w) =f Vu-Vorl, (Pup)= —1-j pevxl,
M 2 Jm

Note that L is a bounded self-adjoint operator and P makes
sense because e*,vel,(M,g) due to the fact that
xeW  , (M,g) implies
(i) xeL, (M,g), for 1<p < « (Sobolev inequality),
(ii) e*eL, (M,g), for 1<p< oo (see Ref. 7).
We may consider the following operator equation on H:

Lv+ Py=f, (4.3)

where (fiu) = — 1 [ Ku*1 for all ueH.

Now we verify the following claim.

Claim: If §,K*1<0, then the operator equation
Ly + Pv = f can be solved for v.

Note that the claim together with the combined use of
the L, and Schauder regularity theorems’ will complete our
sufficiency proof.

Proof of the claim: Decomposing Has H=Ker Lo H,,
we obtain projection operators, 7, and m,, as in the following
diagram:

Writing veH as v =c¢ + w, ceKer L, and weH,, (4.3) be-
comes

mP(c+w)=mf (4.4a)
Lw + mP(c +w) =m,f. (4.4b)
Note that (4.4a) simply says
ez‘f petxl = —f K *1, 4.5)
M M

since Ker L consists of constant functions.
Let A= — [, K *1 which is positive by our hypothesis.
Regarding ¢ in (4.5) as a function of w, we have

c(w) =l[lnA — ln(J‘ pez"’*l)].
2 M

We will complete the proof in the following steps.
Step 1: PeC '(H,H).
Step 2: c: H,—Ker L is of class C L.

Consider the map T: H, - H, defined by

T(w) = Lw + mP [c(w) + w].

Steps 1 and 2 together with the chain rule implies
TeC'(H,H,).

Step 3: (T (w)v,v)>||v||%, -

By the Lax-Milgram lemma, step 3 implies that
T'(w)eL(H,H,) is an invertible linear operator and
T w)]™ "L, n,, <1. Hadamard’s theorem applied to T
concludes 7'is a homeomorphism of H, onto H,.? This com-
pletes the proof of our claim.

Proof of step 1: Compute the Gauteaux derivative

dP(xo k) = % P(xg + th)

t=0
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at x,eH, for heH. For veH, we have

1

—_— J peZ(xo + 'h)vtl
M

d
dP(x¢,h),0) = —
( (xo )v) d t=02

1

= f perhuxl,
M

and the last step can be justified using a standard theorem of
calculus.® We must show dP(x, )eL (H,H) is continuous in
order to guarantee the Fréchet derivative P'(x) exists and
continuous.® To this end let x,, —x in H. We have

ldP(x,,*) — dP(X,* )| Loy

<supplle™ — €™, sup  sup |lh [l4[lvlls

Nl =1 llolls =

and ||¢** — ¢**||,—0 can be found in Ref. 7. a
Proof of step 2: As in step 1 we compute

-1
de(w,w) = —U pez"’tl) fpezwv*l.
M

One only needs to show dc(w,- ) is continuous in w. To this
end, let w, —»w in H; C H. Compute

lde(w,,+) —de(w,") || 1y

—1
= sup U [U pez'”wl) pe*r
ol =1 | Jagl \Jns
-1
—(fpez"’-l) pez"’]vtl
M

-1
<supp||(f pez“’"tl) ¥
M M

-1
~([peea1)” et sup ol
M Molls, =1

Note that ||e*» — ¢**||,~0, and

U- penxl —f peixl <supp‘fe2“’" —f e
M M M M M

since x — f,,€” is continuous w.r.t. the weak convergence in
H" O
Proof of step 3: We compute

(T'(w)vw)

-0

= f |Vu|?#1 + (m,P ' [c(w) + w] [’ (w)v + v],v)
M

-1
=f |Vo|?=1 +e2°"‘”(f pez"’*l)
M M

)

M M

2

- (f pez“’v*l) ]}f |Vo|?1.

M M

Moreover,
[woper =i,
M

(see Ref. 11).

Mitsunori Noguchi 2345



ACKNOWLEDGMENTS

I wish to thank Professor W. K. Allard for helpful dis-
cussions and Ms. B. Farrell for typing this paper.

'E. B. Bogomol'nyi, Sov. J. Nucl. Phys. 24, 449 (1976).

2A. Jaffe and C. Taubes, Vortices and Monopoles (Birkhauser, Boston,
1980).

3M. Noguchi, Ph.D. thesis, Duke University, 1985.

2346 J. Math. Phys., Vol. 28, No. 10, October 1987

*P. Griffiths and J. Harris, Principles of Algebraic Geometry (Wiley, New
York, 1978).

58. Chern, Am. J. Math. 82, 323 (1960).

®M. Noguchi, “On the existence of certain pseudo-metrics on a compact
Riemann surface,” submitted to J. Differ. Geom.

7J. Kazdan and F. Warner, Ann. Math. 99, 14 (1974).

8S. Lang, Analysis IT (Addison-Wesley, Reading, MA, 1969).

M. Berger, Nonlinearity and Functional Analysis (Academic, New York,
1977).

1°N. Trudinger, J. Math. Mech. 17, 473 (1967).

'"M. Berger, J. Differ. Geom. 5, 325 (1971).

Mitsunori Noguchi 234¢€
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This paper demonstrates that the classical Cartan form 8} is not adequate for the
determination of all the natural symmetries and conservation laws for a Lagrangian L. It is
shown that the various extensions 82 ,..., 8; of the classical Cartan form, introduced in recent
papers, give larger symmetry groups: G, C G, C - - CG,. This paper also introduces the notion
of contact equivalent Lagrangians, which serves to clarify the idea that different Lagrangians
can give rise to the same variational and symmetry theories.

I. INTRODUCTION

The standard geometric formulation of the variational
theory for first-order Lagrangians L: J 'E — R uses the classi-
cal Cartan form 6}, a certain differential p-form on the jet
bundle J 'E associated with a fiber bundle E— N [dim(N)
=p, dim(E) = p + q].! Recent papers** have discussed
various improved versions 6% ,...,0;, r = min(p,q), of the
classical Cartan form and have argued that 8} is the most
suitable of these forms for use in the variational theory. In
this paper we examine the symmetry theory connected with
each of these forms and show that the Cartan form 8 } deter-
mines a larger group of symmetries of L than the classical
one.

Specifically, we first show (Sec. III) that the Cartan
forms 8%, k = 1,...,r are globally defined forms on J 'E and
have the mapping properties

fl8%)=6%, and L, (05)=0%,. (1.1)
These properties prove useful in the ensuing symmetry the-
ory, and curiously enough seem indigenous to first-order
field theories: the analogs of the forms 6§ for higher-order
Lagrangians L:J "E — R are local p-forms on J "E but fail to
extend to global forms.

The Cartan forms 6 ¥ differ from one another by contact
element terms and so each gives the same global differential
geometric formulation of the Euler-Lagrange equations:
o'*(X'1d6%) = 0. However, itis shown (Sec. IV) that the
natural symmetry groups G, = {f|f'*(d6%) =d6%} as-
sociated with each Cartan form are in general distinct:
G,CG,C - -CG,. This demonstrates the extent to which
the symmetry group G, determined by the classical Cartan
form fails to encompass all the natural symmetries of the
Lagrangian L. The mapping properties (1.1) serve to sim-
plify the computation of the symmetry groups (and alge-
bras) as well as the corresponding conservation laws. Final-
ly we introduce (Sec. V) the concept of contact equivalence,
two Lagrangian K,L being contact equivalent if their Cartan
forms are related by d6 = h '*(d@ ). It is shown that the
extremals, symmetry groups, and conservation laws for K
and L are the same (up to isomorphism) and thus the phys-
ics connected with either Lagrangian is the same.
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Il. PRELIMINARY DEFINITIONS AND NOTATION

The natural setting for Lagrangian field theories in-
volves a (smooth) fiber bundle 7: E— N over a base manifold
N with standard fiber F=~7—'{x}[dim (V) = p and dim (F)

= q]. The sections 0: N — E are the classical fields of interest
[mo0o(x) = x] and we denote the collection of all such sec-
tions by I'(E). Each pair of charts (U,x;) and (V,3*) on N
and F gives rise to a fibered chart (Cyx;,y*) on E (i = 1,...,p
and a = 1,...,¢). The first-order variational theory is based
on the geometry of the bundle of one-jets J ' E, This bundle is
the collection of all equivalence classes [o'] , of sections of E:
two sections o, & being equivalent at x, Nifo(x) = ¢(x) and
d( y?o0) (x)/Ix; = J( y°oF)(x)/dx; in some (hence ev-
ery) fibered chart. Then J 'E is endowed with a natural dif-
ferentiable structure and surjections 7 ([o], ) = o(x) and
7'([o],) = x on E and N which make it into a fiber bundle
over E (with standard fiber R??) and a fiber bundle over N
(in the extended sense that 7' is a submersion ). In the sequel
we adopt the standard practice of not distinguishing nota-
tionally between the differential forms and functions ¢ on £
and ¢ on N and their pullbacks 73*(#), 7 *(¢) to J 'E. The
fibered chart (C,x;, y°) on E extends to a fibered chart
(Wx;, ¥°, y?) onJ 'E, with the coordinate functions given by
x,([o],) = x;(x),)°([o],) =y%0o(x), and yi([o],)
= d( y®oo)(x)/0x;.

We let B(E) denote the group of bundle maps of E.
These are the fiber preserving diffeomorphisms f: E—E.
Each bundle map induces a diffeomorphism}": N-Nonthe
base space (of = for). The corresponding algebra of infini-
tesimal bundle maps is denoted by IB(E). Thesg are the
projectible vector fields X: E~ TEon E (dw |, X, = X,,,, for
some unique vector field X on N). There is a natural action of
the group B(E) on the set of sections I'(E). This is given by

f(o) = fooof ~! and is basic to the entire symmetry theory.

The geometric objects associated with the bundle E pro-
long in a functorial way to corresponding ones onJ 'E: each
section o: N - E prolongs to a section ': N—J 'E defined by
o'(x) = [o],; each bundle map f: E— E prolongs to a bun-
dle map f': J'E~J'E defined by f'([0],) = [ f(0) 1
and each infinitesimal bundle map X: E- TE prolongs to a
vector field X' on J!'E defined by X1 (#)

=d [¢of}(m)]/dt|,_,, where meJ 'E, ¢eC = (J 'E), and
/; is the flow generated by X (thus /' is the flow generated by
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X '). The functorial properties of these prolongations are ex-
pressed by the identities

(Sfog)' = flog!, (2.1)
(XY]'=[x.Y"], 2.2)
flo)! = floglof 1, (2.3)

For the variational theory we assume that  is a semi-
Riemannian, orientable manifold with metric g and volume
form A. A (first-order) Lagrangian is a (smooth) map L:
J'E-R, and the associated Lagrangian form onJ 'E is LA.
Each bundle map feB( E) induces a map (transformation on
the set of Lagrangians according to

ALY = (LofHI(f), (2.4)
where J( jAr ) denotes the Jacobian of /. From this definition it
follows that f le(LA) = SUL)YA (hereand in the sequel the *
denotes the pullback operation induced on the differential
forms by a map between manifolds). The corresponding in-
finitesimal transformation on the set of Lagrangians [in-
duced by an infinitesimal bundle map XeIB(E)] is defined
by

X(L) =%y (L) +div(X)L, (2.5)

where . . denotes the Lie derivative. From this it follows
that .£ ;. (LA) = X(L)A.

1Il. THE CARTAN FORMS

We review here the definitions of the various Cartan
forms 9!, 02,..,0', r =min( p,q), and prove several map-
ping properties of these forms which will be of importance in
the symmetry theory. We take a simple direct approach of
defining these forms in local coordinates on J 'E and show in
Theorem 1 that these coordinate expressions agree on the
overlap of any two fibered charts, thus giving rise to global
Cartan forms. In general one can use the Tulczyjew bicom-
plex* to naturally construct Jocal Cartanforms @} ,...,8; for
any mth order Lagrangian L: J "E - R.” For m = 1 this con-
struction gives the Cartan forms introduced below, and thus
gives a different perspective on the origin and naturality of
these forms. Regrettably, for m > 1 the construction does not
give rise to global Cartan forms on J ™E, and therefore one
must proceed along different avenues.®

Definition: Suppose that 1<n<r=min( p,q), i1+,
e{1,...,p} and that a,,...,a,e{l,...,q}. For a fibered chart
(Wx,, y% y?) onJ 'E define the following differential forms
on W:

w®=dy" —y} dx,, (3.1)
=9 9 g, (3.2)
bt dxg ox;,

Miy=—— 9L (gaptya, (33

(n!)? Ay -3y
Here and in the sequel there is implied summation over re-
peated indices and the wedge symbol A has been omitted
from the exterior products. Also J denotes contraction of a
vector field with a differential form. We denote the basic
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Lagrangian form LAby 82 = M9 = LA.

Theorem 1: There is a globally defined form M % onJ 'E
whose coordinate expression on each fibered chart W is
M 7 (W). This form has the mapping property

M) =My,,. (34)
Consequently the Cartan forms, defined by
0y =M7 +M; +--Mj (3.5)

(k = 1,...,r), are global forms on J'E with the mapping
property

fl"(elf) =05 (3.6)

Proof: Suppose that /2 E—E is a bundle map and that
(W, x,,y°¥%), (W, X, 7°, 7°) are two fibered charts on J 'E
with f£1( W) N W nonempty. Restricting to these charts f':
WN (1)~ (W) —f(W)N W, and to prove the theorem it
suffices to prove that f (M2 (W)) = M7, (W). To prove
this introduce the notation Cj;=d(%;9/)/dx; C;'
= [3(x,°f ~)/%;1of, fe=7"f, and J=J(f). Then
the coordinate representation of f' on the above charts is
%of ' =%, yof ' =f and

— are are _

.Viof1 = [3};‘]‘ ‘*‘J’_fb#] Cji L
From this it follows that f '*(dX,) = C; dx,, f'*(d5*)

= (3f /3x))dx; + (I “/H")dy’, f'*(F) =Fiof !, and
consequently

(3.7

@ =f 'y -z =L o, (3.8)
y
FUB, ) = (ClC b, . (3.9)
Thus
. 1 3L e o
fl"‘M (W) = of! ( )
ML (n!)? aﬁﬁ""aﬁ:f A" gyt
X (@ 0™ (C '+ C 5 DA, .
(3.10)

However, using the chain rule on d"f(L)/(dy}* -8yjbn") to-
gether with Eq. (3.7) one finds that Eq. (3.10) is the same as
M7, (W), and this completes the proof.

Corollary 1: Suppose that XeIB(E) is an infinitesimal
bundle map. Then

Ly Mi)=M%,,, (3.11)
and consequently
Ly (01)=0%4, (3.12)

foreach n = 1,...,7.

Proof: Let f, be the flow generated by X, so that /! is the
flow generated by X '. Then sincef,l*(LA) = f,(L)A, and
Ly (LA) = X(L)A, it follows that

xy =21 (3.13)
dt

t=0

Thus using Eq. (3.4), one finds that
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L (M2) =-5;(f,"<M2))

t=0

= %M;,(L) o =M;'(L) .

Comments: The differential ideal € of contact forms on
J 'E is the set of all differential forms ¢ such that a'*( $)=0
for every section g€l (E). The forms »° in Eq. (3.1) are the
basic contact one-forms and the forms (v®::-0™) A, ...,
constitute a basis for the contact ideal. Thus the p-forms M }
(n = 1,...,r) are contact forms, and from this one can show,
using basic properties of contractions and pullbacks, that

o'*(8%) = (Loa")A, (3.14)
o (X'16%)=0o'"(X'16)), (3.15)
o (X'1dek) =o'+ (X'1d6)), (3.16)

forevery o, X, and k = 1,...,r. Theidentity (3.16) shows that
each of the Cartan forms is equally suitable for formulating
the global version of the Euler-Lagrange equations on J 'E
(rather than on J2E).

Definition: [cf. Ref. 1(e) ] A section o€l (£) is an extre-
mal of L if

VXeIB(E), o'*(X'1dg}l)=0. (EL1)

We let Ext(L) denote the set of all extremals of L. Several
useful alternative versions of the Euler—Lagrange equations
(EL1) arise from the following observations. First since

X'1d0! =%, (0L)y—d(X'18})
=0y —dX'1601),
one sees that (EL1) is equivalent to
VXeIB(E), d[o'*(X'16})] =[X(L)oo']A.
(EL2)

Next observe that there exists a vector field W= W(o,X,L)

on N such that W1 A =c¢'*(X'16!), and thus (EL2) is
equivalent to

VXeIB(E), div(W(o,X,L))=X(L)oc" (EL3)

These global equations give the classical Euler-Lagrange
equations locally on each chart. Namely suppose that
locally X = &;(x)(d /dx;) and X =¢£,(x)(d/;)
+ 7°(x, y) (3 /). Then the local expression for X ' is

J ad a 3.17)
X'= i — + g + ? ’ @.
Yo T T
where
o_0n° O, 9
o =90 L TU b 5 e 3.18
= T o G.18)
Then since

X'16) =LEA, + oL (0" =y &) A, _9L ext ] A,
i Iyt

one finds for the components of W (suppressing the o on the

right-hand side)

aL,

y;

Wi X.L) = LE +—= (" — 3} &). (3.19)
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Thus, in particular, for X = d/dy*, the local version of
(EL3) is

g o (e ) = 2.
9x i) P

(3.20)

i

IV. THE LAGRANGIAN SYMMETRY THEORY

Various treatments of the Lagrangian symmetry theory
have been developed using either the classical Cartan form
0} or, more generally, Lepagian equivalents of it.” Indeed by
abstracting the essential structure of the Euler-Lagrange
equations to o'*(X ' 1d¢) = 0, one can develop a general
symmetry theory based on any differential form ¢ on J'E.
However, the real substance of the theory comes from the
Cartan forms @ ¥, since the association L — 8 § together with
the mapping properties (1.1) allow one to reduce the analy-
sis from working with differential forms to working with
Lagrangians.

Definition: For a Lagrangian L and for k€{0,1,..., 7} let
G, and %, be the subsets of B(E) and IB(E) defined by

G, =G (L) ={f|f'*(do%) =db*}, (4.1)
G =9 (L) ={X|L (d8%) =0}. (4.2)

Using the functorial properties (2.1) and (2.2) of the pro-
longation operation together with properties of * and . one
can easily show that G, is a group and that &, is a Lie
algebra. Now on the most general level the symmetries of L
are those bundle maps f; £ — E which permute the extremals
of L around o€Ext(L) < f(o)eExt(L); that is, o is a solu-
tion of the field equations if and only if f(g) = fogof ~'is
also a solution. Thus the complete symmetry group of L is
defined by

§=8(L) ={f|f(Ext(L)) = Ext(L)}. (4.3)

The following proposition shows that each G, is a group of
symmetries of L (with &, the corresponding algebra of in-
finitesimal symmetries).

Proposition 1: For any f, o, and X the following identity
holds:

A (X1 1dO%) = (F~Hreo*[ (f*X)'1f'+do%].
(4.4)

Consequently, G, (L) is a subgroup of the complete symmetry
group S(L).
Proof: Identity (4.4) follows from Eq. (2.3) since

f(O’) le _ (floa'lo;"—l)* — (f—l)*oal*of l#,

RXIAG) =f X" 1f = (SIS .

One can now use identity (4.4) to easily prove that
G . (L)CS(L).

Comments: The above definition describes the symmetry
subgroup G, as the group of isometries of d¢% and the Lie
algebra &, as the corresponding algebra of Killing vectors of
d@% . However, the mapping properties of the Cartan forms
reduce these descriptions to ones involving trivial Lagrangians,
By a trivial Lagrangian we mean a Lagrangian L whose Euler—
Lagrange equations vanish identically; more precisely, every
section is an extremal of L. We denote the set of trivial Lagran-
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gians by Z. In a previous paper” it was shown that Z is deter-
mined by the Cartan form 8 7 —this being one of the reasons
for wanting an improved version of the classical Cartan form.
The other Cartan forms determine subsets of Z. Since this is
central to our presentation of the symmetry theory we summa-
rize the results on trivial Lagrangians.

(T1) d8% = 0if and only if L is trivial and has nullity &
(ie,d**'L /3y}---dy;* ! = Oon each chart). Consequently
d6* = Oimplies that d6+' = 0.

(T2) Every trivial Lagrangian has nullity » = min( p,g).
Consequently Z = {L |df} = 0}.

(T3) Letting Z, = {L |[d6% = 0}, one has that

ZOCZI"'CZ, =Z. (4.5)

In general the containments in (4.5) are proper since if LeZ,
then the nullity condition forces L to locally have the form

L =F(x,p) + F{(x,p)yi + - (L/rOF 2 2 (x, p)ye 0.
(4.6)

Furthermore, the coefficients F'’* (k>2) must be anti-
symmetric in the upper and lower indices separately. Be-
cause of this

L =FA+FidyA + -

+ [1/(r1)?] F:’," dy® - -dy™ A, 4.7)
The remaining conditions for the triviality of L are just the
partial differential equations that arise from d@; = 0. From
this one sees that the subset Z, of Z is characterized locally
by Filn=0(n=k + 1,..r).

Combining the results (T1)-(T3) with the mapping
properties of the Cartan form, one obtains the following
theorem.

Theorem 2: Alternative characterizations of the symme-
try groups and algebras of L are

S(L) = {f|Ext(f(L)) = Ext(L)}, (4.8)
G (L) ={fI(L) — LeZ,}, (4.9)
9, (L) ={X|X(L)eZ,}. (4.10)

Consequently because of the containments in (4.6) it follows
that

Gy CG,CG, - CG,CS,

Y0C%,CY,--CY,. (4.11)

Here G, and ¥ , are defined by
Goo={fIAL)Y ~L=0} and %, ={X|X(L)=0}
The theorem exhibits the distinctions among the sym-
metry theories determined by the various Cartan forms and
shows the extent to which the improved version 67 of the
Cartan form is more suitable than the classical version. In
general, the containments in (4.11) are proper, although for
particular Lagrangians there is always the possibility that
some of the groups and algebras in these chains coincide.
The subgroup G, consists of those symmetries which leave
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L invariant, f(L) = L, and is the one most commonly en-
countered in the literature, primarily because these symme-
tries are the easiest to determine. Previous works, based on
the classical Cartan form @  , led to the symmetry subgroup
G,, which is now seen to be unnecessarily restrictive. The
natural symmetry group is G,, which consists of those bun-
dle maps f which leave L invariant modulo the addition of
trivial Lagrangians: f(L) =L + L’. To illustrate the new
aspects of the theory we offer the following examples.

Example 1: For the sake of simplicity assume that
N =TR? and let E = R?XR? be the trivial bundle over N.
Then one can identify J 'E with R? X R*> X R*. Consider the
Lagrangian L defined by

L=L(x,y,) =9\ i =0 ys +ex, (Y} y3 — 3 »3),
(4.12)

where ¢ is a constant. To see that the containments G,C G,
C G,CSare proper, let f,g,h be the following bundle maps of
E:

f(x,p) = (x,%5, ' + mxy, %),
g(x,») = (x, + mx,, y', ¥,
h(x,y) = (x,,x,,my"' ,my?),

where m#0 is a constant. One finds that (1) (L) =L
+ my} + mex,y; =L + L'and L' is trivial with nullity 1; so
JSEG NGy (2)g(L) =L +me(y) ¥ —y, 7)) =L + L’and
L’ is trivial with nullity 2; so geG,\G;; (3) h(L) =m?L, so
that #eS \ G,. Note also that the Euler—Lagrange equations for
the extremals o = (0',0%) are 0%, —o%, + (— 1),
=0, a = 1,2. Thus one sees that f(o), g(0), and h(o) are also
extremals, which gives an alternative verification that £, g, and
h are symmetries of L. The example demonstrates the necessity
of using the extended Cartan form 6% to determine the natural
symmetries of L: in the previous theory which uses 8 the
bundle map g does not classify as a symmetry,
g*(d0.)#d6 ., when in fact it should be so classified.
Example 2: The Lagrangians of interest in elementary
particle theory are quadratic Lagrangians. To keep things
simple we just consider a trivial bundle £ = R”XR7 over
N = RP’. A quadratic Lagrangian L: R X R?XR?”?— R then
has the form

L(x,3,y') =A(x,9) + A{(x,p) yi + A5 (%, ) Y1 ¥},
(4.13)

where we assume, without loss of generality, that A Z,-” =4 j-’,-".
The determination of the infinitesimal symmetries X of L

proceeds as follows. Using the notation in Egs. (3.17) and
(3.18) one finds that

X(L) =Ly (LY +div(E)L = L (L) + 5§ aéyé
k

+div(E)L=F+ F2yi + F2 )2y,

where
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Fe Z,(4) +divE)A +45 2T
ox,
a a : a ca aﬂc
Fi=2L3(A7) +div(E)A] + 24 55 ——
ax,

a dE.

rasO g 2

ayF Ix;

F= %, (A%) + V()AL

+ Z[A ,?j”@— —A4 zjyﬁ_] .
W 9x;

Now X is an infinitesimal symmetry of L if and only if X (L) isa
trivial Lagrangian, and so substituting the above expression for
X(L) into the Euler-Lagrange equations gives a very explicit
(yet complex) system of partial differential equations which
the components &;, %7° of X must satisfy. In the simplest case, for
Xe% , [ie., X(L) = 0], this system reduces to the first-order
system, F =0, F¢ = 0, F§* = 0. For the cases Xe¥ , or Xe ¥ ,
the system is simplified by the auxiliary equations F¢ =0,
F$» =0, or F> =0, respectively. Also note that since X(L)
has nullity 2 for any X, it follows that ¥, = 9, = --- = .
The example illustrates the distinctions among the various
types of infinitesimal symmetries for quadratic Lagrangians.

Conservation laws: The conservation laws associated with
the infinitesimal symmetries of L (Noether’s theorem and its
generalizations) are easily derived from the Euler-Lagrange
equations as we have formulated them in (EL2) or (EL3).

Theorem 3: For Xe% ,,(L) the associated conservation
law is

b

d[o™(x'16})] =0.

Equivalently,
div(W(o,X,L)) = 0. (4.14)

More generally, for Xe ¥, (L) the associated (local) conser-
vation law is

d [al*(XlJBi ~w)] =0
Equivalently,

div(W(o,X,L) — Q) =0. (4.15)

These equations [(4.14) and (4.15)] hold for every extre-
maloof L. InEq. (4.15) wisa (local) ( p — 1)-formonJ 'E
such thatdw = 0%, and @ = Q (0, X,L) is a (local) vector
field on N such that Q JA =¢"*» [and consequently
div(Q) = X(L)oo'].

Proof: If X(L) = O then Egs. (4.14) clearly follow from
the Euler-Lagrange equations (EL2) and (EL3). More
generally if X(L) is any trivial Lagrangian of nullity k, then
Egs. (4.15) follow from the fact that any trivial Lagrangian
can be expressed as a “divergence.” More precisely, since
d6% ;, = 0 Poincaré’s lemma gives the local existence of a
form w such that do = 6%,,. Taking pullbacks gives
[(X(L)oo']A =do'*w =d(Q 1 A) = div(Q)A. Using this
to rewrite (EL2) and (EL3), one obtains Eqgs. (4.15).

Versions of Noether’s theorem based on the classical
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Cartan form 0} have been used extensively in the literature
[cf. Refs. 1(e) and 1(g)] but Theorem 3 shows that for
more general symmetries Xe¥, (L)\ ¥ ,(L), the corre-
sponding conserved currentA = (X' 16} ) — wdependson
the extended Cartan form 6 § via the solution of dw = 8%,
for w. Also note that dA = — (X! 1d@%) and so the divi-
sion of A into the parts X ' 1 8} and w, while serving to illus-
trate the connection with the classical Noether theorem
[Eqgs. (4.14)], is in some respects rather artificial.

V. CONTACT EQUIVALENCE

A simplification of the symmetry theory is afforded by the
notion of contact equivalent Lagrangians. The idea is that dif-
ferent Lagrangians can lead to isomorphic extremal sets and
symmetry theories, and thus either Lagrangian (preferably the
simpler one) can be used to model the physics. Various notions
of equivalence have been studied in the literature, but since the
Cartan forms play a prominent role in the variational theory, it
is natural to base the equivalence on these forms.

Definition: Two Lagrangians K and L are called contact
equivalent if there exists a bundle map 4:E — E such that

dOy =h'*(d67). (5.1)

Using the mapping property in Theorem 1 together with the
characterization of trivial Lagrangians, one easily sees that
condition (5.1) is equivalent to

K=h(L) + L, (5.2)

for some trivial Lagrangian L.

Theorem 4: Suppose that K and L are contact equivalent
Lagrangians with 4 as in Eq. (5.1). Then A induces an isomor-
phism between the respective extremal sets, symmetry groups,
and conservation laws for X and L. Specifically,

(i) & ~ (Ext (L)) = Ext(K);
(ii) A ~'S(L)k = S(K),
h ~'G.(LYh =G, (K),
h¥I (L) =Y (K);

and (i) the identity o'*(1)=h "'*o[h ~Y(0)]'*
x [ '*(4)], which holds for all & and A, establishes the rela-
tionship between the conservation laws for K and L, i.e.,

h 1“(Cons(L)) = Cons(KX).

Proof* The proof of (i) follows from identity (4.4) with
f=h and k=r. Next, by (i) (& ~'ofoh)(Ext(X))
=h ~'[ f(Ext(L))]; hence feS(L)iffh ~'ofoheS(K).
Similarly, by (5.1) (h ~'ofon)'*(d6%)
=h'sof'*o(h'*)"1(df}) =h'*of '*(df}); hence f
€G,.(L)iffh ~'ofoh € G, (K). The corresponding result at the
infinitesimal level follows from looking at flows; namely, if /; is
the flow for X, then it is well known that & — 'of, ok is the flow
for h *(X). Hence 2 *(X) € 9 ,(K) iff h ~'of,och € G, (K) for
every tiff f, € G, (L) for every tif X € & ,(L). This proves
(ii). Finally the proof of (iii) follows from the various functor-
ial properties,
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o' =[h(h ()] = [h'o(h ~(0))'oh —']*
=h ~'so[h ' (g)]'*on s,

Comments: The theorem shows that the complete symme-
try groups S(K), S(L), and the natural symmetry groups
G,(K), G,(L) are conjugate subgroups of B(E). The same is
not necessarily true for G, (K), G, (L), k =00,0,1,...,r — 1.
Indeed suppose that L, = K — A (L) has nullity s (take s = 00
if Ly=0). Then it is easy to show that
h~'G,(L)h =G, (K — Ly). Furthermore G,(K — L,)

= G, (K) for k =s + 1,...,7. These results again illustrate that
@7 is the best choice for the Cartan form, the other Cartan
forms giving unnatural and incomplete symmetry theories.

Ideally one would wish to classify the set of Lagrangians
on J 'E by exhibiting a set of canonical (representative) La-
grangians, one from each contact equivalence class, and per-
haps also to have a procedure for reducing a given La-
grangian to its canonical form by a sequence of operations
consisting of bundle transformations and subtraction of triv-
ial Lagrangians. At present it seems unlikely that such ambi-
tious goals can be achieved in general. We offer the following
example to illustrate the difficulties involved for the impor-
tant restricted class of quadratic Lagrangians.

Example 3: We return to the trivial bundle case in example
2, and for notational convenience consider y' = { 7} as a point
in R” and let { , ) denote the standard inner product on R
Then suppressing the x, y dependence, we rewrite the quadratic
Lagrangian L in (4.13) as

L =A + <Al’y') + <A2ylry,>’

where A, = {4 {}eR" and 4, = {4 "} is a pg X pq matrix.
Using the notation from the proof of Theorem 1, the prolon-
gation of a bundle map A(x,y)=(h(x), é(x,y)) is
hl(x,y,¥) = (il(x), é(x,y), M + Hy'), where M?
= (3¢°/3x,)C,;7 ' and H§ = (d¢*/dy*)C; . With this
notation the transformation 4 (L) = (Lok ')J is given by

h(L) =(4d+ (4, + 4,M), M)
+{(H [4,+ (4, +4;)M ],)")

+ (H'A,Hy', y"))J. (5.3)
This identity illustrates an avenue for constructing a proce-
dure to reduce L to canonical form. At present this proce-
dure is incomplete, and so we limit the discussion to the
following remarks.

Restricting attention to the case where 4, is constant
(independent of x and y), one can further assume without
loss of generality that 4, is symmetric [otherwise, by sub-
tracting the trivial Lagrangian (1(4, — 4})y’,y") from L,
one obtains an equivalent Lagrangian with this property].
Now A4, can always be diagonalized by an orthogonal ma-
trix, Q ‘4,0 = D, and if it is possible to do this by means of a
bundle map A [say, A(x,y) = (Cx,Sy) with the matrices C
and S chosen so that H'A,H = D] then L reduces to an
equivalent Lagrangian of the form A(L) =B + B{y}
+ D¢ (y%)%. Further reductions can then proceed from
here. One can characterize the Lagrangians for which sucha
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diagonalization is possible. For brevity here we just present
the following examples of this.

(1) Classical dynamical systems (p=1): L=A
+ A °® j° *. The choice of C = 1and S = Q diagonalizes A4,
and gives an equivalent Lagrangian of the form
h(L) =B +D“(y*)>

(2) Single particle field (q=1): L =A + 4, ¢, ¥, This
also diagonalizes to an equivalent Lagrangian of the form
h(L) =B +D,(¢,)>

(3) The scalar meson field: L = 4, Y — ¢, ¥* — ¢, ¢}
— ¥, ¥* + p*Yy* involving two scalar fields ¢, ¥*. This
diagonalizes with C equal to the 4 X 4 identity matrix and

1 1
-1/
S=2 Z[l —1]'

V1. CONCLUSION

The purpose of the paper was to exhibit the utility of the
extended Cartan form 67" in the Lagrangian symmetry theory.
Since there are alternative approaches to this, and indeed since
it is a special case of the general geometric theory of partial
differential equations (PDE’s), we should perhaps include
here a few additional comments for the sake of a broader per-
spective.

The basic geometric object for formulating an mth-order
system of PDE’s with ¢ functions and p variables is the contact
element manifold C”E, where £ is an appropriate manifold
with dim(E) = p + g [cf. Ref. 1(e)]. Here C™E is construct-
ed as a fiber bundle over E, a point (contact element) in the
fiber above zeE being an equivalence class [ (N,0, x)], of sub-
manifolds of E, 0: N— E, o(x) = z, all of which have the same
mth-order contact at z. As in the jet bundle theory, each sub-
manifold o: N— E prolongs to a smooth map ¢™: N-C"E,
and each diffeomorphism f £-sE prolongs to a diffeomor-
phism f: C"E-C™E. A system of PDE’s is modeled by a
collection H = {H_, }, _ , of smooth maps H,: C"E-R. The
solutions Ext(H) of this system are thus submanifolds o: N - E
for which H, (0™ (x)) = 0, that is, for which o (V) is contained
in the variety Q,, = {weC™E |H,(w) =0 Va}. The com-
plete symmetry group S(H) of H consists of those diffeomor-
phisms f for which fooeExt(H) for every oeExt(H). Because
of the identity ( foo)™ = f™og’™, S(H) is alternatively given by
the geometrically preferable characterization S(H)

={flf"(Qy)CQy}. By the famous Lie-Bicklund

theorem® each contact transformation #: C "E—C "E is actu-
ally (when ¢ > 1) the prolongation # =f™ of some f: E—E.
Thus S(H) is represented as precisely those contact transfor-
mations that leave (), invariant. One can specialize to the case
where E— N is a fiber bundle and H is comprised of smooth
functions on the subbundle J"E C C™E. We recommend the
new text® by Olver as an excellent reference for a wealth of
details and history on this subject. In particular Olver presents
a method for the explicit computation of S(H) (at the infini-
tesimal level and for E = N X Q, NCR?, QCRY).

For the Lagrangian theory, one notes that each Lagran-
gian L: J "E - R has its Euler~Lagrange equations expressed as
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a system H of PDE’s on J>"E. Then S(H) is the complete
symmetry group for L. Olver shows (at least the infinitesimal
level) that G(L) = { f| A(L) — LeZ} is a subgroup of the
complete symmetry group. Others (cf. Refs. 8 and 10) have
discussed G(L) as well. However, one should note that histori-
cally there has been some confusion in the literature as to the
nature of Z. One (correct, but local) characterization of Z is as
aset of divergences (cf. Ref. 9). The characterization here (and
in Refs. 2 and 3) is preferable since it is global. [ For compari-
son, note that the generalization of € " to a form on J "E men-
tioned in Sec. III gives Z = {L {d6, = 0}. Thus LeZ implies
that 687 = dw for some locally defined ( p — 1)-form @ on
J™E (constructed say, using the Poincaré homotopy opera-
tor). Taking pullbacks gives Loo™ =do ™« for every
o€l'(E). Thus locally L = D, W, (on J *E) where the W;’s
are certain functions on J "E and the D, ’s are the total deriva-
tive operators.

In summary, while the variational theory can be formulat-
ed without the use of the Cartan forms, we have stressed here
the naturality of the Cartan form approach, and in particular
the benefit of the extended Cartan form 6"

"The Cartan form for classical dynamical systems ( p = 1) can be traced back

2353 J. Math. Phys., Vol. 28, No. 10, October 1987

to (a) H. Poincaré, Les Methods Nouvelles de la Mechanique céleste (Dover,
New York, 1957), original edition 1892, Vol. II; (b) E. Cartan, Lecons Sur
Les Invariants Integraux (Hermann, Paris, 1922); Modern treatments of
classical dynamical systems in terms of the Cartan form are numerous, e.g.,
(c) P. Griffiths, Exterior Differential Systems and the Calculus of Variations
(Birkhauser, Boston, 1983); (d) W. Sarlet and F. Cantrijn, SIAM Rev. 23,
467 (1981). Generalizations of the Cartan form to cover field theories ( p> 1)
as well can be found in (e) R. Hermann, Geometry, Physics, and Systems
(Dekker, New York, 1973); (f) R. Hermann, Differential Geometry and the
Calculus of Variations (Math Sci. Press, Brookline, MA, 1977); (g) H.
Goldschmidt and S. Sternberg, Ann. Inst. Fourier (Grenoble) 23, 203
(1973); (h) D. Krupka, Some Geometric Aspects of Variational Problems in
Fibered Manifolds (J. E. Purkyne U. P., Brno, Czechoslovakia, 1973).

2D. Betounes, Phys. Rev. D 29, 599 (1984).

*H. Rund, Lec. Notes Pure Appl. Math. 100, 455 (1985).

‘W. M. Tulczyjew, Lect. Notes Math. 836, 22 (1980).

*I. M. Anderson (private communication).

SMany recent works have solved the global existence problem for higher-order
Cartan forms by using connections on the base space N. See, for example, M.
Ferraris, “Fibered connections and global Poincaré—Cartan forms in higher-
order calculus of variations,” Proceedings of the Conference on Differential
Geometry and its Applications, Nove Mesto na Morave (Univ. Karlova,
Praga, Czech., 1984),Vol. II; I. Kolar, J. Geom. Phys. 1, 127 (1984).

"See Refs. 1(e)~1(h).

SR. L. Anderson and N. H. Ibragimov, Lie-Bicklund Transformations in Ap-
Dplications, SIAM Studies in Applied Mathematics (SIAM, Philadelphia,
1979).

°P. J. Olver, Applications of Lie Groups to Differential Equations (Springer,
New York, 1986).

g, L. Hill, Rev. Mod. Phys. 23, 253 (1951).

David Betounes 2353



On the dimensional reduction of invariant fields and differential operators

P. A. Nikolov

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Boul. Lenin 72, Sofia

1784, Bulgaria

(Received 9 December 1986; accepted for publication 13 May 1987)

In the present paper the most general type of group action introducing some relevant exact
sequences for the dimensional reduction of invariant fields and differential operators is studied.

1. INTRODUCTION

An action of a group G on a vector bundle § by bundle
morphisms induces naturally an action of G on the sets of
sections, differential operators, etc. When the G action is
“good,” there is a natural one-to-one correspondence
between all G-invariant sections of £ and all sections of an-
other “reduced” vector bundle & . In principle, the G-invar-
iant structures on £ (like G-invariant sections of some tensor
power of &, differential operators, the action of another
group, etc.) define the corresponding reduced structures on
&¢. In the present paper we study the reduction procedure
for the most general type of group action introducing some
relevant exact sequences. In Sec. II the reduced bundle & is
described by means of a set of coordinate realizations and
transition bundle isomorphisms. In Sec. III the bundle £ is
specified to be the tangent bundle or its tensor powers. The
symmetric second tensor power of the exact sequence (3.5)
reproduces the “reduction theorem” in Ref. 1. The relevant
basic notions and notations about differential operators on
vector bundles in terms of the jet bundles are summarized in
Sec. IV. Section V deals with a crucial detail—a restriction of
a differential operator on a submanifold. This is not a natural
operation and the problem reduces to a splitting of the exact
sequence (5.1) of jet bundles. The major problem—the di-
mensional reduction of a differential operator D—is consid-
ered in Sec. VI. In each coordinate bundle of the reduced
bundle £, we have the situation of Sec. V. Here the group
action and the G invariance of D provide a splitting of the
corresponding exact sequences and Propositions 6.1-6.4 as-
sure that the restricted differential operators are compatible
with the cocycle of £;. The application of the general con-
struction of £ to Hom(J* (£),7) leads to a description of the
G-invariant linear differential operators (or intertwining
differential operators) as a section of a bundle with a typical
fiber—all intertwining operators between two finite-dimen-
sional representations of the isotropy group. As a conse-
quence we have a description in this language of all G-invar-
iant (linear) connections on §. A dimensional reduction of a
group action is considered in Sec. VII. As an example illus-
trating the discussed constructions we reexamine” in Sec.
VIII the dimensional reduction of the SU(2) Yang-Mills
equation by means of a reduction group SL(2,C). In Sec. IX
we show that the dimensional reduction of the six-dimen-
sional Maxwell equation, followed by a restriction on the
projected six-dimensional light cone by means of a
SO, (2,4)-invariant splitting of the corresponding exact se-
quence of the type (5.1) leads to the discussed in the litera-
ture “conformal electrodynamics.”

2354 J. Math. Phys. 28 (10), October 1987

0022-2488/87/102354-09$02.50

Il. DIMENSIONAL REDUCTION OF A G-VECTOR
BUNDLE. REDUCED VECTOR BUNDLE

Consider a connected Lie group G (not necessarily com-
pact) acting from the left on a (real or complex) vector
bundle £ = (E,,B) by bundle morphisms. We shall assume
that all manifolds, bundles, and maps are (C* ) smooth.
Denote this action by (7,¢) or by (T,,t,), g€G, where T:
G XE-E is the action of G on E and t: G XB—B is the
projected action on B. By definition, 70T, = t,07 and T,:
&o—~&, s &p = 771 (D), beB, is a linear isomorphism. The
action of G on £ induces naturally an action on C* (£)—the
space of all sections of & (“the linear matter fields”) by the
equation

g (B) = Tyt (b) 2.1)

YeC= (&), beB. A section YyeC~ (£) is G invariant (in other
terminology “G equivariant™) if it is a stable point for the
action (2.1),

g(¥) = ¢=T,(b) = (1, (b)), g<G. (2.2)

Denoteby C* (£); CC= (§) the subspace of all G-invariant
sections of £. Our first goal is to describe C* (£) . In the
general case this is a complicated problem. One may impose
here some simplifying conditions, assuming that all orbits of
the action ¢ are of the same type (say G /H,) and that they
form a locally trivial bundle (B,p,M)

p:B-B/G=M, (2.3)

where B /G is naturally a manifold and p is the natural pro-
jection. Let G, C G be the isotropy group of beB for the G
action ¢ on B. The restriction T: G, X &, —£, is a linear rep-
resentation. Denote by st &, C£&, the subspace of all stable
vectors. We shall assume that the family of linear subspaces
&, is a (smooth) vector subbundle st £C£. In this case
C= (&) has the structure of the set of all sections of another
vector bundle. That is to say, one can construct a reduced
vector bundle £ over the base M ( = B /G), and a natural
one-to-one correspondence between all sections of £; and
the G-invariant sections of £. Let 6: C* (£5) - C= (£) 5 give
this correspondence. We shall only work in this case and
shall briefly say that £ is a reducible G-vector bundle. The
most convenient construction of £; for our study is the fol-
lowing: Let {U, }, aed, be a sufficiently fine open covering
of M and for each U, we fix a section transversal to the fibers
of the bundle (2.3), o,: U, »B. Denote by U, =0, (U,)
the graph of 0,,, £, = st £, the restriction of st £ on v,
Uap =0a(U,NUg)  if  U,NUp#0, op = bur,,
(=stéy, ). Let@,g: U, NUs —G define alocal action of
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G (over U, NUg £0), mapping ﬁﬂ,a on flaﬁ:
Lot (og(x))=0,(x), x€U,NUg. 2.4)

The pairs (T, x> tp_y0x) )» XEU, NUp, define an isomor-
phism $,5: £, — &, 5. This isomorphism does not depend
on the freedom of choice of @, from (2.4) and so it is
uniquely defined for a pair (a8)ed XA4if U, NU, #0. Itis
crucial here that &, is a restriction of the stable subbundle
st £&. The set of bundle isomorphisms @,z forms a cocycle

Pos =P a' > (2.5)

a’aﬁ oaﬁr = a’ay (26)
over U, NUgNU, #0. [We shall not emphasize hereafter
that equations like (2.6) are considered when they are cor-
rectly defined.] The cocycle @, defines the reduced bundle
£ gluing the “coordinate bundles” £, . (For a general treat-
ment of the gluing procedure in category language see Ref.
3.) A section SeC> (§;) corresponds to a set of sections
S,eC~ (£,) compatible with the cocycle

Sa = adﬂ (SB) .

Now the correspondence 8: C* (£5) —C= (£)¢ is evident.
Here S,€C* (st §7, ) and there is only one G-invariant sec-
tion 8(S)=yeC~ (£)s such that ¥lo, (x)) =S, (0, (x)),
xeU,. For beB we can take ¥(b) = T,S, (0, (x)), where
x = p(b)eU, for some ac4 and geG satisfies #, (o, (x)) = b.
Due to (2.7) the definition of ¢ is correct. If ¢ is G invariant,
from (2.2) $eC= (st £) and the restrictions S, = 9y satis-
fy (2.7).

In coordinates (b,u) of the bundle &, the group action is

(2.7)

T, (bu) =(t,(b),T(g,b)u), (2.8)
where T'(g,6)eGL(n) (n = dim £) and satisfies
T(g182:0) = T'(g1,t,, (b))°T(gy,b) . (2.9)

Sometimes the G action f on Bis given and it is a problem
to lift it to a bundle morphism action ( 7,¢) on £. Throughout
this paper we shall assume that this problem is solved and isa
part of the initial condition.

When the bundle morphism action on £ is of a special
kind, some structures arise in the reduced bundle.

Ill. DIMENSIONAL REDUCTION OF THE TANGENT AND
COTANGENT BUNDLES AND THEIR TENSOR POWERS

We specify here that £ is the tangent bundle T(B) or the
cotangent bundle T*(B) or ®*T(B), S*T(B), A*T(B)
[the k th tensor, symmetric, and antisymmetric tensor power
of T(B)]. The manifold B is equipped with a G action ¢
satisfying the usual assumptions for the orbits plus a more
specific one, namely,  we want that for each point beB there is
alocal cross section U of the bundle (2.3) such that beU and
foreach b ‘el, G,. = G,. When G is compact, this is always
the case because the bundle (2.3) has a Lie structure group.*
The lifted bundle morphism action (7, ,t) of G on T(B)
makes 7'(B) a reducible G-vector bundle. The major feature
of this case is that T(B) ; and T(M) are involved in an exact
sequence.

Lemma 3.1°: There is a natural exact sequence

07 T(B)g—T(M)—0, (3.1)
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where 7 = (T’ (B))g, T'(B)CT(B) is the subbundle of
the vertical vectors.

We have the following theorem.

Theorem 3.2°; There is a natural one-to-one correspon-
dence between all splittings of (3.1) and the G-invariant con-
nections on the bundle (2.3).

The space of all splittings of (3.1) is an affine space with
a linear group Hom(T'(M),7} = C= (T *(M) ® 7). The G-in-
variant connections of the bundle (2.3) are the equipments
of T(B) with a G-invariant ‘“horizontal” subbundle
T"(B)CT(B), complementary to the vertical one,
T(BY=T"(B)e T"(B). Because (B,p,M) is a locally
trivial bundle with a given structure on the fibers (the struc-
ture of a homogeneous space G /H,), it can be considered as
a bundle associated with a principal bundle P(K,M) over M
with a structure group K = Aut(G/H,) = N(H,)/H,,
where N(H,) is the normalizer of H,, in G. The parallel
transport of the G-invariant connections preserves the struc-
ture in the fibers and so they correspond to connections on
the principal bundle P(K,M) (see, for example, Ref. 1).

If we choose a splitting of (3.1),

T(B)g =7a T(M), (3.2)

then one can say that the G-invariant vector fields on B [the
sections of T(B) ] correspond to pairs of a scalar field (a
section of 7) and a vector field on M.

For a free G action ¢ the calculation of (@ * T(B))g,
(S“T(B))s, (A* T(B)); is purely algebraic. For example,
after a splitting of (3.1) we have

(S*T(B))g =S*(T(B)g) =S*(re T(M))

k
= o ShreS'T(M). (3.3)
1=0

Equation (3.3) can be interpreted as a correspondence
between all G-invariant k-fold symmetric tensor fields and
the (k + 1)-ples consisting of a scalar field (a section of
S*7), a vector field on M with coefficients in S*~ ! 7,..., a k-
fold symmetric tensor field on M.

If the G action ¢ is not free, in principle, we only have an
inclusion S* (T(B) ;) - (S* T(B))g, but then Eq. (3.3) reads

k N
(S*T(B))g = ® S'reS—'T(M), (3.4)
~ 1=0

where 8'7 = (S' T (B))g (#S'7).

For the cotangent bundle T * (B) we have the dual exact
sequence

i* *

O—7* « T*(B)g « T*(M) 0, (3.5

where 7* = (T (B))*¢, and, respectively, the dual theorem
(Theorem 3.2) states that there is a natural one-to-one cor-
respondence between all splittings of (3.5) and the G-invar-
iant connections on the bundle (2.3).

Finally we consider in this language the dimensional
reduction of S 2T * ( B) because this case contains the dimen-
sional reduction of G-invariant metrics discussed in the liter-
ature! and is in some sense degenerate. After splitting of
(3.5) we have

~J
(S’T*(B))g =S m*or*eT*(M) 0 S’T*(M) ,
(3.6)
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~
where S2%* = (ST (B))*;. This is a correspondence
between all G-invariant symmetric bilinear forms ¢yon 7(B)
and the triple’s\g Y20 Y115 Yo,2 ), Where ¥, is a scalar field

[asection of S *7*; ¢, , (x) is a G-invariant bilinear symmet-
ricformon T'(p~'(x)), xeM], ¢, , is a one-form on M with
coeflicients in 7%, and ¢/, , is a symmetric bilinear form on
T(M). We need a condition on (9,4, ¥, Yo, ) assuring
that ¢ is nondegenerate. In the Euclidean case this condition
is simple. Here ¥,, and t,, are always nondegenerate
if ¢ is nondegenerate. Here #,, provides an isomor-
phism 7*=7 and Thence an  isomorphism
Co{r*e T*(M)})=C~(re T*(M)) = Hom{r*,T*(M)}.

But C~ (r ® T'*(M)) parametrizes all the splittings of (3.5)
and according to the dual Theorem 3.2, all the G-invariant
connections on the bundle (B,p,M). We obtain the reduc-
tion theorem’; in the Euclidean case there is a one-to-one
correspondence between all G-invariant metrics on B and
the triples (¥, ¥, 5, z/;o\% ), where ¥, , is a scalar field (non

degenerate section of S%7*), ¢, ,€C* (r@ T*(M)) is a G-
invariant connection on (B,p,M) and ¥, is a metric on M.

In the pseudo-Euclidean case the same conditions on
(20, ¥1.1» Yo, ) do not describe all the G-invariant metrics
on B. For example, let us consider B=R>\{0},
G = R * = R \ {0} acting by multiplications. Then ¢ = [1/
(x*+y*) ] (dx ® dx — dy ® dy) is R * invariant but the cor-
responding field ¢, , on PR ? is degenerate.

V. DIFFERENTIAL OPERATORS ON VECTOR
BUNDLES

We summarize here, following Refs. 6 and 7, the basic
notions and notations about the differential operators on
vector bundles, which we shall need.

Let £ 7 be vector bundles over B. Denote by
JX (&) = (E* 7" ,B) the k-jet bundle of £. The fiber of J* (£)
over a point beB is the quotient of the space of germs of
sections of £ at b by the subspace of germs vanishing to order
k + 1atb. Sothe elements of J* (£), are the coordinate free
notion of “the field ¢ and its derivatives up to order k at the
point b.” Denote E°=E, E~'=B and let 7*':
JE (&) T (&), k> 10, be the natural projections, and J*:
C= (£) - C= (J* (£)) be the k-jet lifting of the sections of £.
Coordinates (x*,z* ), u = 1,2,...,dim B, a = 1,2,...,dim &, of
£ induce coordinates (x,2%,z; R
1<u,< <, <dim B, i = 1,2,...,k, where

k _ d'
Zgsiru W (¢)b)—m
Sodim J* (£) =dim £ (4n5+%) .
There is a natural morphism
iSKT*(B)®&-J* (&),
and the sequences

P(b) . (4.1)

(4.2)

i ﬂk,k —1
0-S*T*(B)eé - J* (&) - JK'(£6)-0, (43)
k = 1,2,..., are exact.

A linear differential operator D: C* (§) - C* (77) of or-
der k may be identified with a vector bundle morphism D:
J* (£) - or, equivalently, with a section of L (J* (£),7). So
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) of J5(&),

we have the isomorphisms LDiff, (&,m)
= Hom{J* (£),7) = C* (L(J* (£)n)) [LDiff, (£7) de-
notes the space of all linear differential operators D:

C* (&) — C= () of order up to k]. The main symbol o(D)
is the composition

o(D) = Doi: S*T*(B) &7, (4.4)
Becanse Hom(S* T*(B) ®£,5) = C= (P*(T*(B),

L(£,m))), we can consider o (D) at beB as a homogeneous
polynomial of degree k from T*(B), toL(£,,7, ). Tocalcu-
late o(D)(bp)(e), (bp)eT*(B),, eck,, one must take

YeC= (£), Y(b) =e, f: B—R with df, = p and then
(D) (b,p)(e) = D((I/kD(f—F(B)-9)(b) . (4.5)
For k = 1 from (4.3) we have

0 T*(B) ®& — J'(£) — £~0. (4.6)

Any splitting of (4.6) is equivalent to a linear connection on
&. Asplitting morphism V:J 1(£) » T*(B) & £, Voi = id cor-
responds to a linear differential operator (a covariant deriva-
tive) V: C= (£) > C> (T *(B) o £ ) satisfying

V(fy)=dfey+/ V@), feC=(B).

A splitting of (4.6) can also be given by a morphism §:
E-J (&) satisfying 7> 0§ = id. So the set of all linear con-
nections on £ coincides with the set of all linear differential
operators in LDiff\(£,7*(B)®¢&) with a main symbol
o(V) (b,p) (e) =poe, or with the set of all sections of
£*®J (&) satisfying 7%' 0§ = id and is an affine space with
alinear group Hom{£,T*(BY @£ )= C* (T*(B) e L(£,£))

We can differentiate simultaneously both sides of the
equation D(¢) = @. In the coordinate free language thisisa
prolongation of D. The / th prolongation p’ (D) of a differen-
tial operator D: C* (£)—»C* (9) is the unique morphism
P (D): J**+1 (&) —j () such that the following diagram is
commutative:

4.7

p'(D)

C=(J** (&) C=(J'()
fJ"“ > J! (4.8)
C=(&) C=(m)

We set R*! = ker p' (D). In the general case R*' is a
family of linear subspaces of the bundie J* */ (£). One says
that a linear differential operator D: C* (£) — C= (1) is for-
mally integrable if for >0, R*' CJ**'(£) is a vector sub-
bundle and 7* + !+ L&+ RRI+1_, R%! i an epimorphism.
For formally integrable operators the subbundie
R*® = ker D is called its equation.

A nonlinear differential operator of order k
[ DeDiff,, (£,m)], will be identified with a fiber preserving
map D: J* (£) - 1.

Comment 4.1: A differential operator may be used as an
equation or as a field. The operators D and f-D, feC~ (B},
F#0, have the same equations. A typical example for the
second role is the gauge field (the linear connections). It will
be convenient for the dimensional reduction of the gauge
field (in Sec. VIII) to consider the linear connections on as
sections S€C* (£ * 8 J 1 (£)) satisfying 7' oS = id.
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V. RESTRICTION OF A DIFFERENTIAL OPERATOR

Let&,n,... be vector bundles over B, D: C= (£) - C™ (%)
be a differential operator (not necessarily linear), and NC B
be a submanifold. Denote by i: N— M the natural embedding
and by £y, 75 ( = i*, i*n), ... the restrictions on N. The
operator D does not define naturally an operator
C* (&4 ) = C= (7). One needs additional information. Let
I%CJ*(£)y be the subbundle of all jets of sections of &
vanishing on N and i: 7% —J* (£), be the natural embed-
ding. There is a natural bundle morphism j:
J“(€)y »J* (£xy) determined by the restriction on N
JU* () (b)) = J* (¢oi) (b), beN. The following sequence is
exact:

i J

0-I% = J* &)y = JH(£x)-0. (5.1)

A differential operator D is internal for N if the map D:
J¥ (£) y —nx may go through j, i.e., there is a fiber preserv-
ing map @: J* (€5 ) » 7y such that

D =poj. (5.2)
In this case the value D(y) (b), beN, depends only on the
restriction of ¥ on N and we have a correctly defined differ-
ential operator C* (§5 ) —C= (775 ) with a total symbol @:
J* (£x) —» 7. If the operator is not internal for ¥, we do not
have a natural restriction. Actually we need a bundle pre-
serving map S: J* (€5 ) - J* (£) 5 satisfying Soj =id. As a
restricted operator we can take

D, =DoS: J*(&y) >y - (5.3)

The case when S is a bundle morphism is equivalent to a
splitting of (5.1) and so any splitting of (5.1) defines a re-
stricted operator Dy: C* (§5)—>C” (75) by means of
(5.3).

Vi. DIMENSIONAL REDUCTION OF INVARIANT
DIFFERENTIAL OPERATORS

Let £,7,... be reducible G-vector bundles over B and
have the same G action ¢ on B. A differential operator D:
C= (£)—C* () is G invariant if

D (g(¥)) =gD), (6.1)

¢YeC~> (£), geG [g denotes the action on C* (§) and on
C= (77)]. The G invariance of D provides, by means of the
correspondence 8: C* (£5)—C” (£)g, an operator Dg:
C>(£g)—~C™ (1g), the reduced operator. We want an ex-
plicit form of D; on the coordinate bundles &, of &4 or,
more exactly, for any two coordinate bundles £, , 77, a differ-
ential operator D,,: C* (£,) - C * (7, ) compatible with the
cocycles @,z (of £ and 775 ). Because §,, = st £y, we have
the situation described in Sec. V and must consider the corre-
sponding exact sequence

1

0=Tk S J*E), > THE) -0, (62)

where J* (§), =J* (st §)y, . Now the G action on & pro-
vides a natural splitting S,, : J* (£,, ) = J* (&), of (6.2) corre-
sponding to the unique extension of a section of £, to a G-
invariant section of £&. Then D, = DoS,: J* (£,)—7,. The
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following propositions rule the calculation and the proper-
tiesof D, .

Let L: C* (£) —»g* ® g C* (&) be the Lie derivative of
the G action on £. Here g* is the dual Lie algebra of G. For
acg and YeC* (£) we have

LW (@) =L, (6.3)
where
L) =§;exp<ra>(¢>,=o . (6.4)

Proposition 6. 1: The first-order differential operator L is
formally integrable forst & [L: C~ (st £) »g*® g C (st &)
is correctly defined because st £ is a G-invariant subbundle. ]

Let {a;} be a basis in g and Z; be the corresponding
fundamental vector fields on the total space of st £. In co-
ordinates (x*,z*) of st £ they have the form

d d
Z,(x,2) = X% (x)—— + Y2, (x)zP——. 6.5
; (%,2) (X)ax” + Y, (%) pw (6.5)
The equations
L ()*=0= - Xt (x)z) + Y, (x)2"=0,  (6.6)

i=12,.,dimG, a=1,2,..,dim st £, have a constant rank
with respect to the variables z* in a neighborhood of each
point beB due to the assumptions for the G action on £, and
this assures the formal integrability of L on st &.

Let RY~"' =ker p*~ ' (L), [CJ*(st£)] and R%
=R 1,k—1 7,

Proposition 6.2: R¥ is a transversal to I [and hence
defines a splitting of (6.2) or, equivalently, a bundle mor-
phism S, : J* (£, ) - J* (£),, satisfying S, j, = id].

In a neighborhood of each point be U, there are coordi-
nates (x*,z°) of st{ adapted to the G action ¢ on B;
x* = (x"x"),v=12,..dmM,p=dimM + 1,..,dim B,
X (b') = 0forb'€U,,x*(t, (b)) = x*(b"),geG. Dueto the
transversality of o,,: U, — B, Eq. (6.6) can be solved with
respect to z;:

2 =2 (x"252), xeU, . (6.7)

The (k — 1)-jet lifting of (6.7) defines a bundle morphism

ST ()T (E)y (6.8)
giving a splitting of (6.2). Here S, {(J* (£,)) =R is trans-
versal to 1 %.

Proposition 6.3: For a G-invariant section ¥ of &,
(D))o =D(S,* (¥a))) [=D, (¥,)].

_We must show that J ) (b) = S, (J* (¥, ) (b)),
beU,, . But from the G invariance of ¢, p*~' (L) () =0,
F () (DERF),, Ry =S,(/*(£,)) and so J* () (b)
=S, (¥, ) (b))

Proposition 6.4: Let £, be reducible G-vector bundles
over B with the same G action ¢t on B and let D:
C* (£)-C~ () be a G-invariant differential operator.
Then

Da(¢a) =aaBDB¢a—ﬂl(¢a) . (6-9)
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Indeed for each beU,,, D, (¢, ) (b) = D(1) (b),

(a)aBDBa) a_Bl) (¢a ) (b)

= @aﬁDB (¢'B N(b) = Tg(Dﬂ (¢ﬂ ))(tg~' (»)

= T, D(¥)(t,-: (b)) = D(¥) (b),

8 =Pap(x)EG, x =p(b) .

That is, the operators D,, aed, are compatible with the co-
cycles of £; and 75 and define the reduced operator Dg:
C= (£6)-C% (56).

Comment 6.1: Description of all G-invariant linear dif-
ferential operators.

It may happen that two different G-invariant operators
D, and D, have the same reduced operator, (D,) s = (D,)g-
The set LDiff, (£4.6¢ ) does not describe all G-invariant lin-
ear differential operators. To do this we must consider
LDiff, (£,7) = C* ((J* (£)*®7) as a reducible G-vector
bundle. There is a one-to-one correspondence between all G-

invariant linear differential operators of order &,
C*(£)-C~(n), and the sections of the bundle
((J*(E))*®n)s with a fiber isomorphic to
st((J*(£))*®7), =all intertwining linear operators

J* (&), » 7, between the two finite-dimensional representa-
tions of the isotropy group G,, beB. [ The representation of
G, on J* (£), comes from the jet-lifted action of G on £.]

Comment 6.2: Description of the G-invariant linear con-
nections on a reducible G-vector bundle.

Comments 4.1 and 6.1 lead to a description (in this lan-
guage) of all G-invariant linear connections on £. They are in
one-to-one  correspondence  with  the  sections
peC= (E*oJ ' (£))g, satisfying 7'°08(p) =id. In other
words, the reduced bundle for the G-invariant linear connec-
tions has as a typical fiber all the linear maps 4: £, —J ' (£),
intertwining the two finite-dimensional representations of
G, on &, and J '(£),, right inverse to 7°; 7% 04 =id.

Vii. DIMENSIONAL REDUCTION OF A GROUP ACTION

Let £ be a reducible G-vector bundie. We call G a reduc-
tion group because we shall consider another group O, also
acting on £ by bundle morphisms (F, /). When the two ac-
tions commute; F,oT, = T, oF,, geG, 00, the group O has
a natural bundle morphism action on £;. In terms of the
sections of £, we have

o(@) =6""(00(g))), 00, @eC=(&s). (7.1)

The induced representations are a special case of a re-
duced action. Let G be a group and HC G a close subgroup,
L afinite-dimensional vector space and ¥, a linear represen-
tation of H on L. One takes for £ thetrivialbundle G XL -G
with a G action

F (gpu) = (g.g u), g86G, wuel. (7.2)
The reduction group is A with an action on &
T,(gu) = (hg,V,u), heH. (7.3)

The both actions commute and the reduced action of G on
C= (£s) isjust the representation of Ginduced by Hand V),

When £ is the cotangent bundle, as in Sec. III, the re-
duced action of O on C* (T *(B)) has an invariant sub-
space. This is C* (T *(M)) because the reduced action of O
preserves the exact sequence (3.5). Such a reduced action of
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the group SO,(2,4) will appear in Sec. IX and it will be
nondecomposable.

The dimensional reduction preserves the “symmetry
properties” of the differential operators. Let, as usual, £, 77 be
two reducible G-vector bundles and D: C* (§) -C> () a
G-invariant differential operator. Let O be another group
acting on £, 7 by bundle morphisms. If the actions of O on &,
7 commute with the corresponding actions of G and D is
invariant with respect to the actions of O,

olD(¥)) =D o(¥)), 0€0, PeC=(§), (7.4)

then the reduced operator D : C* (£ ) - C* (74 ) is invar-
iant with respect to the reduced action of O on £ and 7.

VIil. AN EXAMPLE OF DIMENSIONAL REDUCTION OF A
GAUGE FIELD AND YANG-MILLS EQUATION

Here we rederive, in the developed language, the results
of Ref. 2. The goal is to make a dimensional reduction of the
SU(2) Yang-Mills equation on Minkowski space M* by
means of a reduction group SL(2,C) with projected action
on M *—the natural action of the Lorentz group.

We consider a complex two-dimensional Hermitian
vector bundle £ over M *. Here (x* ,z° ),u = 0,1,2,3,a = 1,2,
are global canonical coordinates, the metric tensor on M 4 is
8, = diag( — 1,1,1,1) and (x* ,2° »Z, ) are the canonical co-
ordinates of J '(£). A linear connection on £ will be consid-
ered as a splitting of (4.6) given by the covariant derivative
V: JUE-T*M*)®§, Voi=id or by S: £-J'(€),
7008 = id. We have

7%(x,225) > (x,2°) ,
and

S(A):(x*,2%) - (x,2%, — 45,2°) , (8.2)

where the potentials 4, are the same as in the covariant
derivatives

V,=4d,+4, (8.3)
because ker V = im S. The SU(2) connections correspond

tod, = —A4,,tr A, = 0and the Yang-Mills equation for
the potentials 4,, is

Fyv za,u, Av —'avA” + [AHAv] ’

d*F,, + [A*F,, 1=0,
d, =d/dx*,d =g" d,. We need a bundle morphism ac-
tion of SL(2,C) on &. Let g— A, be the double covering
SL(2,C) -S0,(1,3). The projected action of SL(2,C) on
M* is taken to be

g(x) = A, (x), geSL(2,0), xeM?*. (8.5)
This action has different types of orbits and we shall only
work on V. ={xeM*x’><0, x°>0} (x*’=g,,x"x"),
where we have orbits of one type and the dimensional reduc-

tion is possible. On V, the bundle morphism action of
SL(2,Q) is taken to be

(8.1)

(8.4)

g(x*z%) = (AL, x",U(gx)32"), (8.6)
where

Ugx) =B ~!(A,- (x))°T°B(x) , (8.7)

B(x) =d*(x)o, , (8.8)
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o, =1, 0; = 1,2,3, are the Pauli matrices and
a®(x) = [ (x° +x?)/2/x*]"?, (8.9)

a'(x) =x/[20xF(x° +JxZ)]V?, i=1.23, (8.10)

and T, is the natural representation of SL(e,C) on C?. Here
U(g,x) is the Wigner rotation between the two timelike vec-
tors x and A, (x). It satisfies (2.9) and defines a bundle
morphism action. Furthermore U(g,x)eSU(2), this bundle
morphism action preserves the Hermitian structure on £ and
the Yang-Mills equation (8.4) is invariant. The one-jet lift-
ing of the action (8.6) onJ '(£) is

g(x*2°2) = (AL x", U(gx);z’,

3, Ugx)52" + Ulgx)s Ag1i2n) -
(8.11)
The corresponding action of SL(2,C) on 4,, [from S(4)
eHom(¢£.J'(£))] is

g(Ad), (x) = A U(gx')od, (x')oU ~'(gx")

+ U(gx)d, U™ (gx"), x'=Ag-(x).
(8.12)
The first step is to describe the reduced bundle for the
SL(2,C)-invariant linear connections on &, according to
Comment 6.2. In this case we have a global coordinate bun-
dle. We take a cross section of all orbits U, = {xe V. |x'=0,
i =1,2,3} and this is the base of the reduced bundle. Fo
Xy = (1,0,0,0)ef/a the isotropy group is
SL(2,C),, = SU(2). The representations of SU(2) on the
fibers £, and J'(£),, are

(8.13)
(8.14)

g(z) =T2,2,
g(za,zz) = (T;bzb9 gbAg";zﬁ) ’

£eSU(2) CSL(2,C). The representation on J (& )x, 1S Te-
ducible; (0,z;, ) is an invariant subspace. The typical fiber of
the reduced bundle for the SL(2,C)-invariant linear connec-
tions on £ is the set of all intertwining linear operators

() = (d(2);) = (45,2 (8.15)

between the two representations of SU(2): (4) on £, and
(3)®((0)® (1)) on (0,a;,). [When geSU(2), A, has the
form

A—[IO]
g—oRg’

R,eS0(3).]But(}) @ ((0) & (1)) = (}) ® (J) ® (3) and itis
clear that the space of all intertwining operators has a com-
plex dimension 2. The result is
i=123. (8.17)
Herlce, the restriction of a SL(2,C)-invariant gauge field 4 "
on U, is

A (x°) = 4,(x°,0,0,0) = ¢, (x*)a,,

A;(x%) =4,(x°0,0,0) = c,(x%0,, i=123.

The differential operator (8.4) is not internal for U,,.
The symmetry condition g(4) = A in an infinitesimal form

together with its first prolongation provides an expression
for the transversal derivatives 3,4 (x°), 4, d; A, (x°) by

(8.16)

Ao =000 A4;=cy0,

(8.18)
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means of 4, (x°), 3, 4,, (x°), 8, 9, 4,, (x°). The result is
9 Ap(x°) = — (1/x°)4,(x°) (8.19)
J; Aj (x%) = — [i/4(x0)2]6ijkak - (1/x°)6,-jA0(x°) ,

3, 8, Ag(x®) = 8,([1/(x°)°] — 1/x°M,(x°) ,
3,9, A, (x°) (8.20)
= — (1/x°)8; 3y A; (x°) + [1/(x°)?18;.4, (x°)
/A € [Onrdy (X ], ik = 1,23,

where € is a fully antisymmetric tensor, €,,3 = 1.

The set of equations (8.19) and (8.20) is an explicit
form of the splitting morphism S, in Proposition 6.2. The
reduced operator (the analog of D,, in Proposition 6.3) will
be obtained if we consider the operator (8.4) on U, and
replace the derivatives d; 4, (x°), d; d; A, (x°) by the ex-
pressions of (8.19) and (8.20). This is a global coordinate
realization D, of the reduced operator. The invariant SU(2)
connections correspond to the choice

Ag(x®) =0,
Ai (x()) = l..f(-xo)ai’ I= 1’2,3 s

where fis a real-valued function. In this case, setting x° = ¢ 2,
the reduced operator (8.2) is

A2 4 8tf + 3+ 84f3=0. (8.22)

An explicit global form of an SL(2,C)-invariant con-
nection on £ is known.? But we used here the connections in
an infinitesimal neighborhood of U, . This technique is used
for dimensional reduction in different papers.>® We stress
here that the infinitesimal symmetry condition and its jet
prolongations provide a splitting of a relevant exact se-
quence of the type (5.1).

The splittings of (5.1) [or (6.2)] coming from some
symmetry group are not all splittings. There are situations
where a crucial role is played by another type of splitting.
The next section gives an example of this.

(8.21)

IX. DIMENSIONAL REDUCTION OF THE SIX-
DIMENSIONAL MAXWELL EQUATION. CONFORMAL
ELECTRODYNAMICS AND NONDECOMPOSABLE
REPRESENTATIONS

Here we show that the conformally extended Maxwell
equation, the additional scalar fields, and the used nonde-
composable representations of the conformal group C(1,3)
(see Refs. 10-15) can be obtained by a dimensional reduc-
tion of the six-dimensional Maxwell equation, followed by a
restriction on the projected light cone.

We start from RS o= (*0°0%) = (v*)eR®,
©=0,123 g, =diag( — 1,1,1,1,1, — 1) is the metric ten-
sor, the Maxwell equation for the electromagnetic potential
A, is

F,=08,4,—38,4,, d°F,, =J,, (9.1)
where J, plays the role of an external current. The group
0(2,4) acts naturally on the one-forms 4, J, and Eq. (9.1)
is invariant. We want to reduce simultaneously the differen-
tial operator and the group action.
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The reduction group is R * = R\ {0}. It acts on R® by
multiplications,

pw) =pv, peR*. (9.2)
For any real A, the action (9.2) has an extension to a bundle
morphism action 7* on T(R®) and T *(R®) by the formu-
las

TP (v,u) = (pvp'u), (9.3)
(v,u)eT(R®), and

TP (vp) = (pvp~*p), (9.4)
(v,p)eT *(R®),. The conditions (2.2) and (6.6) for a one-
form A4, read

A, (pv) =p~*4,(v), (9.5)

03,4, (v) = — A4, (v) . (9.6)

The action T commutes with the action of 0(2,4)
and the latter may be reduced. For the pair XV, T%® the
Maxwell equation (9.1) is invariant and also may be re-
duced. We shall restrict our attention to the identity-con-
nected component SO,(2,4) of the group 0(2,4). The re-
duced cotangent bundle T*(R®)z. [we simplify the
notation 7*(R\ {0}) z . ] does not depend on A and the cor-
responding exact sequence

* el

0r*  T*(R®) 4. — T*(PR®) 0, 9.7)

PR® = R®/R *,isinvariant with respect to the reduced action
of SO,(2,4). Hence the subspace C* (T *(PR®)) is invariant
with respect to the realized representation of SO,(2,4) on
C= (T*(R®%)g.). Thedim 7* = 1 and according to the inter-
pretation given in Sec. III, the reduced Maxwell operator
acts on the pairs consisting of a scalar field and a one-form on
PR®.

We shall do all calculations in the adapted (nonglobal)
coordinates

x* =/ +1%),

6)2 .

k=v"4+0°, 038

@ =8, v 2(0° + v -8)
We set “ — ” indices for £ and “ + ” for ¢. In these coordi-
nates we have

where x, = 1,,x", 1,, = diag( — 1,1,1,1), u,v =0,1,2,3.
The Maxwell equation for F(k,x,, ,p) is

2
—]ci’;a+F+ =J_,
Lok, La +1s F
k2 % (9.10)
2
- 7(—¢"2)'a+F+v=Jv,

Fa“F + +%3+F—+ =J,

LetX,, =v, d, — v, J, be the generators of SO,(2,4).
The physical generators'S are X, w—the Lorentz transforma-
tions, Xss—the dilatations, 7, = X, — X,,s—the transla-
tions, and C, = X,,s + X,c—the special conformal trans-
formations. The action of the special conformal
transformations K = exp(c* C,, ) in terms of the adapted co-
ordinates is

K(kx'p) = (k'x*@"),

k' =k (1+2,x"+c(x*—29)),

T = x4 4+ (x* — 29) ,
14 2¢,x" + c*(x* — 29)

. L4
(14 2c,x” + c*(x?

(9.11)

P 200

where x? = 7,,%*x". The action (9.2) of the reduction

group takes the form

p (k@) = (pkx.p) . (9.12)

We shall consider a reduction of the six-dimensional
Maxwell equation for the pair 7" and 7**. For a coordi-

3 . 1 —x? nate realization of the reduced bundle T*(RS) . we take
A_(kx,p) =4 (_a—k_) =x"4, () + ( 2 + ¢)A5(v) U, = {veR®|k = 1}. Then the section of T*(R®),, has the
- form A4_, ., (xp) ='A_,,L,+ (Lx@), J_ .+ (@)
+ ( 5 — ¢’)A6(U) , =J_, + (Lx,p). Equation (9.6) on U, reads (forA = 1)
a
A, (kx,@) =4 (_) I_A,(x@)=0, d_A, (xp)=0
w(oX9) =4\ G (9.9) n . (9.13)
O_A_(x,@) = —A_(x,) .
= kA, (v) — kx,As(v) + kx,,A¢(v) ,
A, (kx,p) = A ( J ) = kAs(v) — kdg(v) The reduced Maxwell equation [for the fields
* dp A_, . (x@)]is
J
%3, A_+28,4_ —29d,3_A_ =J_,
aya,uAv_av a#A,u_av a+A— _2¢;(a+ a+Av_a+avA+) =Jv’ (914)
%3, A4, —9,0"4, -3, 9, 4_ =J,
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[Equations (9.14) are obtained from (9.10) by setting k = 1
gnd rsplacing d_A_, , (xp) by (9.13). This is
D, = Do§S, in Proposition 6.3.]
The adapted coordinates are canonical for the exact se-
quence (9.7),
*A_A,,A,)=A4_,
J*¥4,,4,)=(04,,4,) .
The reduced action of the special conformal transforma-
tions K == exp(c*C, ) on the base of (T *(R®)) is
K(x*@) = (x"*¢@"),
o= x* + (X2 — 2p) ’
1+ 2¢,x" + *(x* — 2¢)
' @ ’
(1+2¢,x* + A (x* = 29))
and their action on the fields4 _ , , (x,p) for arbitrary 4 is

(9.15)

(9.16)

¢

K='(4)_(xp) =;A—1;1—A_(x',¢') :
K='(4), (xp)

2, +2%x, 1 ox
=———Ad (X )+—"F—A,Xp’)
P/I 4 p/l—l axy ¢
dplc, +cx,)
— ——;n—z—”——A+(x P ) N (917)
2’ -
K—I(A)+(x,¢)) = - TA—(x ’¢7 )
p

L= 2¢"p + 23 (x” + c¥(x* — 29))

p}.+1
2
X4, (x\p") + £+/1—f’;c—A+(X’,¢7 0,
4

wherep = 1 + 2¢,x" 4 (x? - 2¢).

The submanifold M * = {(x,p)eU, |@ = 0} is invariant
and is identified with the Minkowski space. This is the Dirac
embedding M*-Q,,/R* Q,, = {veR*\{0}|g,,v"v°

= 0}. On M * the special conformal transformations are, as
expected,

K(x*) = (2 + c*x%) /(1 + 2c,x* + c*x?) . (9.18)

The action of SO,(2,4) on the restriction (7*(R®),)x+ is
natural and was, in fact, calculated in Ref. 15.

The embedding'” M *— U, is fixed in our considerations
and leads to the following exact sequences:

ko 1
0-T(M?*) - T(U,) p« — N(M*) -0, (9.19)

k* I*

0cT*(M*) « T*(U,)p« —« N(OM*)*—0, (9.20)

where N(M*) is the normal bundle, N(M*) = T(U, ) 5/
T(M*). In the adapted coordinates we have
k*A,(x),4,(x))=4,(x),
%4, (x))=(0,0,0,04,(x)),

whered _ , , (x)=4_, , (x,0).
The operator (9.14) is not internal for M * and we do not
have a natural restriction on M *. We want to define a restric-

(9.21)
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tion on M * in such a way that the restricted operator would
be invariant with respect to the reduced action of SO, (2,4)
on (T *(RS)),- [for the special conformal transformations
this is (9.17) with @ = 0]. This may be done if the expres-
sions for the transversal to M * derivatives d_, d, d_ are
invariant.

Let us consider the six-dimensional Lorentz condition

994, () =0. (9.22)
The reduction of (9.22) on T*(R®), is (A = 1),
d*A, (x,p) +d, A_(xp) + 24 (x,p)
203, A, (%) =0. (9.23)

Equation (9.23) is automatically invariant with respect to
the reduced bundle morphism action of SOy(2,4) on
T*(R®), and, together with its first prolongation, gives on
M@ =0)

04A4,(x)+d,4_(x) + 24, (x) =0,

d,0"4,(x)+d,9,4_(x)=0.
Combining (9.14) (considered on M*, @ = 0) and (9.24),
we have

(9.24)

O4_(x)—238"4,(x) —44, (x) =J_(x),
04,(x)+23,4,.(x) =J,(x),
DA_,,(x) =J+(x)9

(9.25)

where 00 = d*4d,,. Equations (9.25) are also automatically
invariant with respect to the reduced (T*"’ for 4, and T*®
for J,) bundle morphism action of S0,(2,4) on
(T*(R®), )ps+» i€, it is conformally invariant.

One can impose some invariant conditions. Let
*(4) =0, i*(J)=0. Then 4_(x) =0=J_(x) and we
have

—29%4, —44, =0,

4, +248,4, =J,, (9.26)
04, =J,.

Excluding A, we have
d*F,, =J,, —i0d"4,=J,, (9.27)

F, =d, A, -3, A,. Equations (9.26) were derived in
Refs. 11 and 14, and Egs. (9.27) were used in Ref. 15.
If only J_ = 0 and excluding 4, , we have from (9.25)

d*F,, +i0d,4_=J,,
P4 —J00%4, =J, .
The equation d° J, =0 on RS, reduced by means of

T on T*(R®),, for J_ = Ois an internal differential oper-
ator for the submanifold M *C U, and on M * gives

a*J,(x) =0. (9.29)
Hence it is conformally invariant and together with (9.28)
leads to the conformally invariant equation

’4_(x) =0. (9.30)

The differential operators of (9.28) and (9.30) lead to a
one-parameter family of conformally invariant differential

(9.28)
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equations

o*F,, +31d,4_=J,,

BOPA_—303%4, =7, ,
BeR. Equations (9.31) were introduced in Refs. 10 and 12
by studying the conformally invariant two-point functions,
and discussed in Ref. 13.

The new result of this section is the observation that the
set of equations (9.27) and (9.28) can be obtained in two
steps. The first is the standard dimensional reduction of the
six-dimensional Maxwell equation by means of a reduction
group R * and actions 7", T, The second is a conformal-
ly invariant restriction of the reduced Maxwell equation by
means of the reduced six-dimensional Lorentz condition.
The additional fields come from the exact sequence (3.5)
and have the same nature as the scalar fields and the gauge

field in the dimensional reduction of G-invariant metrics
(see Ref. 1 and Sec. III).

(9.31)
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Cohomology of supermanifolds
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The cohomological properties of supermanifolds (intended in the sense of De Witt
[Supermanifolds (Cambridge U. P., London, 1984) ] and Rogers [J. Math. Phys. 21, 1352
(1980) ]) are investigated, paying particular attention to the de Rham cohomology of
supersmooth differential forms (SDR cohomology). The SDR cohomology of De Witt
supermanifolds is shown to be equivalent to the de Rham cohomology of their body. The SDR
cohomology is explicitly computed for some topologically nontrivial supermanifolds and some
general conclusions concerning the geometric structure of supermanifolds and the properties of
the SDR cohomology are drawn. In particular, it is shown that the SDR cohomology is neither
a topological nor a real differentiable invariant, but rather a “superdifferentiable” invariant.

I. INTRODUCTION

In this paper we undertake a systematic investigation of
the cohomology of supermanifolds. Supermanifolds are in-
tended in the sense of De Witt and Rogers, namely, they are
manifolds whose coordinates take values in an exterior alge-
bra B, . We consider here the case where B, is finitely gener-
ated, i.e., L < 0. Apart from its possible applications in
theoretical physics, mainly related to the study of quantum
anomalies in supergauge and superstring theories, this inves-
tigation has an interest of its own, since it can help to unravel
the not yet well-understood geometrical structure of super-
manifolds.

Our main object of interest is the cohomology of the
differential complex of “supersmooth” differential forms on
a supermanifold M, with the differential operator represent-
ed by the exterior differential d. The crucial point is that this
“supersmooth de Rham cohomology” (SDR cohomology)
is different from the Cech cohomology of the locally con-
stant sheaf 4 ; . on M with stalk B, ., thus breaking the anal-
ogy with real manifolds, where the de Rham cohomology of

smooth forms and the Cech cohomology of the locally con-
stant sheaf with stalk R (the real field) do actually coincide.
This implies that, in general, the supersmooth and the ordi-
nary de Rham cohomologies of a supermanifold are differ-
ent. This behavior is basically due to the fact that super-
smooth forms have in some sense holomorphic properties,
and therefore the sheaves of supersmooth forms have non-
vanishing Cech cohomology, contrary to the sheaves of
smooth forms on a real manifold.

This state of affairs has an interesting consequence:
SDR cohomology is not a topological invariant. Indeed we
shall discuss an example where two supermanifolds, isomor-
phic as real manifolds but carrying nonisomorphic superdif-
ferentiable structures, have different SDR cohomologies.
Thus this cohomology in some sense carries information
about the superdifferentiable structure, and therefore could
be a useful tool to study supermanifolds.

This analysis shows that supermanifolds have a richer
cohomological structure than graded manifolds. Basically,
graded manifolds are sheaves of Z,-graded commutative al-
gebras on a real manifold; their de Rham cohomology is
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equivalent to the de Rham cohomology of the base mani-
fold.! In this respect, graded manifolds behave like De Witt
supermanifolds (see Sec. V).

Let us now describe the contents of this paper. In Sec. I1
we recall some basic definitions in sheaf theory and a few
results in sheaf cohomology. Section III contains a brief in-
troduction to supermanifolds, with an emphasis on the de-
finition of the function sheaf. In Sec. IV we introduce the
supermanifold cohomologies we are interested in (SDR co-
homology, ordinary de Rham cohomology, Cech cohomo-
logy of the locally constant sheaf %, . and of the sheaf of
supersmooth functions) and show the most obvious rela-
tionships among them. In Sec. V we deal with a “degener-
ate” case, i.e., the case of the so-called De Witt supermani-
folds (supermanifolds that are locally trivial bundles on a
real manifold), while in Sec. VI we discuss some examples of
topologically nontrivial supermanifolds.

Finally, let us recall that SDR cohomology has already
been considered by Rabin in Ref. 2, where some of our re-
sults can already be found.

Il. SHEAF THEORY

Since in this work we shall mainly use techniques related
to sheaf cohomology, we shall start with some definitions
and results in sheaf theory and sheaf cohomology.

Sheaves’: Let X be a topological space. A sheaf # of
Abelian groups on X is a correspondence that to each open
set Uin X assigns an Abelian group .% (U), called the group
of sections of # over U, so as to verify the following proper-
ties.

(i) For any inclusion of open sets ¥C U there exists a
group morphism py: F(U)-F (V), called restriction
morphism.

(it) For all open sets U, p§, = id.

(iii) If WCVCU are inclusions of open sets, then

PVoPY = piy.

Giv) If {U,, iel} is a collection of open sets in X,
U=U,U, and steF(U) are such that
pgl_ (s) = pg,(2) Viel, thens = t.

(v) If {U,,iel} and U are as above, and a collection

©® 1987 American Institute of Physics 2363



{s;€7 (U,),icl} is given such thatpgjﬁ,,j (s;) =pi,ﬁnt (5;),
then there exists a section s€.% (U) such that p&_ (s) =s;.

For all xeX one defines the stalk %, of # at x as the
direct limit of the & (U)’s over all open neighborhoods U of
x. Here & , is an Abelian group whose elements are called
the germs of sections of & at x.

Given two sheaves % and & on X a sheaf morphism
A: F -9 is a collection {4, U open in X} of group mor-
phisms A,: F (U) - % (U) such that for all inclusions of
open sets ¥C U one has pjod, = A,%7V.

Soft and fine sheaves: In the following, # will always
denote a sheaf on a topological space X. A sheaf ¥ is said to
be soft if any section of ¥ on a closed subset of X can be
extended to all of X.> An example of a soft sheaf is provided
by the sheaf on continuous real-valued functions on a normal
space.

A sheaf ¥ is said to be fine* if, given any locally finite
open cover % = {U,, icl} of X, there exists a collection
{¢', icI} of endomorphisms of % such that (i) if se.Z (V),
thenp}, _ v, ogi, (s) = 0 for all iel; (ii) if V intersects only a
finite number of U,e%, and se.% (¥), then

§= Z¢V(S)

Examples of fine sheaves are the sheaves of dlﬂ'erentlal p-
forms on a real C= differentiable manifold, p>0.

If the base space is paracompact, it is easily verified that
any fine sheaf is soft.> Under the same hypothesis, any sheaf
can be canonically imbedded into a fine sheaf (by paracom-
pact we mean Hausdorff such that any open cover has a

locally finite refinement).

Cech cohomology™ Let & be a sheaf of Abelian groups
on a topological space X, and % = {U,, aeJ} an open cover
of X, with J an ordered set; for all a, ' a,&/ define
Usy-a, = Uy, NU, . Then define the complex of Abe-

lian groups C*(@ F) whose pth term is
CP(%,.F) = 1'[ F (Uygy..a,)

and a differential Operator 6 C*(%,F)~
as follows: if f = { £,,,...a }6C?(% %), then

(6f)ao'~-ap+l = 2 (—' l)kfao"'ﬁk--'ap+,!
k=0

where the caret denotes that the index has been omitted. The
Cech cohomology of X with values in F with respect to the
cover % is defined as the cohomology of the differential com-
plex (C*(%,%),0),i.e.,

ker(8: C*(%,F) = C?* (%, F))
Im(5: C?~ (%, F)-CH %, F 7))

Crr (9, 5F)

B (%, F) =

The Cech cohomology of X with values in Z is defined as the
direct limit of the Cech cohomologies with values in # over
all the open covers of X (this involves some set-theoretical
difficulties, see Ref.3); the cohomology groups so obtained
are denoted by H? (X,% ). One has naturally a group mor-
phism

(2.1)

B (%, F)—HP (X,F).
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The following results, taken from Ref. 3, will be useful in the
following.

Theorem 2.1: If X is paracompact, a sufficient condition
for the morphism (2.1) to be one-to-one is that for all non-
void intersections U, ..., , one has

H”( ety 7 )—O for p>1. O
Theorem 2 .2: If X is paracompact, and

0-F -9 -/ -0

is an exact sequence of sheaves on X, there is a long exact
sequence in Cech cohomology

v v ~ 9
0-H°(X,F)-H°X,9)->H°X,«)->H"(X,.F)

o P (X, F )~ HP (X,9) - FP (X, )

3 o
SHPYYXF ),

where the s are the so-called connecting morphisms.? [
Theorem 2.3: If the sheaf ¥ on a paracompact space Xis

soft (and, a fortiori, if it is fine), its Cech cohomology van-
ishes, i.e.,

HP (X,7)=0 forallp>l. o

De Rham cohomology’: Let M be a differentiable mani-
fold, and €¥? the sheaf of the real valued p-forms on M, p>0.
The cohomology of the differential complex

d d

QM) - (M) -, (2.2)
where d is Cartan’s exterior differential, is called the de
Rham cohomology of M, its cohomology groups will be de-
noted by H %z (M). The classical de Rham theorem can be
stated as follows.

Theorem 2.4: For all p>0,

Hi (M) =FP (M R), (2.3)
where Z denotes the locally constant sheaf on M with stalk
R (the real field). O

lil. SUPERMANIFOLDS

In this section we describe the fundamentals of super-
manifold theory, mainly following Rogers.*>’ Let B, be the
exterior algebra over R, L < w0, with its natural Z, grada-
tion B, = (B )o® (B ), (in the following, ‘“‘graded” will
always mean Z, graded). A basis for B, (as a graded vector
space) is conveniently indexed by M, , the set of strictly in-
creasing sequences of integers u = {0<u, < *** <p,<L}, as
follows: if {e,---e.} are generators of B,_, then S,

=e,, N\ Ae, ; moverover, we set By=1

With the wedge product, B, is a graded commutative
algebra, in the sense that (B, );(B.); C (B ), jmos2 and

aNb=(—1)bAa ifac(B.), be(B.),

(in the following, the wedge product symbol will be under-
stood).Let N denote the ideal of nilpotents of B, ; then B,
=R e N. Wedenoteby o: B; —R (body map) ands: B, - N
(soul map) the projections. The Cartesian product
(B, )™ ™" has a natural structure of graded B, module, with

the gradation
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(B)"*"=Bp"eBT"

given by B = (B, )X (B.)}, B = (B, )X (B.);-
A body map o™": BP"-R™ is defined by setting
o""”'(xl' . .xm,yl. . .yn )= (O'(xl) ceg(x™ ))

Here B 7" can be naturally endowed with two distinct
topologies: its topology as a 2L ! (m + n)-dimensional real
vector space (that we shall call fine topology) and a coarse
topology whose open sets are the counterimages through
o™" of open setsin R™ . If not otherwise stated, in the follow-
ing we shall consider in B 7" the fine topology.

Next we come to the definition of a sheaf of B, -valued
functions on B 7", in terms of which the concept of super-
manifold is introduced. We denote by € [ V;Q] the sections
over VC X of the sheaf of Q-valued C* functions on a mani-
fold X. Let U be an open set in R™, L and L’ two positive
integers with L ‘<L, and denote by’

Z,.,:¢[UB, ] —'Cg[(a'm’o)_l(U);BL]
the mapping explicitly given by
ZL',L N (x'erx™)

L 1 N
= Y ——@dnh
RN i M LELT AN | (=) -a(x™))

XS(x1)ie e s(x™ ), (3.1)

Here Z, ., is injective; we denote by Z1(0™)" ()] its
image. Thus & [ (0™°) ~!(U)] is the ring of GH* functions
of even variables on (0™ )~ '(U). The GH> functions of
even and odd variables are naturally defined on open sets
(™" )~ (U), where U is an open set in R™. The ring of
GH> functions on a set of this type is denoted by
[ (o™ )~ 1(U)] and its elements have the form

F(xl...xm’y‘---y”)z Z Fu(xl"'xm )y”, (3'2)
peMt

where y# = y*1---p# and Fye9[(ﬂ’°)"(U)]. The de-
rivatives of F are uniquely determined by the development

Fx+hy+0) =F(xp) + 3 h' 2 (xp)

i=1

+3 k“%’i—(m) + Ohk)?

a=1
provided that
L—L'>n (3.3)
Remarks: (i) Here % [(o™" )~ '(U)] is also endowed
with a structure of graded B, . module. For all open sets V'in
7 welet G (V) = G (™) o™ (V)]; this defines a
sheaf & of graded B, . modules on B 7",
(ii) For all open Uin R™, Eq. (3.2) defines an epimor-
phism of graded B; . modules

g1~ ()] &5, Aln]-F [(™) (D],
3.4)

where A[n] is the exterior algebra generated by B 3" over
B, .. This morphism is one-to-one if Eq. (3.3) holds.

(iii) The sheaf ¥ is apparently not soft, and therefore,
since B 7"" is paracompact, not even fine. This precludes the
existence of GH* partitions of unity on B 7*", and a fortiori
on any supermanifold.
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The concept of GH* function, due to Rogers,” is a
refinement of that of G* function [which is recovered by
setting L = L ' in Eq. (3.1) ], motivated by the fact that G*
functions are not well behaved in many regards [partial de-
rivatives with respect to odd variables are not defined, i.¢, the
map (3.4) is not injective, and, as a consequence, the sheaf of
derivations of G* functions is not locally free®].

In the following, in order to avoid the above-mentioned
drawbacks, we shall always assume that condition (3.3)
holds.

Definition 3.1: An (m,n)-dimensional GH* superman-
ifold is a Hausdorff, second countable topological space M
together with an atlas &« = {(U,,,¥,,)|¢,: U, -~ B 7"} such
that the transition functions are GH> mappings. O

Supermanifolds defined in this way are quite general as
far as topology is concerned, as explicit examples show.® One
can strongly constrain the topological structure by requiring
that the images ¥, (U, ) are open in B 7" also in the coarse
topology, thus obtaining the so-called De Witt supermani-
folds.'® The structural result stated in the following theorem
will be useful later on.

Theorem 3.1: Any (m,n)-dimensional De Witt super-
manifold M is a locally trivial C* bundle ®: M — M, over an
m-dimensional real differentiable manifold M,, with typical
fiber P™" = P™X (B )}, P being the ideal of nilpotents in
(BL)o- O

The real manifold M, is usually called the body of M.
Theorem 3.1 establishes the existence of C* isomorphisms
Po: ®~1(U,) - U, XP™"; however, in general M is not a
vector bundle since the mappings p, °p5 Yx,): P™" o P
with xeUy fixed, may fail to be vector space morphisms.

IV. SUPERMANIFOLD COHOMOLOGY THEORIES

We wish now to describe some cohomology theories
that are natural to be considered on a GH* supermanifold
M. According to Definition 3.1, the topological space under-
lying M has a structure of 2 ~ ! (m + n) dimensional C*
real manifold, where (m,n) is the dimension of M as a super-
manifold. So we can consider on M the sheaves €7 of B; .-
valued C= p-forms, p>0. We define a B; . -valued de Rham
cohomology, H %, (M,B, . ), as the cohomology of the com-
plex €*(M),

d d

COAM)-C ' (M)—---, (4.1)
where d is the obvious extension of Cartan’s exterior differ-
ential. There is a relationship between H ¥, (M.,B;.) and
H % (M), which is a straightforward consequence of the
identity B,. = R® g B, . (in the following, all tensor prod-
ucts will be taken over R). In order to show this relationship,
let us proceed as follows. The cochain complex (4.1) can be
written as € *(M) = Q*(M) ® B, ., where Q* (M) is the de
Rham complex (2.2). The cochain complexes % *(M) and
0*(M) can be regarded as chain complexes, & « (M) and
0, (M), by defining % _,(M)=C"(M), Q_, (M)

=W (M) for p>0, € _ , (M) = Q _, (M) =0 otherwise,

and their cohomologies regarded as homologies. This trick
permits us to apply the universal coefficient theorem,® which
yields

C. Bartocci and U. Bruzzo 2365



Hx (M,B,.) = H% (M) ® B,. ® Torg (H2% ' (M),B, ).

The torsion functor Tory is defined as follows: if 4, B are =
modules, and 0— F’ - F— 4 —0is any exact sequence with F
free, then the sequence 0—Tors(4,B)-F' '@ B—-F®B

—-A®B—0 is exact. Since B, . is free as an R module,
Torg (H%% '(M),B,.) = 0, so that

H¥%. (M,B,.)=H% (M)®B,.. (4.2)

Denoting by ¥” the sheaf of GH* p-forms on M, we
consider the complex % *

d d
GOM I (M-

The GH* (or supersmooth) de Rham cohomology of M,
denoted by H ¥, (M), is defined as the cohomology of this
complex. Apart from the obvious isomorphism H gp,g (M)
~HQ: (M,B,.), H¥*,x (M) is a priori different from the
B, .-valued de Rham cohomology of M, and we shall indeed
give in Sec. VI examples where H ¥p, (M) £H 8, (M,B; ).
Itis obvious that the H ¥, are functors from the category of
GH= supermanifolds to the category of Abelian groups. In-
deed, GH* supermanifold maps f: M,—~M, and f,:
M,-M, induce group morphisms [k
Hor (M, )~ H¥&e (M) such that (f0f )* =fTof%
(actually, the f* are morphisms of graded B, . modules).

Following Rabin,? it is possible to state a theorem of
GH> homotopic invariance for SDR cohomology.

Theorem 4.1: Let f,g: M —» Nbe GH* maps. Ifthereisa
GH?* map F: M X (B_ ),— N such that F (x,y) = f (x) for
o(y)»1and F (x,p) = g(x) fora(y)<0, thenf*=g* 0O

Other cohomolggies we can consider on a supermani-
fold M are the Cech cohomologies H* (M,#Z) and
H*M,% .+ ) of the locally constant sheaves % and % ;. on
M, whose stalks are R and B, ., respectively. Since M is para-
compact, these cohomologies fulfill Theorems 2.1-2.3.
Moreover, they are related by

H*M,%,.)=H* M%) eB,., (4.3)
which, like Eq. (4.2), is obtained by means of the universal

coefficient theorem. Then using the de Rham Theorem 2.4
one gets the canonical isomorphisms

H*M,B,.)=H*(M,#) 8B,

=HBR (M) ®BL‘ =H1‘SR (M9BL’ )’
(4.4)

which can be regarded as morphisms of B, . modules.

As far as the Cech cohomologies H* (M, %7*) are con-
cerned, one should remark that in general they do not van-
ish, contrary to what happens in the case of H *(M,%7?).
More generally, one can prove the following result.

Theorem 4.2: Assume that H*(M,%?)=0 for
O<p<g—1 and I<k<g. Then HEiop (M)
~H¥&z (M) ® B, for 1<k<q.

Proof: Following Ref. 11 (p. 44), one gets HE o (M)
~H* (M, 2 ;.). Then the isomorphism (4.4) completes the
proof. O

Since we shall see examples where H $pg (M)
#H%x (M) @B, ., Theorem 4.2 shows that H*(M,9%)
#0 in general.
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V. COHOMOLOGY OF DE WITT SUPERMANIFOLDS

In this section we investigate the case of De Witt super-
manifolds (see Sec. III) for the various cohomologies we
have introduced in the preceding section. We shall see that
the B, .-valued de Rham cohomology, the Cech cohomology
of %, ., and the SDR cohomology are isomorphic, and that
they all coincide with the B, . -valued de Rham cohomology
of the base real manifold. We consider a De Witt supermani-
fold M topologized with the fine topology; however, if we
endow M with the coarse topology, the result is the same,
even though the proof must be slightly modified (see remark
at the end of this section).

Let M be an (m,n)-dimensional De Witt supermanifold
over the real manifold M, with projection &: M-M, %
denotes again the locally constant sheaf on M with stalk R,
and Z, is the analogous object on M,. Moreover, in this
section % = {U,, asJ}, with J an ordered set, denotes a
good cover of M, namely, an open cover such that all non-
void finite intersections of its members are diffeomorphic to
open balls in R™.

Lemma 5.1: For all p>0,

B (M, R) ~HP (Mo, ). (5.1)

Proof: As a consequence of Theorem 2.1, we have

B (%, Ro) =P (Mo, R,), p>0. (5.2)

On the other hand, # = {W, =®~Y(U,), acl} is an
open cover of M, and it is obvious that

H (¥ R)=HP (%,R,), p>O0. (5.3)

Now, if V is a nonvoid intersection of members of #°, V is
C* homotopic to the fiber of M, which is a vector space and
hence has a vanishing de Rham cohomology. Since
H *(V,2|V) is isomorphic to the de Rham cohomology of
¥, this implies B ( V\Z|V) =0, p>1. Then Theorem 2.1
implies

B (VR =FP (M, R), p>O0. (5.4)

Collecting Egs. (5.2)~(5.4) one gets the proof. a
Corollary 5.1;

Hor (M) =Hbg (M,), p>O0. (5.5)

a

Let{4,, acJ} bea C = partition of unity on M, subordi-
nate to % . Applying to the coordinate expression to each A,
the mapping Z, ., given in Eq. (3.1), one gets a “tubular”
GH= partition of unity {A,, @eJ} on M subordinate to
%" = ®7'(%). Then the classical proof of the vanishing of
the Cech cohomology of the sheaves of differential forms on
a real manifold, obtained by means of a partition of unity
argument,’ can be adapted to show the following result.

Lemma 5.2: Let %" = {W,, acJ} be the open cover of
M obtained as above. For all g0 the long sequence of Abe-
lian groups

restr

057 ~ T F°., ) N ERUAN AN
a<pB
is exact, that is,HP(W,g") =0,p>1. a

We can now prove the main result of this section.
Theorem 5.1: For all p>0 there is an isomorphism of
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graded right B, . modules

where the right-hand side is given a structure of graded right
B, . module by setting (o ® a)b = o ® (ab).

H3g (M)=~Hbpy (My)®B; ., (5.6) Proof: Let us consider the double complex
_J
restr 5 5
0 - Y3M) — 92(Wa) - H gz(WaﬂWB) —
a a<B
restr & 5
0 - 9\ — Hy‘(Wa) - H 9‘(WaﬁWB) -
a a<f
restr 8 &
o - %M - Hgo(Wa) - H gO(WaﬁWB) -,
a a<B

[j
-]
nz.w., -

t a<p

0

where % | . is the locally constant sheaf on M with stalk B, .
and the vertical arrows above the horizontal line are given by
the exterior differential d. The columns on the right of the
vertical line are exact as a consequence of Poincaré’s Lemma
for GH* forms (see the Appendix), and the rows above the
horizontal line are exact as a consequence of Lemma 5.2.
Then a general result in homological algebra® implies that
the cohomologies of the initial column and of the bottom line
are isomorphic, namely,

Hipg (M) ﬁﬁp (M, %..), p>O0.

This isomorphism, together with Eqgs. (4.4) and (5.5), es-
tablish Eq. (5.6) as a group isomorphism. That (5.6) is also
a morphism of graded B; . modules is proved by direct com-
putation. a

Summing up, we have shown that, given a De Witt su-
permanifold M with body M,, the following cohomologies
are all isomorphic: (i) de Rham cohomology of GH* differ-
ential forms of M; (ii) de Rham cohomology of B, .-valued
C= differential forms on M; (iii) de Rham cohomology of
A, .-valued C= differential forms on M; (iv) Cech coho-
mology of the locally constant sheaf % ;. with stalk B;. on
M. Moreover, these isomorphisms are actually isomor-
phisms of graded B, . modules.

Remark: If the De Witt supermanifold M is endowed
with the coarse topology, not all the results of this section
apply, due to the fact that M is not Hausdorff and therefore
not paracompact. However, Eq. (5.3) still holds. Since in
the coarse topology all the open covers are obtained by pull-
ing back open covers of M,, the direct limit involved in the
definition of H * (M, ) can be taken over covers of the type
of 77, so that Eq. (5.1) holds. Lemma 5.2 being still valid,
Theorem 5.1 follows again.

Vi. EXAMPLES
We proceed now to the explicit computation of the SDR
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J

]
[ %, W.0Ws)

0

!
cohomology of three supermanifolds having nontrivial to-
pologies.

Example 6.1: M = S ' X R endowed with a structure of
(1,0)-dimensional GH* supermanifold. We take L = L'
=2; B, has a basis {1,8,,8,,8; = B.8,}. We choose two
charts (x,U, XR) and (y,U, X R), where U, (U,) is S ! with-
out the north pole (south pole), x and y are given in terms of
zeR and the stereographic angles 6,4, respectively, from the
north and south pole, as follows:

T m
- —<b<—;
2 2

e _t (1_9_)5], T g
r=e [ MT LS 2<¢<2

It is easily shown that x and y are C* diffeomorphisms and
that the transition functions x(y) and y(x) are GH* .

A direct calculation shows that a global GH* function
on M has the form

f=K+fiBi) i=1:293)
where the constant K and the C* functions f* of z are real
valued. Then

IM)=9°(M)=Ra[C*(R)’N], (6.1

where N is the nilpotent ideal of B, and C~ (R) is the vector
space of C* real functions on R. Moreover, denoting by
F (A) the sheaf of closed (exact) g-forms, one has

I'M)=Z'(M)=[C>(R)eN]e[RepS;],
BY(M)=C=(R)@N,

whence
Hlg (M)=Z'(M)/B (M) =Rep,

Theunique B; . module structure of H p, (M) which makes
the projection onto the quotient a morphism of B; . modules
is given by (r® B;)a = r ® (B,a). Clearly, H iz (M) is not
free as a B, . module.
Obviously, since

x=e’+tan—§—ﬁ3,

%?7=0 and ¢>1, we have
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HE,p (M) =0 for p> 1. On the other hand,
Hpr(M)®B, =B,

s0 that in this case the SDR and the B, .-valued de Rham
cohomology are different. Then Theorem 4.2 implies
H'(M,%°) 0.

Example 6.2: Here M = T'* X R?, where T'? is the two-
dimensional torus. Here M is endowed with a structure of
(1,1)-dimensional GH* supermanifold, with L =2,
L' = 1.Ifz, £ are local real coordinates in 72, and u, ¢, real
coordinates in R?, we put in M local B, -valued coordinates
x=z+4uf;, y=£B, + tB,. A direct computation shows
that the global GH*= functions on M have the form

f=a+vB, + lua' —tu]p;, (6.2)
where a, ¥, and u are periodic real valued functions of zand’
denotes differentiation. So we have
IM =Cc>SHelC=SHeBla[C>(S")eh;]

equipped with the structure of B,. module given by the
wedge product of elements of the form (6.2) by elements of
B, .. Standard computations show that

F'M=C=(SHelC=(SHeBle[RepS]
o[C=(S")oR] &8,

B (M)=Cg(SHe[Ce(SHeB]elC=(S)eh],

where C$(S"') denotes the space of functions in C* (S'')

whose integral over S ! vanishes. Taking the quotient gives

H éDR (M ) = BL ’
where B, has its canonical structure of B, . module. On the
other hand, one has

Hix(M)y®B, =B, oB,., (6.3)
$0 that, acording to Theorem 4.2, we must have
H'(M,%°)#0 again.

Example 6.3: The same underlying real manifold as in
Example 6.2 but with a different GH* structure, obtained
by lettingx = z + £B,,y = uP; + 1B3,. Now a global function
on M has the form

f=K,+ la+KulB; + K13, + t7B5,
where K, K, are real constants and «, y are real valued
periodic functions of z, so that

9°M)=Re [C~(S")eB]e[Rep]

® [Cw(sl) 8,33]'

An explicit computation shows that 2! (M)~ Y°(M) as
B, . modules and that ‘
B' (M) =[CgSHeBle[ReBle[C=(S")ehs],
whence

H sl;DR (M) =B,
with its natural structure of B, . module. Obviously, the B, . -
valued de Rham cohomology of M is given by Eq.(6.3)
again.

The supermanifolds in Examples 6.2 and 6.3 have the
same underlying real manifold, but their SDR cohomologies

are different. Therefore SDR cohomology is neither a topo-
logical nor a real differentiable invariant, while, according to
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Theorem 4.1, it is a superdifferentiable invariant; so it carries
information about the superdifferentiable structure of a su-
permanifold.

Vil. FINAL REMARK

In this paper we have considered the category of super-
manifolds defined in terms of GH* functions, because in
that case the modules of derivations of functions are free and
the differential geometry of supermanifolds can be studied in
terms of local coordinates. However, one can stick to the
choice of G functions originally introduced by Rogers,®
and all the results of this paper are still true, provided that L '
is everywhere replaced by L.
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APPENDIX: GH~ POINCARE LEMMA

Though the statement and the proof of Poincaré’s
lemma for GH> forms are a straightforward adaptation of
the classical result, for the sake of completeness we report it
here.

Lemma 4. I: Let Ube a star-shaped open subset of B 7",
and let w be a closed GH* p-form on U, p>1. There is a
GH> (p — 1)-form 5 on U such that w = dy.

Proof: We may assume that U is star-shaped with re-
spect to 0. Define a homotopy operator K: %2 (U)
-7~ (U) as follows: if wo=dx"A-- Adx"
Xa)AI...,,P(x), withxel,and 4, =1 m +n,

Ko=(—1)pdx™ "N Adx* x?

1
Xf 17 gy g (2x)dL.
0

A direct computation yields dKw + Kdw = w; moreover it
is easily shown that Ko is GH* . Then setting 7 = K one
gets the proof. O
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Canonoid transformations and constants of motion
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The necessary and sufficient conditions for a canonoid transformation with respect to a given
Hamiltonian are obtained in terms of the Lagrange brackets of the transformation. The
relation of these conditions with the constants of motion is discussed.

I. INTRODUCTION

The usual Hamiltonian description of mechanical sys-
tems with N degrees of freedom is formulated in a 2V-dimen-
sional space, the phase space, where (g;,p;), i = 1,...,N,
specify the canonical variables. Alternatively one can intro-
duce a compact notation in which (g;,p; ) are treated as com-
ponents £,; u = 1,...,.2, of a single entity £ = (&§},....6n»
En i 19l 2n ) =(Gpoesdn > P1ae-Py ). In this notation the ca-
nonical equations of motion corresponding to a given Hamil-
tonian H(q,p,t) = H(&,t) are written as

S =VapHp, (1.1)
where H ; = JH /9, and
0y 1y
HVvBH:' —1, Oy (1.2)
such that'?
Yag Vav = Opy» (1.3)
Yeapg +Vpa =0 (1.4)

Also, given any two dynamical variables R (£,¢), S(£,t) the
Poisson bracket (PB) is defined as
[S.R ]g =S8, Vap Rp- (1.5)

In this equation and everywhere in this paper we denote
/€, by ¢, for any function .

Now, given a Hamiltonian description (£,H) let

Na = Na (6:1) (1.6)

be an invertible transformation on phase space. This trans-
formation is called canonoid with respect to H(&) if there

exists a function K (,¢) such that'?
N = Vg 9K (1.7)
9,

For N = 1 it was recently shown* that (1.6) represents a
canonoid transformation with respect to H(¢) if and only if
the PB [7,,75]¢, a, B = 1,2, isaconstant of motion for the
(£,H) system.

The main goal of the present paper is to discuss the gen-
eralization of this result for systems with N> 1 degrees of
freedom. As we shall prove, the foregoing result is a peculiar-
ity of one-dimensional systems not being necessarily correct
in the general case. In Sec. II we show that a generalization
to N1 of the result from Ref. 4 leads to a necessary but not
sufficient condition for a canonoid transformation. The nec-
essary and sufficient conditions are obtained in Sec. III in
which we also establish a systematic procedure of construct-
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ing a canonoid map for a given Hamiltonian function. The
main results of this section are resumed in the form of two
theorems. In Sec. IV we give some applications.

Il. NECESSARY CONDITIONS FOR A CANONOID
TRANSFORMATION

Given a Hamiltonian system (£,H) we can look at Egs.
(1.6) as defining a set of 2NV dynamical variables. Hence
setting

Aug = (1275 1 (2.1)
we can use the Poisson bracket theorem' writing
Aaﬁ = [7'701’77[3]5 + [7711’7'7!?]5’ (22)

where the dot over a letter has its usual meaning of indicating
time derivative and Greek indices a, 3, u, v, ... will be as-
sumed to range from 1 to 2/N. In what follows we shall also
assume the summation convention for repeated indices. Us-
ing definition (1.5) we have

. I bl
Apg="Ta g, 06 4.
an, an,

from which we obtain

7/aﬁ Aaﬁ =Bﬁv Avﬂy (23)
where

., .,
U " (2.4)

By =y, —% —y,, —=.
Bv Yaﬁ 377,, yav (9773
Now let us assume that Eqs. (1.6) stand for a canonoid
transformation (CT), with respect to H(&,t). In this case
there will exist a function, say K (#,¢), the new Hamiltonian,
such that Eqs. (1.7) hold, and from Eq. (2.3) we obtain

yaBAaB =O’ (2-5)

which means that the trace of ||y,z4,,|| is a constant of
motion for the (£,H) system, i.c.,

Yap Aop = constant of motion. (2.6)

Thus (2.6) is a necessary condition for the map £=27ntobea
CT. But it is not sufficient: the validity of (2.6) does not
imply (for N> 1) the existence of K(%). Note that for N = 1
we obtain B,, = B,, as a consequence of (2.6) and from the
definitions (2.4) the existence of some K(7) function fol-
lows. Thus for one-dimensional systems conditions (2.6) are
necessary and sufficient for a CT. Indeed, in the most com-
mon usage &, — (4;,0;), 7. — (Q:,P;), i = 1,...,N, condition
(2.6) reads
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N

2.7
j=

which for N = 1 reduces to the previously mentioned result

of Ref. 4.

Summing up the foregoing results we can say that condi-
tion (2.6), although necessary, is not sufficient to guarantee
the “canonoidicity” of a transformation and the result of
Ref. 4 cannot immediately be extended for the N> 1 case.

This will be done in the next section.

[Q;sP; ] (4p» = constant of motion,
1

lll. NECESSARY AND SUFFICIENT CONDITIONS
FORACT

In order to discuss the characterization of a CT let us
consider more fully the objects B_; defined in (2.4). For
simplicity we restrict ourselves to time-independent invert-
ible maps,

§=2n, e =74(8). (3.1)
We start by considering (3.1) as a set of CT for a given
Hamiltonian H(&). In this case there will exist some K(77)
such that Egs. (1.7) hold. Using those equations we obtain
B,, = 0. For the converse, i.e., starting with B,,, = 0, it fol-
lows from (2.4) that

Ay _ 3,
anv a"’ﬂ ’

where ¥ = 7,5 1'7,,. Hence, as is well known, there exists a
function, say K(7), such that

vy =,

s
and Egs. (1.7) follow immediately. Thus we have shown
that for a CT we have B,,, = Oand conversely when B,,, =0
Eqgs. (3.1) stand for a CT.

Now, in contrast to the canonical transformations a CT
requires the specification of a Hamiltonian, and so this Ham-
iltonian is an important piece in the analysis of a CT on phase
space. Indeed, if one looks at Eqgs. (3.1) as defining 2N dy-
namical variables for a given (§,H) system one can write,
from (1.1),

Na = NapVuH o (3.2)
Using these relations it is not difficult to obtain the result

B, NvaNup =tug — lgas (3.3)
where

tap = Pop, (3.4)

Po=1yvuH,, (3.5)

log =1arbstn = NuaVirMs = = lga- (3.6)

Notice that /,; defined by (3.6) are the so-called'? La-
grange brackets of the £ ’s with respect to the ’s. Now, due to
the assumption of invertibility of (3.1) we can rewrite (3.3)
as

06, g
. I,

Thus from (3.3) and (3.7) it is easily verified that the sym-
metry of the objects ¢, implies a CT and vice versa. Hence

B, = (s —152) (3.7)
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Eqs. (3.1) will correspond to a CT for a given (£,H) system
if and only if

(3.8)

This result is related to the one obtained in the previous
section. In fact, the general result expressed by Eq. (2.3) can
be rewritten as

L, =t,.

YasAap = Vpa (tga — tag) (3.9)
after using (3.7). Thus, as before, but now based on condi-
tions (3.8), we see that for a CT the trace of ||y,z4p, || is 2
constant of motion but not vice versa, i.e., condition (2.6)
did not necessarily imply a CT.

Conditions (3.8) can be exploited to shed some light
upon the question of relating constants of motion of a given
mechanical system to CT. To this end, using (3.4) and (3.5)
we first rewrite (3.8) as

(I#p,v + lpv,u )ypﬁ H B + I#p VPBH v

—1,¥5Hg =0. (3.10)

From definitions (3.6) it is easy to verify the following prop-
erty for the Lagrange bracket /5:

lgy +lgve + 1,5 =0. (3.11)
This result permits us to conclude the existence of 2N func-
tions g, (£) such that

log =8ap — 8pa- (3.12)

Then, using (3.11) and (3.12) in (3.10), we obtain after
some manipulation,

(éy ),v - (g.V),[t + Ru,v - Rv,u EPp,v - Pv,y = O’
(3.13)
where
R,=8,vsHg,. (3.14)

Equations (3.13) are more than only a new version of
conditions (3.8) in the sense that they allow us to more easi-
ly treat the problem of constructing a CT for a given H(£).
We have the following procedure: for any set of 2N dynami-
cal variables g, (§) satisfying (3.13) the corresponding
&=7 mapping is obtained by solving the N(2N — 1) first-
order partial differential equations for 7, (£) which, in turn,
is obtained from (3.6) and (3.12). Of course this could still
be rather complicated in some cases but we can restrict our-
selves to transformations under which the coordinates in
configuration space are preserved, the so-called fouling
transformations,’ which considerably simplify the problem.
Indeed, for fouling transformations we have

7 =&

7iv N =./;(§)’ (3.16)
with / = 1,2,...,N, thus reducing to N the number of un-
known quantities.

We also note that for any suitable set g, (§) satisfying
(3.13) we can associate infinitely many other sets letting

(3.15)

8.-8, =8, +X,, (3.17)
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with X = X(£) arbitrarily chosen functions. This result
comes from the invariance of Eqs. (3.12) and (3.13) with
respect to (3.17) and, following the usual notion, defines a
gauge for the problem. It is also interesting to observe that
the gauge-transformation set is the intersection between
fouling transformations and canonical transformations
(which implies /,; equals numerical constants), both con-
stituting subclasses of the CT.’

Equations (3.13) admit a simpler and more interesting
class of solutions than those corresponding to dynamical
variables. In fact if we select g, (£) as constants of the mo-
tion for the (£,H) system in such a way that

R, =R (3.18)

the necessary and sufficient conditions for a CT will be ac-
complished. Hence we have the following theorem.

Theorem I: Let £, be a set of general coordinates on
phase space and (£,H) a Hamiltonian description of some
mechanical system with N degrees of freedom. Let g, (£) be
a set of 2V constants of motion for this system and 7, (£)
invertible time-independent transformation on phase space
constructed so that

v,u?

laB = ga,B - gB,a .

This transformation will be canonoid with respect to H(¢) if
the conditions

R,,=R,,

are fulfilled.

The procedure of explicitly obtaining the CT map after
the g, (£) family of constants is determined follows the same
steps as the one described for dynamical variables. On the
other hand our technique limits the g, family to constants
which do not depend explicitly on time. This, in some cases,
could become a severe restriction but, fortunately, thereis no
need of keeping g, = g, (£). The more general g, (§,¢) can
be used in writing Egs. (3.12). In this case conditions (3.13)
are changed to

(g,u),v - (év),y +gv,,ut —g,u.vt +R;4.v - Rv,y

=P,,—P, =0 (3.19)
so that in addition we must impose the conditions
vt = 8ut (3.20)

in order to constitute the g, family of Theorem I. These
conditions mean that /,z will not explicitly depend on time
thus agreeing with our initial assumption, namely Eqgs.
(3.1).

There exists an alternative procedure of treating the
present problem in which we need not worry about the func-
tions g, (£), but may directly use the elements /5. Actually,
defining the quantities

my, =1.,VsHpg, (3.21)

it is not difficult to set (3.13) in the following form:
—P,, =0.

Hence we have the following theorem.

Theorem II: Let £, be a set of general coordinates on
phase space and (£,H) a Hamiltonian description of some
mechanical system with N degrees of freedom.

i,w +m,, —-m, =P

— fuv
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Let 7, (£) be an invertible time-independent transfor-
mation on phase space so that

Iaﬁ = ”y,a 7;Lv 77v,ﬂ ’ m;.w = o rpﬂ H,ﬂv .
This transformation is canonoid with respect to H(£) if and
only if

l,+m, —m, =0. (3.22)

It is Theorem II that corresponds to the generalization
to the N> 1 case of the result presented in Ref. 4 for N = 1.
Indeed for the particular case N =1 we have m,, = m,, so
that it follows from (3.22) that /,, is necessarily a constant of
motion. We also have /,, =4, for N=1.

We point out that if /,, are numerical constants [i.e.,
8. (£) arelinear on the£ ’s] the corresponding map § = 7 will
be canonoid with respect to H({) if and only if m,, = m,,,
The particular choice /,, = ¥, is a solution of (3.22) inde-
pendent of the initial Hamiltonian function H(£): the corre-
sponding map is a canonical transformation which is a sub-
class of the CT.

Another class of particular solutions is obtained when
l,, are constants of the motion for the (£,H) system and
m,, =m,,. The resulting CT map turns out to be rather
cumbersome. This and the foregoing results are discussed in
the next section where some examples are presented.

IV. EXAMPLES

To avoid unimportant calculations which only obscure
the main point we shall restrict ourselves to the case N = 2,
As a first example consider

H=af + P&+ (1/2m)(£3 +£D), (4.1)
where a, £ are numerical constants. In this case we have
R, =0,R,=0,R;=m"'g,R,=m ™ 'g, Asetofg, con-
stants of motion satisfying (3.13) is

g =B +B%t, g =Pt —ak, g =0, g,=0.
Restricting ourselves to fouling transformations, 7, = £,,

Ny = &2, M3 = f1(£), 14 = f2(£), the corresponding differen-
tial equations for the unknown f; (£) are

fl,z “fz,l =0, fl,s =0,

f1,4 =p, fz,s =p, f2,4 = —a.
Thus one possible CT is

=&, M=E&, Mm=B+1£3,

Na=Pb3 — afs + £:6>,

and the fouled Hamiltonian is easily found to be
K = (1/2mB)(2mB> — 2n,m5 + m3)m,
+ (1/8mB*) (am; — dans — 4Bn.) 73
+ (1/2mB?) (an; + 2874)7.

As a second example consider the two-dimensional iso-
tropic simple harmonic oscillator (2 DISHO). The Hamil-
tonian is

H=4(E3 +E3+E3+£D).

Forg, = 3§,,8, = £, 85 = £2,8, = £,, conditions (3.13) are
satisfied and /,, are numerical constants. A fouling canon-
oid transformation corresponding to this choice is
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m=E&, Mm=&y Mm=2—E6,+865
774=§4"§3+%§f’
and the fouled Hamiltonian is found to be
K =100+ 27,)m7 +3(2 =15 — 205 + 73 )t
+40m5 + 73 + 273)
= (73 + 74+ Dz + 737,
A rather complicated fouling transformation is obtained
when one decides to specify /,, as constants of motion. For
instance, with /,, =0, /;; =&} +£3), [,,=0, 1,5=0,
Ly =1(&3 + £3), L4 =0, all the requirements of Theorem
II are fulfilled and a fouling CT for this case is

Mm=&, Mm=4§, 773=%§%§3+%§§,
Na=3E36+ 161,
for which the inverse map is

Ei=7, &=1 &=b[w+2)"—u'"],
Ei=al(w+2)"3 -7,

2372 J. Math. Phys., Vol. 28, No. 10, October 1987

where
@ =3, b>=3y;, dv=(a"+15)" -2,
bPu=(b®+9$)'? —b>
The corresponding fouled Hamiltonian is given by
K =3(n! +73) — (a*/8)
X0 +4) + 0+2)w-2)]
— (b*/8) [u'P(u+4) + (u+2)"P(u—-2)].

Despite its complicated form this Hamiltonian function also
describes the 2 DISHO.
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It is shown that every Lorentz transformation can be decomposed into a helicity-preserving
transformation that changes the momentum of a free particle and a helicity-changing
transformation that leaves the momentum invariant. Since momentum-preserving
transformations constitute a subgroup of the Lorentz group, helicity-preserving
transformations form a coset space. It is shown further that, for massive particles, every
Lorentz transformation can be decomposed into the Wigner rotation and helicity-preserving
transformations. For massless particles, every Lorentz transformation can be decomposed into
the gauge transformation and helicity-preserving transformation. The gauge transformation in

this case is a Lorentz-boosted Wigner rotation.

I. INTRODUCTION

In his 1957 paper on relativistic invariance and quan-
tum phenomena,' Wigner noted that there are Lorentz
transformations that preserve helicity and those that do
not.> He suggested that the difference between these two
different sets of transformations may play an important role
in understanding the internal space-time symmetries of ele-
mentary particles, particularly the symmetry of massless
particles as a limiting case of the space-time symmetry of
massive particles.

In his earlier work,? Wigner studied systematically the
subgroups of the Lorentz group that leave the four-momen-
tum of a given particle invariant. These subgroups, which
are called the little groups, have been extensively discussed
in the literature.** The transformations of the little group do
not leave the helicity invariant.

Since the little group is a subgroup of the Lorentz group,
it is of interest to study the cosets of this subgroup. We are
particularly interested in the physical quantity that remains
invariant under the transformations of these cosets.

We shall show in this paper that the transformations of
these cosets leave the helicity invariant while changing the
momentum. We shall therefore establish the following
theorem. Every Lorentz transformation can be decomposed
into a momentum-preserving transformation and a helicity-
preserving transformation. This theorem is applicable to
both massive and massless particles and to the case in which
the massless limit is taken from a massive case.

As Wigner pointed out in 1957," a boost along the direc-
tion perpendicular to the momentum does not preserve the
helicity. We shall show in this paper that this transformation
can be decomposed into a helicity-preserving transforma-
tion and a momentum-preserving transformation. The heli-
city-preserving transformation in this case consists of a boost
along the direction of momentum and a rotation around the
axis perpendicular to both the momentum and the direction
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of boost. The momentum-preserving transformation is an
element of the little group. This can be done for both massive
and massless particles, and the massless case is a special case
of the massive case.

The organization of this paper is very similar to that of
our previous paper,° but the Lorentz kinematics is different.
The kinematics of the present paper is designed to illustrate
fully the set of helicity-preserving transformations.

In Sec. II, we construct a Lorentz kinematics that en-
ables us to write an arbitrary Lorentz transformation as a
product of a helicity-preserving transformation and a mo-
mentum-preserving transformation. In Sec. III, the kinema-
tics constructed in Sec. II is compared with the traditional
approach to the O(3)-like little group for massive particles.
The role of the Wigner rotation is studied in detail. We study
also the role of the Wigner rotation in the zero-mass limit. It
is shown that, in this limit, the little group becomes a group
of gauge transformations applicable to massless particles
with spin 1. In Sec. IV, we study the conclusions of Secs. II
and III using the SL(2,c) formalism for spin-1 particles.

Il. DECOMPOSITION OF LORENTZ
TRANSFORMATIONS

If we perform a Lorentz transformations on a free parti-
cle with definite helicity, this applies to the helicity as well as
the four-momentum. Lorentz boosts along the direction of
momentum changes the magnitude of momentum but leaves
the helicity and the direction of momentum unchanged. Ro-
tations around the momentum leave both the helicity and
the momentum invariant. Other rotations change the direc-
tion of momentum, while preserving the helicity and the
magnitude of momentum. These transformations form a set
of helicity-preserving transformations. They are capable of
transforming the momentum to every possible value in the
three-dimensional momentum space. '

Let us start with a particle at rest with mass m and its
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b Bz
A, z

FIG. 1. Lorentz boost along the x direction. The four-momentum p can be
boosted to p’ either directly by B, or through the rotation R, preceded by
B, along the z direction. These operations produce two different effects
when applied to the internal space-time coordinates. This figure appears
identical to Fig. 1 of Ref. 10, but there is one important difference. This
figure is applicable also to massive particles, and allows the Lorentz boost
A, (a).

spin in the z direction, and then boost this particle along the z
direction with velocity parameter &, as is illustrated in Fig. 1.
In the four-vector convention: x* = (x,y,z,t), the resulting
four-momentum p is

p*=(0,0,a/a,1/a), with a= (1 —a?)"2 ()

The matrix that boosts the rest state four-momentum to the
above form is

1 0 0 0
01 0 0

A (a) = 2

D=y 0 1a asa 2)

0 0 a/a l/a

After this boost, the particle is in the positive helicity state.

We can boost this particle with nonzero momentum
along the z direction without changing the helicity. We can
also rotate the system without affecting the helicity. We can-
not, however, boost the system along the direction perpen-
dicular to the momentum without changing the helicity. In
this case, both the momentum and helicity become changed.
We propose to write this transformation as a product of heli-
city-preserving and momentum-preserving transforma-
tions.

Let us take this perpendicular direction to be the x direc-
tion, and boost the four-momentum of Eq. (1) along this
direction with velocity parameter 53,

p =B, (Bp, 3
where
/b 0 O B/b
1 0 0
B.(B) = o 0 1 o |’ (4)

B/b 0 0 1/b
withb = (1 — £?)"/2, Thisis not a helicity-preserving trans-
formation.

The boost B, () is not the only transformation that
changes the four-momentum p to p’. As is illustrated in Fig.
1, we can boost p along the z axis first so that its speed (or
magnitude of momentum) is the same as that of p’, and then
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rotate this boosted vector until its direction coincides with
that of p’,

P'=(R,(a,B)B,(a,3))p. (5)

Since rotations and boosts along the direction of momentum
preserve the helicity, the above transformation is a helicity-
preserving transformation. The explicit forms for the matri-
ces are

1 0 0 0
0 1 0 0
B.(a.B) = 0 0 (1—af)/a®d (f—a)/a® |’
0 0 (f—a)ad (1—af)/a®
(6)
and
ab/f 0 PB/f O
0 1 0 0
R,(ap) = —B/f 0 absf o) 7
0 0 0 1
where

f= (1 _ a2b2)1/2 — (az +BZ _ aZBZ)l/Z.
The boost velocity of B, is { f — a)/(1 — af'). The rotation
angle of R, is

@ =sin"'(B/f). (3)

We have seen above that p can be transformed to p’ in
two different ways. However, these two transformations do
not produce the same result when applied to the internal
space-time symmetry space. The best way to see this differ-
ence is to construct the closed-loop transformation,

D, (a,B) = [B,(B)] " 'R, (aB)B,(aB), (9

described in Fig. 2. The result of the above matrix multipli-
cation is

Wigner Romﬁon7

FIG. 2. The difference between the two transformations illustrated in Fig. 1.
The difference can best be described by the closed-loop transformation
[(B.(B))"'R,(a,)B,(a,B)]. This closed-loop transformation leaves the
four-momertum p invariant, and is therefore an element of Wigner’s O(3)-
like little group if the particle mass does not vanish. According to Wigner’s
original version of kinematics, we bring the particle to the rest state by ap-~
plying the inverse of the boost operator 4, (a). We can then perform a
Wigner rotation without changing the momentum of the rest particle. We
then apply A4, (a) to the rest particle in order to increase its momentum to p.
This procedure does not change the four-momentum, but performs nontri-
vial transformations on the internal space-time structure of the particle.
However, this traditional kinematics is possible only for particles with non-
zero mass. On the other hand, the closed-loop kinematics is possible for
both massive and massless particles.
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a/f 0 B/f —aB/f
0 1 0 0
D.@By=\ _g,; 0 all—af)e¥ al(f—aryerf| (10)
—aB/f 0 ala—f)/a*f (f—a®)/d*f]

When applied to the four-momentum p, this matrix leaves it
invariant,

p=D (a,B)p. (11)
Therefore, the above four-by-four matrix is a representative
of the little group that leaves the four-momentum p invar-
iant.

Let us now write B, of Eq. (4) as

B, = [R,B,(B.) "'(R,) ']B. (12)

Then the right-hand side of the above equation can be rear-
ranged, and

B.=R,B,[(B,) 'R,B,] -1
= (R, (a,8)B, (a,B))D,(a,8)) . (13)

The transformation (R, B, ) is a helicity-preserving transfor-
mation, but changes the momentum. D ~!is also a represen-
‘tative of the little group, but it can change the helicity.
Therefore, B, can be decomposed into a helicity-preserving
transformation which changes the momentum and a mo-
mentum-preserving tranformation which changes the heli-
city.

In Eq. (13), (D,) ™! is a representative of the little
group, and (R, B, ) is an element of the left coset consisting
of a helicity-preserving transformation. Equation (13) can
be written in terms of the right coset,

Bx = (R,YBZ ) (DX ) -! (R.VBZ) - 1(R}’Bz)
=(R,B,D;'B;'R;')(R,B,). (14)

The transformation (R,B,D ~'B 'R ') is a representa-
tive of the little group which leaves the four-momentum p’
invariant.

1Il. MASSIVE AND MASSLESS PARTICLES

The kinematics presented in Sec. I is applicable to both
massive and massless particles. For massless particles, this
kinematics has been discussed in the literature.® For a mas-
sive particle, the D matrix of Eq. (10) is a representative of
the O(3)-like little group. Wigner’s original kinematics for
this little group is the three-dimensional rotation in the Lor-
entz frame where the particle is at rest,>

P=A4, ()R (P[4, ()] "', (15)

where R, (®) is a rotation matrix. This means that the par-
ticle is brought to its rest frame and then is rotated before it is
brought back to its original frame, as is indicated in Fig. 2.
The rotation at the rest frame is called the Wigner rotation.>’

If the transformations are performed on the xz plane, as
in the case of Sec. II, R, (P) represents a rotation matrix
around the y axis,

cos 0 sin® O
0 1 0 0

Ry = —sin® 0 cosd O (16)
0 0 0 1
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This rotation matrix leaves the four-momentum invariant in

the Lorentz frame in which the momentum is zero. How-

ever, this rotation changes the direction of spin. Thus the

Wigner rotation is not a helicity-preserving transformation.
If the transformation of Eq. (11) is equivalent to that of

Eq. (15), we should be able to write

D, (a8) =4, (a)Ryp(®)[4,(2)] (17)

and the following similarity transformation on D, (a,3)
should produce the Wigner rotation matrix:

Ry (a,B8) = [4,(a)] " 'D(a,p)4, (). (18)

The resulting matrix is indeed of the form of Eq. (16), and
the Wigner angle is determined from the parameters a and

B,
® =sin~"(Ba/f)
=sin— lw(l _ a2) l/2/[a2 + BZ _ GZB 2] l/2). (19)
The D transformation is therefore a Lorentz-boosted
Wigner rotation.

For the case of massive particles, every Lorentz trans-
formation can be written in terms of the Wigner rotation and
helicity-preserving transformations, since we can replace
D ~'in Eq. (13) by the inverse of the expression given in Eq.
17,

B, = (R,B,)(A, ()R, ( — D)4 "(a))
= (R, (B,4,))Ry( — ®)4 . (20)

The transformation (B,A4,) is a boost along the direction of
momentum. Every transformation, except R -, on the right-
hand side of the above expression is a helicity-preserving
transformation.

Let us next address the question of whether the O(3)-
like little group becomes the E(2)-like little group in the
a— 1 limit. This has been discussed in terms of the singular
transformation known as the Inonu-Wigner group contrac-
tion.®® The parameter a that we use here is not the param-
eter in the Lie group upon which the group contraction
method is based. It is therefore not surprising to see that
every element in D, of Eq. (10) is analytic in « at and near
a=15

For this reason, we do not have to make any special
effort to take the limiting process. At a = 1, the D matrix
takes the form

1 0 B -8B
0o 1 0 0

D.ABY= 5 o 1-82 pn 2n
—B 0 —B¥2 1482

This matrix as an element of the E(2)-like little group was
given in Wigner’s original paper,® and discussed repeatedly
in the literature since then as a gauge transformation ma-
trix.>"'® However, there is one difference. The magnitude of
B cannot exceed one in Eq. (21), while the parameters in the
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FIG. 3. The Wigner angle and the angular separation between the direction
of the momentum and that of the spin in the SL(2,c) regime as functions of
B foragiven value of 2. As S 1, the particle speed approaches that of light,
and & vanishes, but 6 _ becomes 180°.

E(2)-like little group can be made arbitrarily large. We can
bridge this gap by observing the fact that the D transforma-
tion can be repeated in the following manner:

D, (1,8,)D, (1,8)) = D, (1,8, + ). (22)

The parameter 8 in Eq. (21) can be replaced by
(B, + B> + ) which can become arbitrarily large."’

The expression given for D in Eq. (17) is still valid, and
the Lorentz boosted Wigner rotation is a gauge transforma-
tion. As is indicated in Fig. 3, the Wigner rotation angle ®
vanishes as @ — 1. However, the parameters in the boost ma-
trix A, become infinite to make the elements of the D matrix
remain finite.

IV. PARTICLES WITH SPIN

The purpose of this section is to study what we did in
Secs. I1 and III in terms of SL(2,¢) for spin-} particles. While
the generators of rotations in SL(2,c¢) are S; = io;, the boost
generators can take two different signs:
Ki = (4 )(i/z)Ui-s'G

Let us start with a massive particle at rest, and the usual
normalized Pauli spinors y , and y _ for the spin in the posi-
tive and negative z directions, respectively. If we take into
account Lorentz boosts, there are four spinors. We shall use
the notation y, for which the boost generators
K, = (i/2)o;, are applicable, and y, to which
K, = —((i/2)0,) are applicable.

The boost matrix that brings the spinor ¥y, and y .,
from the zero-momentum state to that of p is

N 0
(+) — ES
4, (d)—( 0 N:F), (23)
with

N, =[0xa)/AFa))

We use the superscripts ( + ) and ( — ) for the undotted
and dotted spinors, respectively.

If this matrix is applied to the spinors at rest y .
and v,
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X+ P)=A{"(@)y,,and y, (p)=4{""(@)y.,

(24)
it produces the spinors for the particle with the four-momen-
tum p,

X+ @P)=N_.x:, Y@ =Nyy.. (25)
The subscripts + and — denote in this case positive and
negative helicities, respectively.

Let us next boost the above spinors along the x direc-
tion,

Y. @)Y=B By, @), Y@)=B.Byx, ).

(26)
The boost matrix takes the form
((1 +b6)/2b)"?

+ ((1— b)/2b)‘/2)
+((1 —b)/2b)"? ’

((1 4 b)/2b)"?
(27)

where b is defined in Eq. (4). The new spinors of Eq. (26)
can be written as

Bi*’(ﬂ)=(

X:@)V=N_ x4, Y@ =Nzx., (28)
where
, _(((lib)/2b)"2) ., _(i((1+b)/2b)'/2)
*T\((1Fb)/20)2) A2 TN ((AFb6)/26)

This boost is not a helicity-preserving transformation. The
spin directions represented by the above spinors are
+ sin~!(). These new spinors do not represent the spins
parallel or antiparallel to the new momentum p’. The angle
between p’ and the z axis is given in Eq. (8). The angle
between the momentum and the spin direction is

6, =sin"'(B/[@®+ 8% —a>B?1"?) +sin"'(B),

(29

as is described in Fig. 4.

The angles 5, and §_ are plotted in Fig. 3 against 8 for
a fixed value of a. Since we are starting with spins that are
parallel and antiparallel to the momentum, these angles are
zero for 8 = 0. When 8- 1, one of the spins become parallel
to the momentum (5, —0), but the other becomes antipar-
allel (6_ —180°).

S X4 A):('_/ \1s
- X
p’ Boost B’ Boost
[ P
——— z ——— ——— z
X- X4 X- X,

FIG. 4. The Wigner angle and the angular separation between the direction
of the momentum and that of the spin in the SL(2,¢) regime as functions of
a for a given value of 8. As @ — 1, 8 becomes zero, but §__ does not. This
nonvanishing angular separation is the source of gauge degrees of freedom.
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FIG. 5. The angular separation between the direction of momentum and
that of the spin in the SL(2,c) regime. As we boost the spinor along the x
direction, the spin of orientation angle depends only on 8, while the direc-
tion of the momentum depends on both  and B. All the spin directions are
rotated clockwise from those of the helicity states. This is due to the clock-
wise Wigner rotation in the rest frame.

In order to study the case for massless particles, let us go
to Fig. 3 where 8, and §_ are plotted as functions of & for a
fixed value of 8. Here again, the 5, becomes zero in the

R(8)

4

B¢('r))

8
\ & B,&)

5 r4

FIG. 6. Lorentz boost along an arbitrary direction. The procedure devel-
oped in the present paper is applicable to this general kinematics.

a— + 1limit, while §_ does not. Indeed, for one of the two
spin orientations, every Lorentz transformation is a helicity-
preserving transformation as the momentum/mass becomes
infinite, as was pointed out by Wigner.! However, for the
other spin orientation, the spin direction never coincides
with the direction of momentum. This is illustrated also in
Fig. 5 where the angles are plotted against S for a fixed value
of a.

This lack of spin alignment is the origin of the gauge
degrees of freedom. In order to see this, let us calculate the D
matrix from the closed-loop kinematics of Fig. 2. Its form is

(M)Vz ((lia)(f— |a|))1/z

2f 20Fa)f
(+) _ (30)
Dxm@d (AEDU=la)” (L)
2(1+a) ¥
I
The boost matrix B { *’(8) can now be written as DV (Lwy,=x+ DTMwy_=x_. (35)

B{X(B) =(R,(af)B;=’(a))D *’(aB), (31)

where [R, (a,8)B ! *’(a,p)] is a helicity-preserving trans-
formation. Therefore, the spin disalignment is caused by the
D matrix. In terms of the Wigner rotation, the D matrix is

D{*(apf) =4 (@)W(—DP)4,(a))” ', (32)
where
_ cos(P/2) —sin(<1>/2))
W@)_(sin(cb/z) cos(®/2) /- (33)

In the present kinematics, the rotation angle given in Eq.
(19) is positive. Therefore, the matrix W( — ®) performs a
clockwise rotation. Figure 4 clearly indicates the effect of
this rotation.

In the limita— 1,

1 - 1 0
(+) —_ (=) —_
D¢ (1,3)_(0 1/5', D¢ (l’ﬁ)_(a 1).

(34)

Here again the parameter f can be replaced by « that can
become arbitrarily large.

In Sec. II1, we noted that the D transformation applied
to a free electromagnetic four-potential performs a gauge
transformation. Thus the SL(2,c) spinors are gauge invar-
iant in the sense that
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On the other hand, the SL(2,c) spinors are gauge dependent
in the sense that

D,(‘+ )(l,u)X_ =X- + uy +»
D,“_’(l,u)jq =X+ —Uy-.
The gauge-invariant spinors of Eq. (35) appear as polarized
neutrinos in the real world. As was discussed in the litera-
ture,> it is possible to construct the four-potential from the

above SL(2,c) spinors. These gauge-dependent spinors give
rise to the gauge dependence of the four-potential.

(36)

V. CONCLUDING REMARKS

The starting point of the present work is Wigner’s 1957
paper,’ in which he suggests the possibility of exploiting the
difference between helicity-preserving and nonpreserving
transformations. Indeed, Wigner’s suggestion leads to a
physical embodiment of the coset expansion of the Lorentz
group with respect to its little groups.

In this paper, we specialized in the Lorentz transforma-
tion perpendicular to the momentum. In this case, the set of
helicity-preserving transformations includes a boost along
the direction of momentum and a rotation around the axis
perpendicular to the momentum and to the direction of the
boost. This is the reason why we had to introduce Lorentz
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kinematics different from that of Ref. 6. The kinematics of
Ref. 6, while designed for its own purpose, cannot accommo-
date boosts along the direction of momentum.

The kinematics of the present paper is a special case of
the most general kinematics described in Fig. 6. This general
case includes the Lorentz boost along with an arbitrary di-
rection, in addition to the boost along the perpendicular di-
rection. We can use the procedure established in the present
paper in order to study the general case with more compli-
cated formulas. However, it will not alter the conclusion of
the present paper.
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Generalized Lorentz transformation for an accelerated, rotating frame

of reference
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An exact, explicit coordinate transformation between an inertial frame of reference and a
frame of reference having an arbitrary time-dependent, nongravitational acceleration and an
arbitrary time-dependent angular velocity is given. This transformation is a generalization of
the Lorentz transformation and is obtained in two steps. First, the Minkowski metric is
transformed under an intermediate coordinate transformation to obtain a new set of
noninertial metric coeflicients in which one can easily identify the Thomas precession, as well
as the expression for the acceleration of the moving frame with respect to the instantaneous
rest frame in terms of the acceleration as seen from a stationary inertial frame. Second, a
rotation of axes is performed to absorb the Thomas precession and to add an ordinary spatial
rotation. The coordinate transformation obtained by combining these effects is nonlinear, since
certain terms involve time integrals, and leads to the appropriate space-time metric for an
accelerated, rotating frame of reference. It is shown that the usual forms of the Lorentz
transformation are contained as special cases of this result.

I. INTRODUCTION

In special relativity it is customary to represent an accel-
erated frame of reference by an infinite sequence of comov-
ing inertial frames. Each successive comoving inertial frame,
or rest frame, is connected to the previous one by an infini-
tesimal Lorentz boost.'"? As is well known, when the velocity
and acceleration are not collinear the axes of the accelerated
frame do not remain parallel to axes in the stationary frame
but rather rotate at the Thomas precession frequency.? In
the general case the accelerated frame may also have an ordi-
nary spatial rotation. The space-time metric in the acceler-
ated, rotating frame (x’,#) with Cartesian spatial coordi-
nates x' and time r (x°=ct) is*

g =5 (1a)
8oj =(l)ijk/c = ((DXI‘),-/C, (1b)
— 800 = (1 + Wer/c?)? — (@ Xr)?/c%, (1e)

where W is the time-dependent, nongravitational accelera-
tion of the observer’s frame of reference relative to the in-
stantaneous rest frame, r is the position vector locating a
spatial point with respect to the origin of the observer’s ac-
celerated frame, and o is the time-dependent angular veloc-
ity of the observer’s ordinary spatial rotation with respect to
the rest frame. Historically, accelerated reference frames
and the Thomas precession have been studied by approxi-
mate methods. " The coordinates of an accelerated, rotating
observer have also been studied by the method of Fermi-
Walker transport. In this paper an exact, explicit, nonlinear
coordinate transformation that incorporates the Thomas
precession and leads to the metric above will be given.

Il. ACCELERATED FRAME OF REFERENCE

For simplicity, consider first a frame of reference whose
origin moves along an arbitrary path with velocity and accel-
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eration that vary arbitrarily with time but whose axes have
no ordinary spatial rotation. The metric in this frame is then®

g =6y, (2a)
& =0, (2b)
— 800 = (1 + Wer/c?)?, (2c)

and the coordinate transformation that leads to this metric is
to be sought.

Suppose the instantaneous rest system is defined with
respect to the stationary frame by a pure Lorentz boost rath-
er than a boost plus a rotation. Then the transformation
from the stationary inertial frame §” with coordinates
(x"%,t") to a comoving inertial frame S’ with coordinates
(x*,t"), whose origin has constant velocity V'=dx"*/dt " in
S " and is instantaneously at rest with respect to the observ-
er’s accelerated frame S with coordinates (x,¢) at the ob-
server’s proper time ¢t = 7, is given by (notice that unprimed
coordinates are reserved for the accelerated frame)

X' = A%x"P, (3)
where
Ay =8+ (V) (y = DV, (42)
ANo= — (V/e)yV?, (4b)
A% = — (1/e)yV,, (4¢)
Aoo = 7’, (4d)
and
y=(1—V¥cH 2 (5

If the velocity V¢ is regarded as a function of proper time 7,
the transformation (3) defines a family of comoving inertial
frames, each of whose axes are parallel to the axes of the
stationary inertial frame. However, if the velocity and accel-
eration are not collinear the axes of successive comoving
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frames will not appear parallel to one another as seen from
the observer’s accelerated frame due to the Thomas preces-
sion.

In the stationary inertial frame S'” the observer’s four-
velocity is U”"® =dx"*/dr = (y¥V',cy). Therefore, the
components of the four-acceleration are’

ddU —YZ[W’”‘}" VZ(V WIIM)VI} (6a)
U»O m
W _Lpw,wm, (66)
dr c
where W"'=dV'/dt" = y~' dV'/dr is the acceleration of
Sin S§". Since U",U"*= — ¢* the four-velocity and the

four-acceleration are orthogonal, i.e., U", dU "*/d7 = 0.
In the instantaneous rest frame S’ the four-velocity is
U'® = (0,c). By the orthogonality of the four-velocity and
four-acceleration, the four-acceleration is of the form
dU'/dr = (W'0). In this frame the observer’s three-di-
mensional acceleration W' is thus the spatial part of the
four-acceleration. The observer’s four-acceleration in the in-
stantaneous rest frame is obtained by applying a Lorentz

Substituting Egs. (4) and (6) into Eq. (7a) one obtains
=7/2[W"‘+ (/VHy— 1)(V,,,W”"‘)V"], (8)

which gives the acceleration W' of S in the instantaneous
rest frame S’ in terms of the acceleration W "' of S in the
stationary inertial frame .S ".

As an intermediate step toward the desired coordinate
transformation, consider the transformation from the sta-
tionary inertial frame (x"',t”) to an accelerated frame

x',Dn,

T
xﬂi:Xi+I yVidT+_I_/1__2_(7/—l)(Vme)Vf’ (9a)
0
T 1
£ = | T4, (9b)
0 [4

where V! and y are functions of time T = ¢ = 7. The metric
transforms as

ax"= ox"®

v = . Hap> (10)
boost 8u aX* IX* Nap
dau” ; du"* i . . . . . . .
=A’, =W/ (7a) where 7,4 is the Minkowski metric. We wish to investigate
dr ar the components of the metric given by Eq. (10) in the frame
du”° — A auv’e _ 0 (7b) defined by the coordinate transformation given by Eq. (9).
dr ¢ dr ' Foru =i, v =},
}
ax"* Ix"! Ix"® Ix"°
8= ax axn M T axt ax
’ 1
= 81+ 5 = 0¥[84+ = v o = (2 ev) (2w ) =, (11a)
Forpy=0,v=j,
Ix"* Ix"! Ix"0 x"°
= -8 + - (—1
8o =330 ax7 4t axo axr TV
1 dV" 1 (dV )
=—|yV¥+ -hHw,x" — (y— 1) —==Xx"|V*
[7’ — (y—1)( ) 2 Vz (r—1 7
m k 1 av m k 1 1 1
—277’3V—(VX WE=2—2V = (r = DL XMV | |8+ 5 (v = DYV |8,
1 dv, m
Y+ rTX“+ r’V (V > ¢ ) rV)
_ —-—E—y La—vwwr, —-VW”k)X"] (11b)
Foru=v=0,
o ox"kaxm o gx"%gx"° (—1)
Boo= T 3x° ax° ¥ T 3x0 ax°
k dv,
———[ +———(}/—l)(V X"‘)dV +—( —1)( '"X"‘)V"
dr
m 1 m
= sz"V Vv, xmyve—2-L = V—(y—l)(V,,,X )V"]
! v,
[yV’+ > (y—=D (VX" )ﬂ—+ 12( —1)(d X")V’
T
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11
eV

1
+ 7

1 dv,

1 2
+[7’+—27’——X"’+77’3Vﬂ(VmX"')]
C T [4

d dr

14
»V %: (V. XYWV'i—2—_y %T’f (v — 1)(V,,X”)V’]¢Sk,

1

2
=i+ Sr[wrr S o- ALY ~Lyl- L o—nmawn- v oxt|

1
X[ —_i/_i.(?/_ l)(VnW"m - Vm W”n)Xn]a

where W", =y~ dV,/dr.

Onefinds that W "’ from dV ' /dr appears inside the first
term of Eq. (11c) in the combination of Eq. (8). It also
appears in Eq. (11b) and in the second term of Eq. (11c) in
the combination

Q= — (V) y—- 1)V W', -V, "), (12)

which is the well-known Thomas precession frequency. The
metric can therefore be written

8y = — QX*/c= — (@Xr),/c, (13b)
— 800 = (1 4+ Wer/c?)? — (X)) /2, (13¢)

where (); = ¥4” ;. This metric reduces to the metric given
by Eq. (2) for the observer’s accelerated frame (x',¢) under
the coordinate transformation

X‘=xi+f(QXr)’dt, (14a)
(¢]

T=t (14b)
The appearance of 2 Xr in gy, and gy, is furthermore charac-
teristic of a rotation. From Eq. (12) it follows that there is no
precession phenomenon when the velocity and acceleration
are collinear, as is well known.

The origin of the frame (X ’,T’) defined by Eq. (9) coin-
cides with the origin of the observer’s accelerated reference
frame (x',¢). The origin moves along an arbitrary path in the
stationary inertial frame (x"*,t ") with velocity V¢ that var-
ies arbitrarily with proper time, The axes of (X ’,T) appear
to remain parallel to the axes of (x"',z”). However, with
respect to the axes of (x’,¢) they appear to rotate with proper
angular velocity — Q'= — 1€"™"Q,,, opposite in sense to
the Thomas precession. At any given instant of proper time,
the origin and axes of (X*,T) coincide with those of the
instantaneous rest frame (x'',z’) that moves with constant
velocity ¥/ relative to (x"',t").

The desired coordinate transformation from the station-
ary inertial frame to the observer’s accelerated frame must
include the rotation of axes (14) to account for the Thomas
precession. Therefore, combining the transformations (9)
and (14), and taking care to include coefficients of X * in Eq.
(9) inside the integral in Eq. (14a), one obtains
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(11c)
r
x”i=x’+f(ﬂxr)’dt+ny"dt
0 0
1 .
+72—(?/— 1)(mem)V‘
+ [ a—ny.@xomvid, (s
0

i1 t 1
t” =J ydt+i2y(me"‘) +f — ¥Vm (IXK)™ dI,
0 4 o C

(15b)

where V'’ and y are functions of time ¢ = 7. It is understood
that the integrals are functions of time only. The metric
transforms as

axna axﬂB

v —— Nug- (16)
v = o o 1P

In carrying out the details of the calculation of the metric
components directly with Eq. (15) one finds that
dV'/dt = dV'/dr = yW "' again appears in the combina-
tions of Eqs. (8) and (12). The kinematics of the accelera-
tion and rotation are thus automatically incorporated into
the transformation. Equation (15) is the exact, explicit, non-
linear coordinate transformation that transforms the Min-
kowski metric for an inertial frame of reference into the met-
ric given by Eq. (2) for an accelerated frame of reference.

When the velocity V¢ is constant, Eq. (15) reduces to
the usual Lorentz transformation

X" =x Vi + (V/V(y — 1)V, x)V, (17a)

t" =yt + (1/)y(V,x™), (17b)
where the axes of S ” and S remain parallel but the direction
of V' is arbitrary. Also, as is well known, for motion with
time-dependent acceleration along the x” axis one may write
V=ctanh 0,y =cosh 6, W= y*W" =y*dV/dt =cdb/
dt, and Q0 = 0, where @ is the velocity parameter and is an

arbitrary function of time ¢ = 7. The transformation (15)
then becomes®

x”=fcsinh0dt+xcosh0; y' =y, z'=z (18a)
0

t”=fcosh 8 dt + = sinh 6. (18b)
0 (4

In particular, if the acceleration W is constant the motion
is hyperbolic. In this case, with the substitution X = x
+ (¢*/W), the metric of Eq. (2) reduces to the Rindler
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metric® ds’ =dx> +dy* +dz> —c 2(WXx)2dt? for the
space-time geometry of a uniformly accelerated reference
frame.

lil. ACCELERATED, ROTATING FRAME OF
REFERENCE

Suppose now that the accelerated frame of reference has
an ordinary spatial rotation with time-dependent angular
velocity @ with respect to the instantaneous rest frame in
addition to its Thomas precession. Then since the origins of
the accelerated, rotating frame and the instantaneous rest
frame coincide, it is only necessary to make the substitution
Q- + o in Eq. (14a). One therefore obtains the follow-
ing general coordinate transformation that leads to the met-
ric of Eq. (1):

}

8y =6y

&= — (/Y[ = (W/VH (=D W"; = VW Ox*] + (1/0) [(R + 0) Xr]; = (1/c) (@Xr),,

x”"=xi+f [(Q+ o) Xr)'dt
0
+ny"dt+—15—(7—1)(V,,.x”')V"
o V
+f %(y-l)vm[(n+m)><r]"'V"dt,
(€]
(19a)

t
t” =J'ydt+lzy(V,,,x’”)
0 C

+f ;lz-er[(ﬂ+m)xr]’"dt, (19b)
0

where again V' and y are functions of time ¢ = 7. Upon
transforming the Minkowski metric with this coordinate
transformation one finds

(20a)
(20b)

—8oo={1+ (I/AP[W" + /¥y~ DV, W™V, ]x*}?
— (/AW = WV = DW= VW x| [ — (VD) (= DLW, — VW )x"]
— (/A (@ + @) Xr)* + 2(1/)y[ ~ (/P (¥ = DT W™ = V"W ) (D + 0) Xr],,

= (1 + Wer/c?)? — (o Xr)?/c?

as required.

The coordinate transformation given by Eq. (19) repre-
sents a boost followed by a rotation, as may be made clear by
defining the rotation operators

R =8 +f dt(Q + o), (21a)
0

R =8 —L dt(Q + )" (21b)

For infinitesimal rotations #” = % ~'. If V' is the velocity
of the accelerated, rotating frame S relative to the stationary,
inertial frame S ” and ¥ "' is the velocity of S " relative to S,
then

yri= — .9?”‘,- Vi,
Vie —~ 5?’, V",
Therefore, Eq. (19) may be expressed as

(22a)
(22b)

x»i= .%imxm +f ’}/Vidt— V"m[-;—:;(‘}’— l)me'],
0

(23a)
t"” =J ydt — V"m(—lz—yx"'),
o c

where the identity [(2 + 0) XV]r= — [( + @) Xr]V
has been used. Equation (23) has the form of the most gen-
eral Lorentz transformation including rotation.'®

(23b)

IV. EQUATION OF MOTION

For completeness, one may derive the exact equation of
motion of a particle as seen from the accelerated, rotating
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(20c)

I

frame of reference. The differential equation for a space-time
geodesic implies

dzx"=(i>‘z(d2x" d?t dxi)

dt?  \dr d 47 dr
. dx dx* o dx/ .
= | == 2cE, 22 2I-\| )
("‘dtdt+ p gyt

1 dx’ dx* dx’ dx’

+(—r9 ax ax | are % L erg )—

¢ ar dr The g T
(24)

The Christoffel symbols for the metric given by Eq. (1) are

Ty =0, (25a)
T = (1/0) [0/ — (1/63) (1 + Wer/c®) ~' W, (0 Xr)'],
(25b)

Ty = (1/A{1 + W/ Wi + (oXr)’

+ [@X(@Xr)] — (1/c¢®) (1 + Wer/c?) 7!

X [(@Xr)W 4+ (W-r) [ (oXr)}, (25¢)
Iy =0, (25d)
Ty = (1/)(1 + We/c?) ™' W, (25¢)

S = (1/¢®) (1 + Wer/c®) [ (0 X)W + (Wer) . (25f)
Therefore, the equation of motion is
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ad=— (1 +Wr/AW — (dxr)
—2(0XV) — [eX(oXr)]
+ (1/*) (1 + Wer/c?) 7 [2(V + @ XT)*W

+ (W+oXW)rllv' + (oxr)], (26)

where in Cartesian coordinates v ‘ = dx’/dt is the velocity
measured by the accelerated, rotating observer and
a' =d?x'/dt? is the coordinate acceleration.

Equation (26) agrees with an exact result of DeFacio,
Dennis, and Retzloff'! obtained by using a general coordi-
nate-independent treatment of special relativity. An ap-
proximate form of this equation was obtained using local
coordinate methods by Ni and Zimmermann'?> who were
investigating general relativistic corrections to special rela-
tivity; they included gravitational tidal effects expressed in
terms of the Riemann tensor evaluated along the world line
of the observer but found no coupling between the gravita-
tional terms and inertial terms to the order calculated. Ref-
erence 11 and the special relativity part of Ref. 12 were later
shown to be consistent.'? Liand Ni'* extended the method of
Ref. 12 and found that the gravitational-inertial coupling
only occurs at the next order; they also found an exact
expression for the inertial terms in agreement with the ear-
lier result of Ref. 11.

V. CONCLUSION

An exact, explicit coordinate transformation has been
presented that yields the exact space-time metric for a flat
space noninertial reference frame having an arbitrary, time-
dependent translational acceleration and angular velocity. It
was shown that the usual forms of the Lorentz transforma-
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tion are contained as special cases of this result. The expres-
sion for the Thomas precession frequency and the relation
between the reference frame’s acceleration as measured in
the instantaneous rest frame and in the stationary inertial
frame are contained implicitly in the calculation of the met-
ric. Therefore all of the relevant special relativity kinematics
appear in a self-consistent manner.

The results of this paper should be useful for practical
numerical calculations of special relativistic effects, such as
in an accelerated spacecraft or on the rotating Earth. The
simple metric coefficients of Eq. (1) and the explicit coordi-
nate transformation of Eq. (19) may be more convenient
than some of the more formal works referenced here.
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A state ¢ on a W *-algebra .# is said to fulfill the Jauch~Piron condition if ¢(p) = ¢(g) = 1 for
projections p,ge.# implies ¢ (p Ag) = 1. Here p A ¢ denotes the infimum of p and ¢ in the
projection lattice of .#. The Jauch-Piron condition is a compatibility condition between the
algebraic and the lattice-theoretic approach for the description of physical systems. Normal
(i.e., o-weakly continuous) states always fulfill the Jauch-Piron condition. It is argued that
states not fulfilling this condition should be regarded as unphysical. It is shown that a state ¢
on a o-finite factor .# is singular if and only if projections e, fe.# exist such that

d(e) = ¢(f) =1and e Af=0. In particular, any pure state ¢ on .# fulfilling the Jauch—
Piron condition is normal, which implies that the underlying factor .# is of type L.
Furthermore, the following result is proved: Let ¢ be a pure Jauch—Piron state on W *-algebra
# with separable predual and without any commutative summand. Then ¢ is normal and a
central projection z,€ .# exists such that ¢(z,) = 1 and z,.#z, is a factor of type I. Thus, cum
grano salis, pure Jauch-Piron states exist only on commutative W *-algebras and type I factors.

The former case corresponds to classical theories, the latter to Hilbert-space quantum
mechanics. The implications of these results on the interpretation of quantum mechanics are

discussed.

1. INTRODUCTION

Different axiomatic formulations have been found to
widen the original quantum mechanical formalism and to
embed quantum mechanics and classical theories into a
broader structural setting. One may distinguish three main
approaches: quantum logics, algebraic quantum mechanics,
and the “convex state approach.” In quantum logics and
algebraic quantum mechanics one starts with “observa-
tions” or “observables” forming a lattice or an algebra (C *-
or W *-algebra), respectively. In the convex state approach
the physical states of a system to be described are the central
object of interest. In the former situation an appropriate no-
tion of “‘state” has to be introduced, in the latter an appropri-
ate notion of observable.

In algebraic quantum mechanics physical states are
commonly introduced as normalized positive linear function-
als on the respective algebra. The critical point of such a
definition is the linearity of the functional. Various attempts
for its justification have been developed. The most famous
one is the theorem of Gleason.'

In the following, attention will be focused on a particu-
lar algebraic approach, namely W *-algebraic quantum me-
chanics.*? It is interesting to note that this approach is inti-
mately connected with quantum logics. The set & (.#)
def

= { pe # |p* = p = p*} of projections of a W *-algebra .#

is a (complete, orthomodular) lattice. Its elements can be
interpreted as the “propositions™ or “yes—no questions” of
quantum logics. It is therefore possible to adopt a characteri-
zation of physical states given by Jauch? who says: “4 state of

® Permanent address: Laboratory of Physical Chemistry, ETH-Zentrum,
CH-8092 Ziirich, Switzerland.
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a system is the set of all ‘true’ propositions of the system.”

Recall that a lattice (L,<) is a partially ordered set L
with a least element 0 and a greatest element 1 such that the
supremum p V g and the infimum p A g of two arbitrary ele-
ments p,gel with respect to the partial order < exist. An
orthocomplemented lattice or simply ortholattice (L,<,1) is
alattice (L,<) together with an involutive mapping |: L - L
such that pAp' =0 and pVp' =1, VpeL, and such that
p<q implies ¢* <p* for arbitrary p,geL.

In the projection lattice 7 (.#') of a W *-algebra .#,0is
given by the zero operator and 1 by the unit operator in .# .
The orthocomplement p' of peZ (#) is defined as p*

def
=1 —p. Furthermore p<gq holds for p,ge? (#) if
Pqg=4p=p.

The definition of physical states (with respect to a W *-
algebra.# ) as given above is formalized as follows®: Consid-
er an orthosublattice 7 of & (_#') and an ortholattice homo-
morphism 7: 7—{0,1} into the lattice {0,1} consisting only
of a least element O and a greatest element 1:

T(pAg) =T1(p)A7(q),
T(pVq) =1(p)V7(q), pgeZ(4),
T(p*) = 1(p)', peZ(A).

The couple (7,7) will be called a truth-functional. The prop-
ositions peT with 7(p) = 1 [7(p) = 0] are considered as
true (false). A truth functional (7T,7) is maximal if there is
no truth functional (7',7') with T$T' and 7’|, =T
Henceforth physical states of a system described by a W *-
algebra .# will be represented by maximal truth functionals
(T,7), TC P (), 7: T—{0,1}. Their existence is guaran-
teed by the axiom of choice.
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Il. THE JAUCH-PIRON PROPERTY

In concordance with mathematical literature the techni-
cal term state will be used for a “normalized positive linear
functional.” To prevent misunderstandings, the word
“physical state” will henceforth be omitted and replaced by
(maximal) truth functional. Recall the following defini-
tions.®

Definition: A state ¢ on a W *-algebra .# is called nor-
malif §(supg.;x5) = supg.;6(x,) holds for every bounded
increasing net (xg )4, of positive operators in .4 with su-
premum Supg. ;Xg.

Definition: A state ¢ on a W *-algebra .« is called singu-
lar if for every peZ (.#) with ¢(p)#0 there exists a
geZ (M), g#0, g<p such that #(g) = 0.

Starting from a pure state ¢ ona W *-algebra.#, one can
eventually construct a maximal truth functional by setting

def def
T, = {(peZ (A)|p(0)e{0,1}} and (T,7r) = (T;,8|7,)-

Consider two examples, referring to classical mechanics and
Hilbert space quantum mechanics, respectively.

Example 1: Let ¢ be a pure state on a commutative W *-
algebra .#. Then ¢ is a character, i.e., §(xy) = ¢(x) @ (y),
Vx,ye #. Consequently, &(p) =d(p*) ={s(p)}%
VpeZ (M), and therefore ¢(p)e{0,1}, VpeZ (.« ). For
Dge P (M) one has p Aq = pq (since .# is commutative)
and ¢(pAq) =¢(pg) = ¢(p) ¢(q) = ¢(p) Ad(q). Thus
(P (M), $| 5 e,) is a maximal truth functional.

Example 2: Consider a Hilbert space 7, £e#,

def

I€ |l = 1. Let A& = & (F#°) consist of all bounded linear op-
def

erators on 5. Set ¢(x) = (& |x& ), xe B (F). Then p is a

pure normal state on & (#°) and (T, ¢:®|z,) is a maximal

truth functional (Ref. 5: Appendix 1, Corollary 1).

Conversely, one can start from a truth functional (7,7)
and find a linear functional ¢ with ¢ (p) = 7(p), VpeT. This
is done in the following theorem and justifies the use of /inear
functionals in algebraic quantum mechanics.

Theorem 1 (Ref. 5: Theorem II. 2.3): Let (7,7) be a
truth functionalina W *-algebra .# . Then there exists a pure
state ¢ on #, such that ¢(p) = 7(p), VpeT.

Note that in this theorem the truth functional need not
be maximal. If it is maximal, one may expect that the state ¢
extending 7 is unique. This is at least the case if (7,7) is
normal, i.e., if T'is a complete orthosublattice of % (.# ) and
7(Aiyp:i) = N iy7(p;) holds for every family { p; |ie J} in
T [(T,7) is then extended by a normal state ¢].

If (7,7) is a maximal truth functional and ¢ an extend-
ing pure state, it might happen that TS 7"’. This means that
projections e, fe # exist with ¢(e) =¢(f)=1 but
d(e Af)#1. Itis even possible to sharpen this statement to
#(e) =@(f) = 1,e Af= 0. This means that ¢ has expecta-
tion value 1 on e and f but nevertheless ¢ and f are not true
propositions, since they cannot be incorporated within a
truth-definite orthosublattice T. Such states g—and the cor-
responding truth functionals—should in fact be excluded in
physics.

It has been argued above (see Examples 1 and 2) that
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states ¢ without those unpleasant properties exist. They will
be called states with the Jauch—Piron property or simply
Jauch-Piron states (cf. Ref. 7).

Definition: A state ¢ on a W *-algebra .« is said to have
the Jauch-Piron property if ¢(p) = ¢(q) = 1, pqeZ (M)
implies ¢(pAq) = 1.

Theorem 2: Let ¢ be a pure state on a W *-algebra .#
with the Jauch—Piron property. Then ¢ is the only state on
4 which extends the maximal truth functional (7,4|7,)-

Proof: The assertion follows from the results in Ref. 8,
Chaps. 1 and 2. The maximality of (T, ,¢|T‘) is a conse-
quence of Ref. 9.

Theorem 3 (Ref. 5: Appendix 1, Corollary 1): Every
normal state ¢ on a W *-algebra .# satisfies the Jauch-Piron
condition.

ill. JAUCH-PIRON STATES ON FACTORS

In the present chapter, .# is assumed to be a o-finite
W *-algebra. Recall that .# is o-finite if it has a separable
predual.

In the following lemma a class of states not satisfying the
Jauch-Piron condition is introduced.

Lemma 1: Consider the W *-algebra

def
M= (N)BM,,

where N denotes the natural numbers, .# _ (N) the W*-
algebra of bounded complex-valued functions on N, and .# ,
the algebra of 2 X 2 matrices. Let ¢ = ¥, ® ¥, be a product
state on .#. Assume that V¥, is a (normal) pure state on .4,
and ¥, is a state on .Z _, (N) such that

def

¥ilc,m =0 (CO(N) = {meL _ (N)|lim,__m(j) = o}).

Then there are projections ¢ and f in .# with
#e) =¢(f)=1andeAf=0.

Proof: Here .¥ _ (N) & # , is naturally isomorphic to
the direct sum algebra @ .y %#;, where #,; =.4 », YjeN (cf.
Ref. 6: Chap. IV.7). The support r of ¥, is an atom in

P (M ,). In appropriate coordinates one has r = (3 ).
def

Also e = 1 & r corresponds, to the direct sum & jN€ € =T,
VjeN. For f one takes the projection ® . f},

“ (/-1 \/j—l)

fi = —( _ , JeN.
N1

The projections f; are atoms in Z(A4,);

eNf= @& n(rAf;) = Osincers#f; impliesr A f; = 0, VjeN,

ple) = (¥, 0¥, (ler) =1,

$(f)=¢((len f(ler)=¢{NDj-(j—1)/}er
=¥,({N3j- -1/ =1,

for

jlim[(j—l)/j]:l. QE.D

Theorem 4: Let ¢ be asingular stateona W *-algebra .« .
Assume a projection r to exist in .# with ¢(r) = 1 and
r~r* (ie., r and r* =1 — r are Murray-von Neumann
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equivalents). Then projections e,fe . # exist with

de)=d(f)=1landeAf=0.

Proof: There exists a W *-algebra A and a *-isomor-
phism I ]é%z—»/ such that I( 1® (“)8)) =r (use
Ref. 6: Proposition V. 1.22). The Cauchy—-Schwarz inequali-
ty together with ¢(r ') = 0 implies that ¢oI is a product
state V, @ ¥, on .# ® .4 ,. Here ¥, is a (normal) pure state
on.# ,. Also ¥, is a singular state on 7 since ¢ is singular on
A . Using the singularity of ¥, and the axiom of choice one
can construct a family (g, ),.; (J an index set) of pairwise
orthogonal projections in & with the properties 2,_,q, = 1,
¥.(g:) =0, Vke J. The set J cannot be finite. This would
imply W, (1) = 0. Since .# was supposed to be o-finite, the
set J is countable. Identify J = N.

The W *-algebra generated by {g, |k€N} is *-isomorphic
to.Z _ (N) insuchaway that the g, , keN, correspond to the
atoms in Z(.Z _ (N)). Since ¥,(g, ) =0, VkeN, it follows
that ¥, | v, =0, where Co(N) C .2, (N) isconsidered asa
subalgebra of # . The assertion is then an immediate conse-
quence of Lemma 2.

Remark: For type I factors the following theorem has
been proved by Anderson (cf. Ref. 5: pp. 49 and 50).

Theorem 5: Let ¢ be a singular state on a factor .4 . Then
projections e, fe 4 exist with ¢(e) =¢(f)=1 and
eNf=0.

Proof: A factor # isof typel, ,neN,I_ ,II,,II_,orIIL
These cases are studied separately.

(i) Let # be of type II1. Since ¢ is singular there exists
reZ (#), r¢{0,1}, such that ¢(#) = 1. Since any two non-
zero projections in a o-finite type III factor are equivalent
(Ref. 6: Proposition V. 1.39), ~r * holds and the assertion
follows from Theorem 4.

(ii) Let .# be of type I1,. Since ¢ is singular there exist
pairwise orthogonal projections (see proof of Theorem 4)
Gis keN, in # with 2, g, = 1, (g, ) =0, VkeN. Let Tr

be the canonical normalized trace on .#. Then
2w~ Tr(g,) = 1. Therefore N exists such that
Tr(Z§_ ¢, ) > 1. Set

|

def k,
g= > qi -

k=1
=Tr(q) > Tr(g").
=>q'Sq.
= 3 a projection p S ¢ such that ¢g* ~p.

def
Set s = p + ¢* and consider the factor s.#'s. The restriction
Olees of ¢ to s#s is a singular state with
Blews(8) =l 45 (¢") = 1. Furthermore within s.#s the
projection p is the orthogonal complement of ¢* and ¢* ~p.
The assertion then follows from Theorem 4.

(iii) Let .# be of type I, or II_ . It will be shown first
that an infinite projection s exists in .# such that ¢(s) = O:
Consider pairwise orthogonal g, , keN, with £, _v¢, = 1 and
¢(g,) =0, VkeN (cf. the proof of Theorem 4). The ¢,’s
may be supposed to be finite (if g, is infinite, set s =g, ).
Since Tr(1) = o0, one can suppose that Tr(g, ) > 1, VkeN.
The W *-algebra generated by the operators g, , keN, is
*.isomorphic to ¥ _(N) [see (i)]. If I
&L . (N)->W*{q, |keN}C .# is such a *-isomorphism, it
follows from &(g,) =0, VkeN, that ¢of|c n, =0,
G(N)CZ , (N).

By use of the axiom of choice one can construct a maxi-
mal family (p,)., (J an index set) of projections in
Z . (N)suchthatp, -p;eCy(N) if k#8, the subsets 4, of N
corresponding to the projections p,, k€ J have infinitely
many elements, the complement of a union U}_ ,A,‘l of fi-
nitely many A4, ’s is a set with infinitely many elements.

Such a family cannot be countable. If this were the case,
J=N, one could set B, =U ]’-‘= 14, and take elements
n €8, \B,_,, k=273,.... Then the projection p_ corre-

def
sponding to the subset 4 , = U, _,, n, of N would extend
the family (p; ), contradicting its maximality.

Consider a finite number of projections Py j=1,.,n.

Then

¢(2 I (px,)) = (p.,) + 1P, AP,) + 1Dy, AP + -

=1

+ 1P APV VP )+ TP APy Vo Vp)) +

+1p AN, V- Vp )+ 1., AP,

#
=¢I(p,,) +1(p, Ape) + - +1p, A (D

At (#) the fact was used that p A(p, V- -Vp,)
€Cy(N), Vj=2,..,n. Consequently, the set
{xe J |#(I(p, })#0} has only countably many elements. In
particular, there exists x,€ J such that #(Z(p, )) = 0. Here
1(p,,) is an infinite projection [because Tr(g; ) > 1, VkeN,
and I(p,) is an infinite sum of different ¢;’s]. Thus
def
s=1I(p,,) is an infinite projection with ¢(s) =0. If s* is
infinite, too, the assertion follows just as in (i), because in
this situation s~s" holds (Ref. 6: Proposition 1.39). If s* is
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v...VpKl)))

n—1

Ve Vp O <aI(D))<1 .

n—1

r
finite, a reasoning similar to that of (ii) proves the assertion.
(iv) Since factors of type I,,, neN, do not admit singular
states, the theorem is proved. Q.E.D.
Corollary 1: Let ¢ be a pure state on a factor 4 fulfilling
the Jauch-Piron property. Then ¢ is normal and .# is a
factor of type I.
Proof: A pure state is either normal or singular. Only
type I factors possess pure normal states. Q.ED.
Corollary 2: Let (T,7) be a maximal non-normal truth
functional in a factor .#. Consider an arbitrary (7,7)-ex-
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tending state ¢ ( which might be nonpure if the extension pro-
cedure is not unique!). Then ¢ does not fulfill the Jauch-
Piron condition.

Proof: If (T,r) is maximal and non-normal, any extend-
ing state ¢ is singular (Ref. 5: Theorem I1.3.2). The corol-
lary then is a consequence of Theorem 5. QE.D.

Corollary 3: A state ¢ on a factor .# is singular if and
only if projections e, fe.# exist with ¢(e) =¢(f) =1 and
eNf=0.

Proof* Assume ¢ is nonsingular, i.e., the decomposition
¢ =Ad, + (1 — A)¢, into a normal state ¢, and a singular
state ¢, is nontrivial, 0 <A < 1. Let e, f be projections with
#(e) =¢(f) = 1. This implies ¢,(¢) =¢,(f) =1 and
(by Theorem 3) ¢,(eAf) =1. In particular, eAf #0.

Q.E.D.

Corollary 4: Let .4 be a factor and consider a represen-
tation 7: A& — B () of 4 on a Hilbert space #° with the
property

T(pAg) =m(p) Aw(q),

Then 7 is o-weakly continuous.

Proof: There exists a central projection zem(.# )" such
that 7,,: 4 Dx—(m(x)2)eZ (27) is o-weakly continuous
and 7,: A Dx—(m(x) (1 —2))eZ{(1 — 2)) is singular,
ie, 4 3x—-(&|m(x)(1 —2z)§)eC is singular for every
&7 (Ref. 6: Theorem 11.2.14). Suppose z5 1. From (1) it
can be inferred that the singular states w:
M Ix—(E |m(x)E)eC, Ee(1 —2)#, ||£]| =1, have the
Jauch-Piron property. This contradicts Theorem 5. Thus
z=1and 7 = 7, is o-weakly continuous. Q.E.D.

The results of this section may be regarded as an a pos-
teriori explanation of the fact that only normal states on fac-
tors are considered in physics. Corollary 1 was conjectured
in 1981 by Raggio and the author. A preliminary version of
this corollary—not comprising factors of type II,—was de-
rived in July of 1986 by Zsido together with the author.

Vpge? (M) . (N

IV. JAUCH-PIRON STATES ON ARBITRARY W*-
ALGEBRAS

In this section .# is assumed to be a W *-algebra with
separable predual. Recall that a W *-algebra has separable
predual iff it is *-isomorphic to a von Neumann algebra on a
separable Hilbert space. Attention will be focused on pure
states with the Jauch~Piron property. The Gel’fand-Nai-
mark-—Segal (in short GNS) representation with respect to
such a state will be an essential tool.

Theorem 6: Let ¢ be a pure state with the Jauch-Piron
property on a W *-algebra .# . Let (#°;,7,,8},) denote the
GNS representation of .# with respect to ¢. Then

7s(PANQ) =7, (D) N7,(q), YpgeP (M)

holds true.

Proof: For pqe? (M), m,(pAQ)<T,(p) NT4(q) is
obviously fulfilled. Suppose 74 (pAq)#my(P) A7ys(q).
Consider a vector £e%,, ||Ell=1, m,(pAg)§=0,
{m,(p) Am,(q)}e =£. Since m,(#) acts irreducibly on
7, (Ref. 10:10.2.3), there exists (Ref. 10: Theorem 5.4.5)

a self-adjoint operator Her, (.# ) such that for the unitary
_ def

U = exp iH one has ffg = );. Due to Ref. 10: 4.6.2 a self-
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adjoint operator He.# exists with 7, (H) = H. Setting
def

U=expiH, one has 7,(U) = U. For an arbitrary
seZ (A') the following holds:

<§'77¢(5)§>
=& |my (UrU)my(s)m, (U*U)E)
= (U |my (UsU %) UE ) = (Qy |7, (UsU*)Q,)
=g(UsU*) .

Due to the definition of £ we have @(UpU*)
=¢(UgU*) =1, $(U(pA@)U*) =0. Since ¢ has the
Jauch-Piron property, this leads to a contradiction
PUPAQU*) =$((UpU*) A (UgU*)) = 1. QE.D.
Remark: Theorem 6 together with the observation of
Anderson (quoted in Ref. 5: pp. 49 and 50) that singular
states on a type I factor do not have the Jauch-Piron proper-
ty, can be used to prove Corollary 1 for factors of type I1I and
I, . Compare the remark at the end of Sec. I11.
Lemma 2: Let ¢ be a pure state on the W *-algebra

def
M= _([0,1])8 M,

[[0,1] = {xeR|0<x<1}; .Z_ ([0,1]) is the algebra of
(classes of) Borel measurable functions, which are essential-
ly bounded with respect to Lebesgue measure]. Then projec-
tions e, fe.# exist withd(e) =¢(f) =1andeAf=0.

Proof: Let C([0,1]) denote the algebra of continuous
functions on the interval [0,1]. Here
Cc([0,1]Yc.Z . ([0,1]). Considering the (irreducible!)
GNS-representation 7, of .# with respect to ¢, one sees that
¢ is a product state, that #|co,;: iS a character and
#l1o.«, isd (normal) pure state. Therefore | c 0.1} ¢1 iS €P-
resented by a point xe[0,1]: g(mel) =m(x,),
VmeC([0,1]) (cf. Ref. 6: Proposition 1.4.5). The support of
#|1.«, is given by an atom 7 in 1 ® .#,. In appropriate co-
ordinates r=1®(;5). Here .Z_([0,1])8.4,
=5 _ ([0,1],.#,) (cf. Ref. 6: Chap. IV.7), i.e., every ele-
ment of .# can be represented by a measurable essentially
bounded function from [0,1] into .# ,. Define

def l 0)
e(x) = (0 o) vxel0,1],
09 aef (l — |x — x| i VIx —xo] = x —xolz) ’
VI —xol — [x —xo|”  |x — x|
x€[0,1] .
Note that f is an element of C([0,1])®.4,

=C([0,1],4,) C L. ([0,1],.4,). Sincee(x) Af(x) =0,
Vx #x, and {x,} is a Lebesgue null set, e A f = 0 follows,

sor=ofto(y )=1.
scn=o(1e; D)+ 3)

- oftonzs-a sy o)1
QED.
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Theorem 7: Let ¢ be a pure state on a W *-algebra .#,
which does not admit a commutative direct summand. Sup-
pose the center & (.#') of .# does not have any minimal
projections. Then ¢ does not fulfill the Jauch—Piron condi-
tion.

Proof: The W*-algebra .# is a direct sum
M= M & My & My (Ref. 6: Theorem V.1.19) of W *-
algebras of type I, II, and III. Since ¢ is pure, it vanishes on
all but one summand of this decomposition. Thus one can
suppose .# to be of a fixed type. Let 7,: M4 — FB (I ) be
the GNS representation of .# with respect to ¢. _

(i) Let .# be of type II or III. Then a W *-algebra .4
exists such that .# =.# & .#, (Ref. 6: Proposition V.1.35
and Proposition V.1.22). Here Z(A)=L(A)
=.7 _([0,1]) (Ref. 6: Theorem II1.1.22). Consider a vec-

tor §e77,, ||€ || = 1 with 1r¢(1 e ))§ = £. Such a vector
always exists since every representation of .« , is faithful.
def

The state ¥(x) = (£ |7, (x)& ), xe.#, and its restriction to
F(H)eMy=% ([0,1]) & .4, fulfills the Jauch—Piron
condition (this is a consequence of Theorem 6). Here
Y|~ _ (o1 5.4, 15 a pure state and the assertion follows from
Lemma 2 by contradiction.

(ii) Let .# be of type I. Since ¢ is pure, it can be sup-
posed that .# is either of type I, or a direct sum

M=e{d;0.M}, Jc{2,3,...}, where &, je J, is a com-

mutaﬁ.\,'e W *-aigebra and .#; is the jXj-matrix algebra
(Ref. 6: Theorem V.1.27). The former case can be handled
justasin (i). In the latter one considers projections g;&.# ; of
even dimension

Jjif j is even,

-
M) =151 if j is odd,

jed,

def

q=(g’1®qj)e[g lejé/j].

(@) Assume 74(g) #0. Since Z (.#) has no atoms,
there cannot exist atoms in the commutative W *-algebras
A jel = ;= ([0,1]), Vje J. All projections g; are
the sum of two equivalent orthogonal projections
M, &M, if j is even,
My BM, ifjis 0dd .

In particular, #, =@, ,{o;®q,#,q;} contains a
W *-subalgebra which is *-isomorphic to .#,. Since 7, | , :
M~ B(my ()7 ,) has the property (1), Z(4,)
=qZ (M )q=5_ ([0,1)), and 7|, (F(4,))
CC-74(q), a pure state with the Jauch—Piron property on
2 ([0,1]1) 8 .#, can be constructed just as in (i). This
contradicts Lemma 2.

(B) Assume 7,(g) =0 =, (g") = 1.Here g} vanish-
es for j even and is an atom in .#/; if jis odd. A projection p
can be constructed out of projections p; >q;, je J, such that
dim p; = 2, VjeJ, 7, (p) #0. In the same manner as under
(a) this leads to a contradiction to Lemma 2. Q.E.D.

Theorem 8: Let .# be a W *-algebra with an atomic cen-
ter Z (.#) and without any commutative summand. Con-
sider a pure state ¢ on .# with the Jauch—Piron property.
Then ¢ is normal and an atom z,eZ (.#') exists with
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(1) ¢(Zo) =1,
(ii) zo#z, is a factor of type 1.

Proof: .# may be supposed to be of a fixed type (cf.
proof of Theorem 7). If there is an atom z in & (.#') with
@(z) #0, the assertion follows from Corollary 1. Therefore
Z(A) can be supposed to be infinite dimensional,
Z(M)=L,(N), and ¢|cm =0l =06,n%,,
where the %#,’s are factors. Similarly as in the proof of
Theorem 7, a projection ge.# canbe found (¢ = 1,if .« is of
type Il or ITI) with 7, (¢) #0such that g.# ¢ containsa W *-
subalgebra .¥  (N) & #,. This contradicts Lemma 1 (cf.
again the proof of Theorem 7). Q.E.D.

Let .# be a W *-algebra with a commutative summand
& . Then # is *-isomorphic to the direct sum # o < foran

appropriate W *—algebra .#. If ¥ is a pure state on .7, the
def

state ¢(x,y) = V(y), xe#, ycof, defines a Jauch-Piron

state on #Z & o =.# . Therefore the assumption in Theo-
rems 7 and 8—that .# has no commutative summand—
cannot be omitted.

Corollary 5: Let 4 be a W *-algebra without a commu-
tative summand and consider a pure state ¢ on .# obeying
the Jauch~Piron property. Then ¢ is normal and an atom
z,eZ (M) exists with

(i) ¢(z0) =1,

(ii) z,.#z, 1is a factor of type I.

Corollary 5 summarizes all results of this paper on pure
states. A remaining question of interest concerns the exis-
tence of truth functionals (7,7) in a W *-algebra .# such
that 7= Z#(#). The unique extending state ¢
[¢(p) = 7(p), VpeZ (M ); see Theorem 1] then is a char-
acter, i.e., d(xy) = ¢(x) ¢ (y), Vx,ye o« . Investing little ef-
fort one can prove the following (essentially known) result
(cf. Refs. 11 and 12).

Theorem 9: Let .# be a W *-algebra and ¢ be a multipli-
cative state on # [i.e, ¢(x-y) = d(x)-¢(y), Yx,yed].
Then a central projection ¢ exists with ¢(c) = 1 and such
that c.# ¢ is commutative.

V. CONCLUDING REMARKS

An individual interpretation of quantum mechanics
presupposes the existence of “suitable” pure states (in con-
trast to mixed ones for an ensemble interpretation). In the
present context, suitable means of course that the Jauch—
Piron condition is fulfilled.

The results of this paper show that pure Jauch-Piron
states exist essentially only on commutative W *-algebras
and type I factors. More precisely, let ¢ be a pure Jauch—
Piron state on a W *-algebra .# . Then W *-algebras # and
-Z exist, such that # =% & .¥ where % is arbitrary, .Z is
either commutative or *-isomorphic to the algebra Z (#°)
of bounded linear operators on an appropriate Hilbert space
7, and ¢ restricted to # vanishes. Note that ¢ may be a
singular state if .%° is commutative. For .¥ = Z (%), ¢ is
always normal and represented by a vector £€7, ||£ || = 1:
$(x) = (£ |x€ ), YxeB (7).

Anton Amann 2388



Therefore an individual interpretation of quantum me-
chanics is only possible in classical theories (whose corre-
sponding “algebra of observables” is commutative) and Hil-
bert space quantum mechanics. The interpretation of
systems whose respective W *-algebra is of type III—such as
algebraic statistical mechanics—has to be nonindividual or
at least partly nonindividual: The classical properties of such
a system—corresponding to the center of the respective W *-
algebra .# —could behave as belonging to an individual sys-
tem if the state on the whole of ¢ is a factor state (with the
Jauch-Piron property) and thus its restriction to the center
of # is pure.
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The Wigner transformation is of finite order
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The Wigner integral transformation, which intertwines the twisted product and the
composition of kernels, is of order 24. Indeed, it commutes with, and its sixth power equals,

the Fourier cotransformation.

I. INTRODUCTION

In the Weyl-Wigner-Moyal formulation of quantum
mechanics,'™ observables are functions on phase space and
the composition of observables is given by the twisted prod-
uct or Moyal product of functions. It is well known that this
operation is equivalent to composition of 2n-variable ker-
nels,>® and this equivalence is implemented by an integral
transformation known as the Wigner transformation® (or
alternatively the Weyl transformation®). The Wigner trans-
forms of kernels corresponding to positive operators have
been extensively studied under the name of “Wigner distri-
bution functions.””*® They are also widely used in the theory
of radar signal processing as “‘radar autocorrelation func-
tions.”!*!! Thus it is of great interest to know as much as
possible about the intrinsic properties of the Wigner trans-
formation.

If one considers the Wigner transformation as an iso-
morphism of L 2(R*) onto itself, it is easily seen to be uni-
tary. Moreover, as Pool'? and Cressman'? noted long ago,
the Wigner transformation factorizes into a reflection on
phase space (of order 2) and a partial Fourier transforma-
tion (of order 4); however, these factors do not commute. In
this article we establish that the Wigner transformation is
itself of finite order, namely, of order 24, and indeed its sixth
power is just the (2n-variable) Fourier cotransformation.
The proof we give involves merely a transfer of context to the
so-called Bargmann representation, wherein the proof re-
duces to an elementary computation.

In Sec. I we recall the definition of the Wigner transfor-
mation and some of its properties. In Sec. III we briefly re-
view the Bargmann spaces of analytic functions. Using these
we show in Sec. IV that the Wigner transformation is of
order 24.

Il. THE WIGNER TRANSFORMATION

The Wigner-Weyl-Moyal formulation of quantum me-
chanics starts from the Weyl quantization which establishes
a correspondence between “symbols” f, i.e., functions on
phase space, and operators 4 of the conventional formula-
tion. For our present purposes, it suffices to consider that
“flat” phase space R*Y = T *(R"). Here the Weyl quantiza-
tion rule may be formally written as

A=(21r)—2”f f (Ff)(a,b)
RY JRY

xexpli(a-Q + b-P)\da db,
where F denotes the Fourier transform and Q,,...,Qy and
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P,,...,Py denote the usual position and momentum opera-
tors.

Composition of operators corresponds then to the
“twisted product” of symbols,

(f><g)(u)==(27r)‘2”J J Sf(n)g(w)
RZN R2N

X exp (i(uJv + vJw + wiu))dv dw (n

[where u,v,weR?", and wJv: = 2} _ | (4,05 x — Uy £Vx)
is the symplectic product of two vectors in R?"], and, at a
formal level, the usual operator calculus is replaced by a
“twisted product calculus” whose objects are functions on
phase space. The twisted product is noncommutative, as is
the “kernel product” on R*", namely the product fog given
by

(fog) (xp): = (2m) M/ ZJ- f(x,2)g(zy)dz
RN

(where x,p,zcR" ). In fact, these two products are isomor-
phic; the Wigner transformation W, which we will now re-
call, satisfies W( f Xg) = WfolWg.

To make the above discussion rigorous, we observe that
(1) makes sense whenever f,ge. (R?"), the space of rapid-
ly decreasing smooth functions over RZ¥; then also
S Xge& (R*) and the product is continuous on % (R?").
The same is true for the kernel product, or if #(R*) is
replaced by the space of square-integrable functions
L*(R*). Let &' (R*") denote the space of tempered distri-
butions over R*". Define the isomorphisms (of Fréchet
spaces) R, ®, W from .# (R*) onto . (R*") by

(RAY(xp):=f27 V2 (x +p), 272 (x —y)),

(®f ) (x): = (2m) ~ V72 f font) exp (ipn)dt,
RN

(WF)(x): = (ROF) (x,)

= (217')‘”’2LNf(2—”2(x +y),t)

Xexp(2~V2%i(x — y)t)dt,
noting that these extend to unitary operators on L 2(R?*"),
The Wigner transformation is the operator W.

We will write x, y, ¢, p, g, r for vectors in RY and u, v, w
for vectors in R*". We also find it convenient to use the Haar
measures d x: = (47) " ¥?dx on RY, d"u: = (47) "V du
on (R*™) (where dx, du denote the usual Lebesgue mea-
sures).

The Fourier transformation F on ¥ (R*") is given by
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(Ef)(u): = (2m) ‘”I f(w)e™ ™ dv.
RZN
We note also that

2
f exp( —x* +2"%x0)d"t =2 ‘”eXP(t?),
‘ 2 (2)
f exp( — u? + 2”2uv)d"u =2 exp(_z_),
RZN

We may now verify that W( f X g) = WfoWgbyadirect
calculation. By duality (see Ref. 8) this relation holds also
for for gin &' (R*Y).

Standard treatments of the one-dimensional harmonic
oscillator involve the Hermite functions (suitably normal-
ized for our purposes) 4,,€.% (R) given by

h,(x):= Q2" 'mHH, (x) exp ( —x*/2)
(xeR, m =0,1,2,...).

Letusset A, (x,y): = h,, (x)h, (»); thenin thecase N =1,
one computes that 4,,, = W(f,.,), where the f,. are the
Wigner functions corresponding to the harmonic oscillator
transitions between states®!%!1:14;

Son (@P)
:=2(—1"(n/m)'"*(q —ip)" "L T~ +p*)
xexp( — (¢* + p*)/2)

for m>n; f,.,.: =f*,. (complex conjugate) if m <n. For
N>1, we also have 4,,, = W(f,,,), where we define, for
given multi-indices m,neN", h,,, h,.., and f,,, as direct
products of the corresponding one-variable or two-variable
functions 4,,,, A, s frnn,-

Both 4,,, and f,, are eigenfunctions of the Fourier
transformation F on % (R?*"), with common eigenvalue
( — i)™+ thus Fand Wcommute.® This suggests a possible
relationship between the Wigner and Fourier transforma-
tions. On the other hand, both 4,,,, and f,, are eigenfunctions
of the Hermite operator with the same eigenvalue if and only
if m 4+ n = r 4+ s (Ref. 8); this would rather suggest that W
is of infinite order. This question is resolved by the following
somewhat surprising theorem, which is proved in Sec. IV,

Theorem: W3(h,, ) = explim(m + n)/4)h,,, for all
m,neN”Y,

Corollary I: W =F ',

Corollary 2: W =1d.

Ill. THE BARGMANN REPRESENTATION

The simplest approach we know to proving the above
theorem is to pass to the Bargmann representation. We brief-
ly review what is involved.’>-!7 Let ¢ denote the Gaussian

measure on CV:
J

du(z): =7~ exp( —zz*)dz
=7~ exp( — (x* + 3?))dx dy,
where z = x + iy. Let % (C") denote the Hilbert space of
entire analytic functions in L 2(C¥,u), and let
E(CY): ={F(CY): (1 +2z*)™ exp( — zz*/2)f(2)
is bounded, for all meN” }.

As shown in Ref. 16, & (C¥) can be given the topology
of a Fréchet space, such that the maps 4,:
F(RY) > & (CY), Vy: €(CY) - 7 (RY), given by

(Aph)(2): = J‘NA(z,t)h(t)dAt,

N (3)

(V) (1): = f A Of (2)du(z),
cN

are Fréchet-space isomorphisms, with V,, = 4 ', the ker-
nel A(z,t) being given by

A(z,t): =2V exp( — 22/2 — t%/2 + 2"%).
We recall’® that 4,4, (z) = (m!) ~'/%z" for meN".

The spaces & (C") and % (C™) have a reproducing ker-
nel

j exp(w*z)f(w)du (w) = f(z) (4)
CN

(see Refs. 15 and 16), from which we obtain the following
formula:

f exp(az + bz*)du(z) = exp(ab). (5
CN

The advantage of working with these spaces is that oper-
ators T'on % (R") or L ?>(R") transfer to operators 4, TV,
on & (C") or # (C¥) given by integral kernels.

As F denotes the Fourier transformation on % (R?"),
one shows easily using (2)-(4) that (A,yFV,nf)(2)

= f( — iz), for f€& (C*), in agreement with Ref. 135.

IV. PROOF OF THE THEOREM

Since (A,nh., ) (21,2,) = (min!) ~V/2272%, it suffices to
show that
(Aan W3hmn )(21,2,)

= (A,nh,.. ) exp(im/4)z,,exp(im/4)z,).

By the reproducing kernel property (4), this reduces to
showing that the operator 4,, W3V, is given by the inte-
gral kernel exp(2~/2(1 + f)w*z). This we do in a few steps.

Step 1: For fe& (C,y ), we obtain

(A ®PVopf)(2) = fA (zu) (PVopf) (w)d u = ff 224 (z,u) e (Vonf ) (g,t)d t d"u

= J.J-J.ZN’ZA (z,u)eP'A(w*;q,t) f(w)du(w)d td"u = fM(z,w* W (w)dp(w)

[with u = (q,p) ], where the kernel M (z,w*) is given by
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M(zw*): =272 fJ- A(z;q.p)ePA(w*;q,t)dqdpd’t

— 95N/2 ex _i_ w™ — g%+ 212 *)_p_2 21/2 I -—ﬁ 212p0% dadpd”
= p TN 9+ q(z; + wj 2+P( Z, + it) 2+ wita gqapat

(z, + w?)z

72 2 2k 2%
=4foexp[— I +2w1 s + 5

z; + wa* 2
=2NJexp{ ——2i—2+z,w‘,“—£2—+2”2tw§+

2

2
— P +2"272" %z, +it) — 52— + 2”2tw;]d“rd‘t

1/2 26y 2
(2 22+1t) }dnt

2

N Z; —w%* 2 1/2 . N
=2 fexp —2——+zlw‘,"—t + 2Vt (w¥ + iz,) 1d "t

(w¥ + 1.22)2

= ex
P 2

3 —ujr
Ty tAMTH

on using (2) repeatedly.
Step 2: Again with fe& (C*"), we find that

(Aoy RV ) (2) =JL(z,w*)f(w)d#(w),

where the kernel L is given by
L(zw*): = exp{2~V2(z,w* + z,w¥ + zw* — zwH) }

by a similar calculation.
Step 3: Hence for fc& (C*V), we get

(A, WVonf)(2)
= (A,y RV xn Ay PVonf ) (2)

= fN(Z,w*)f(w)dﬂ(w)’

where the kernel N(z,w*) is given by
N(z,w*)

c= J Lzt *)M(t,w*)du(?)

= fJ- exp{2’”2((zl +z)tt + (2, —2)t %)

+wtt + l'w‘zktz}d/‘(tl)dﬂ(tz)
= exp{27"%((z, + z)w¥ + i(z, — z,)w})}

upon using (5) twice.
Step 4: Thus A, W?V,, is given by the kernel

N%(zw*): = J N(z,t *)N(t,w*)du(t)

=exp{27'(1 + D) ((z, — iz)w?

+ (2, + izz)wf)}

again by (5).
Finally, A, W?>V,, is given by the kernel

N3(zw*): = sz(z,t *)N(t,w*)du(t)

= exp{2732(1 + i) (2z;w* + 2z,wH) }
=exp(2~V2(1 + i)zw¥)
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] = exp(z,w¥ + iz,w¥)

as claimed.
Proof of Corollary 1: From (4) we see that
(Ao W3Vonf ) (2) = flexp(im/4)z) for fe& (C,y), so that

(A, WOV ) (2) = f ((exp(in/4))’z)
=fliz) = (A, F ~'Vonf) (2);
hence Wé=F ~'on “(R,y).

Remark: The Fourier transformation is often replaced
in computational problems by its discrete analog, the finite
Fourier transform, a matrix in C**" of order 4. Using its
action on the basis functions 4,,, as a guide, one may con-
struct a discrete analog of the Wigner transformation also,
whose sixth power is the finite Fourier cotransform. This
could provide a useful tool for the analysis of signal process-
ing.
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The investigation of transition amplitude spaces (tas’s) introduced by Gudder and
Pulmannova [J. Math. Phys. 28, 376 (1987)] is continued. In particular, ordered structures
related to tas’s are considered. Under some conditions, which are analogous to the conditions
obtained for transition probability spaces by Pulmannova [J. Math. Phys. 27, 1791 (1986)],
the ordered structure related to a tas can be represented by the orthocomplemented lattice of
all f-closed subspaces of a generalized Hilbert space (7,.Z,6, f). It is shown that, provided
that the above representation takes place for a total tas, the division ring .2 must be
isomorphic with a subfield C, of the field of complex numbers C. Sufficient conditions are also
given under which the ordered structure of a tas can be represented by the lattice of all closed

subspaces of a complex Hilbert space.

I. ORDERED STRUCTURES RELATED TO A tas

Contrary to the traditional Hilbert space formulation of
quantum mechanics, it is our opinion that transition ampli-
tudes should play the primary role. This idea is basic to the
early work of Feynman and we have begun to develop it into
an axiomatic foundation for quantum mechanics.’ Since the
Hilbert space structure is physically unmotivated and is only
the result of fairly restrictive ad hoc assumptions, this ap-
proach has the advantage of placing the foundations of quan-
tum mechanics at a more basic level.

In Ref. 1 we have given some strong physical reasons
why a quantum system acts like a Markov process at the
amplitude level. The basic property of a transition amplitude
then follows from the Chapman—Kolmogorov equation for a
Markov process.! We have also given a second justification
for this property in terms of a transmission amplitude inter-
pretation. Moreover, relationships between the present
framework, the algebraic approach, the operational statis-
tics and quantum logic approaches, and traditional Hilbert
space quantum mechanics were presented. It was shown in
Ref. 1 that a transition amplitude space always admits a Hil-
bert space representation and that sums and tensor products
of such spaces can be formulated in a natural way.

Recently, the concept of a transition amplitude space has
been introduced.” Let us recall basic definitions. Let S be a
nonempty set and let 4: § X.S—C. We say that x,yeS are
orthogonal (xly) if x#y and 4(x,y) = 0. Let us denote by
A 4 the collection of maximal orthogonal setsin S. Wecalla
set M C.S an A set if for every x,yeS, we have

> |4x.2)41.2)| < ,
zeM
and
A(xy) = Y A(x2)4A(y.2),
zeM

where an overbar denotes the complex conjugate.
Denote the collection of A sets by .#",. We call 4:
S XS-C a transition amplitude if (i) N ,#D, and (ii)
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A(x,x) = 1for all xeS. If 4 is a transition amplitude on S we
call (S,4) a transition amplitude space (tas). A strong (ul-
trastrong) tas is a tas (S5,4) that satisfies (iii) 4(x,y) =1
[(iv) |[A4(x,p)| = 1] implies x = y. Although an ultrastrong
tas is clearly strong, it is shown in Ref. 1 that the converse
need not hold. A tas (S,4) is total if V', = 4 ,. To every
tas we can associate a strong tas if we introduce a relation ~
byx=yif4(x,y) = 1.Then =~ isan equivalence relation and
the functlon A: §X8-C defined by A xXp) =A(xp)
(where S = S /~) is well defined and (S,A ) is a tas. Similar-
ly, we define a relation ~ on Sby x ~yif |[4(x,y)| = 1. Then
~ is also an equivalence relation. Denote by % the class con-
tainin;\ x and let § =5/~. If (5,4) is a total tas, then the
pair (S,T), where T(X,9) = |[A(x,y)|? is a transition prob-
ability space (see Theorem 2.2 in Ref. 1). ,
Let (S,4) be a tas. We shall use the orthogonality rela-
tion on S defined by x1y if 4(x,y) = 0 to introduce

= { yeS§: yLx for all xeX},
where X is any subset of S. It is easy to check that the map
Xi—X ® has the following properties:
Xcx® xo_— (Xoo)oo
XCYimplies X®°C Y,

i.e, it is a closure operation (see Ref. 2, p. 148). We shall
write X = X ® and denote by . (S) the set of all “closed”
subsets of S, i.e.,

F(S) ={XCs:x=X}.
If X = {x}, we shall write x° instead of {x}°, and X instead of
{x}—.

Proposition 1.1: Let (S,4) be a tas. Let the following
condition be fulfilled:

x°C)° implies x° = ° for any x,yeS. (N

Then # (S) is a complete, orthocomplemented, atomic lat-
tice with the set of atoms {¥: xeS}. Specifically, if (S,4) is a
total tas, then condition (1) is satisfied.

Proof: Let (S,4) be a tas satisfying condition (1). Let
QCS, Q #O, be such that QC X for xS. Then there is yeQ,
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and yCX implies x°Cy°. By (1), x° =)°, so that = X.
From this we obtain that x = yC QCX, i.e., @ = X. The fact
that X—X is a closure operation implies that % (.S) is a com-
plete lattice with the operations AX; =NX, and
VX, =(UX;)” (X,CS, iel). As the orthogonality rela-
tion 1 is symmetric and antireflexive, it is easy to show that
X—X °is an orthocomplementation on .% (.S). We also have
S°=@and 2’ =3S.

If (S5,4) is total, then for every xeS$ thereis Me#", such
that xeM. Let y°Cx° and let yeM, Me¥",. Then M
— yCy°Cx° Therefore

l=A(xx) = 3 |4(x2)|* = |4(xp) [*.

zeM
By Corollary 3.3(a) in Ref. 1, it is implied that 4(y,z)
=A(y,2)A(x,z) for all xeS. From this we obtain that
x0=y° |
Let x =~y if xX°Cy° (x,yeS). If (1) is satisfied, then ~ is
an equivalence relation. Let X be the class containing x
(x€S8). It is easy to see that X = X. Let xly if xly for any
representative xex, yep. It is straightforward that this rela-
tion is well defined. If (S,4) is total, then x ~y if and only if
|[A(xp)] = 1.
Recall that EC S is an event if EC M for some Me V", .
For an event E, let A be the A-transition amplitude condi-
tioned by E, i.e., A is defined by

Ap(xy) = Y A(x2)A(z,y).

zeE
Proposition 1.2: Let (S,4) be a tas. If E is an event, then
E={xeS: Ag(x,x) =1}.

Proof: Let xcE. Then xIM — E, where ECM and
Me V" ,. Therefore

1=4(xx) =3 AxD P+ Y |4(x2)|?
zeE

zeM — E
= 3 4(x2)|* = g (x,x).
zeE
Now let A (x,x) = 1. Then

Ag(xx) = Z|A(x,z)|2 =1
zeE

implies that

Sy |4(x.2) |2=0,

zeM — E
i.e.,, A(x,z) = O for all zeM — E. Therefore for any yeE ° we
get

A(xy) = Y A(x2)A4(2,p)
zeM

=Y A(x2)A(zy) + Y A(x2A4(zy) =0.
zeE zeM — E

This shows that xeE. O
Proposition 1.3: Let E,Fbe events. Then (1) Az A, = A
if and only if ECF (cf. Ref. 1); and (ii) 4 — Ay = A4,,_,
where ECM and Me 4",
Proof: (i) Let A ;A = Ay and let xE. For Me¥", such
that EC M, we obtain
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Ap(xy) = Y A(x2)A(zy) = ¥ A(x,2)A(2,y) = A(x,p)
zeE zeM
and

l=Ag(x,x) =AgAr(x,x) = ZAE(z,x)AF(x,z)
zeM

= ZA(z,x)AF(x,z) =Ap(x,x).
zeM

The last equality holds by (4.3) in Ref. 1. Hence xeF.
Now let ECF. Then F°CE° and hence

ApAp(x.p)

= ZAE (zy)Ap(x,2)
zeM

=>Ar(@Apr(x2) + ¥ Ag(xy)4p(x2)
zeE zeM — F

= Y A(2,p)Ap(x2)
zcE

=D A(zy) Y A(x2)A(Z 2)
zeE zeF

=Y A(zy) > A(x2)A(Z.2)
zeE zeM’

= Y A(zy)A(x,2) = Ag(x,p).
zeE

This proves that Ag A, = 4.

The proof of the second statement is straightforward. O

Corollary 1.4: Let (S,4) be a total tas. Then the map
A E»—»E is an orthoisomorphism between the atomic, o-or-
thocomplete orthomodular posets & = {4: E is an event}
and & (S) = {E: E is an event}. (See Refs. 1 and 3.)

In the next proposition we show a relation between the
sets 7 (S) and # (S) for a total tas. To introduce it, we need
some definitions. Let F be a partially ordered set. For a sub-
set G of F set

GV = {aeF: a>b for all beG},

G2 = {acF: a<b for all beG}.

The map G +—G V* is a closure operation and the set of all
subsets G of F such that G = G V2 is called a completion by
cuts of the set F (see Ref. 2, p. 167).

Proposition 1.5: If (S,4) is a total tas, then F (S) is a
completion by cuts of Z (5).

Proof: & (S) is an orthocomplemented partially ordered
set and the set S of all atoms is join dense in Z(S). For a
subset BC 7 (S) let

B' ={aed(S): bla for all beB},

where bla, a,bed (S) if aCb°. Clearly, for x,ycS we have
%1p if and only if T(X,p) = |[4(x,y)|>* =0. A subset B of
& (S) is closed if B** = B. By Theorem 2.5 in Ref. 4, the set
of all closed subsets of ﬂ; (.S) is orthoisomorphic with the set
of all closed subsets of S, but the latter is orthoisomorphic
with & (5). It is easy to see that for any BC & (S) the equal-
ity BV® = B! is satisfied, so that % (.S) is the completion
by cuts of £ (S). O

It is easy to see that if E is an event, then (E,4 ) isatas.
It is a strong (ultrastrong) tas if (S,4) is strong (ultra-
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strong). If (S,4) is total, then (E,4) is total, too. Indeed,
let F be a maximal orthogonal set in E. Then FCE,
E Fed (S), and the orthomodularity of & (S) implies that
F=E. By Proposition 1.3 then 4, = Ay, i.e, Fet',

The following definitions are analogous to those intro-
duced in Ref. 3 for transition probability spaces.

Let (S,4) be a tas. We say that an element xeS is a
superposition of a subset F of S if A(z,y) = 0 for all yeF and
for zeS implies 4 (z,x) = 0. It is easy to see that x is a super-
position of Fif and only if xeF® = F.

An element x€S is called a minimal superposition of F
(FC.S) if x is a superposition of F, but x is not a superposi-
tion of any proper subset of F.

We say that a minimal superposition postulate (MSP)
holds for (S5,4) if for any finite subset FC.S and any minimal
superposition x of F there holds

{x.F,}~NF,#2,
where {F,,F,} is any partition of the set F (i.e., F, and F, are
nonempty disjoint subsets of F such that F\UF, = F).

We say that a superposition principle holds for a tas
(S,4) if for any x,peS such that x&p, yéx, there is ze§ such
that z¢X, z¢p, and ze{x,y}~ (in other words, z is a minimal
superposition of x and y).

A physical motivation of the above notions can be found
in Refs. 3 and 5. An advantage of this approach is that super-
positions can be defined without assuming any underlying
linear structure. In this way the properties of superpositions
follow directly from those of the transition amplitude. If a
state x is a superposition of a subset F, then x is orthogonal to
every state that is orthogonal to F. In a certain sense, this
means that as far as its transition amplitudes are concerned,
x is determined by the elements of F. For example, if Fis a
subset of an A set, it follows that for every yeS we have

Axy) = A(x2)A(zy).
zeF

Recall that a tas (S,4) is a direct sum of two tas's

(SpAl) and (S,4;) if S,ﬂS2=®, S=S1US2’ and A:
S X S§-Cis defined by
Ai (x’y)’ if x esiy [= 1,2,
A(xy) = { I
0, otherwise.

If the superpositon principle holds for a tas (S,4) then
(S,4) cannot be isomorphic to a direct sum of two tas’s.
Indeed, let the superpositon principle hold and let (S,4) be
isomorphic with a direct sum (S, ® S,,4, ® 4,) of the TAS’s
(S,,4,) and (S,,4,). Without any loss of generality, we may
assume that (S,4) = (S, ©5,,4, ®4,). If xS, then S, Cx°
impliesX CS9. This implies thatXNS, = @, i.e., X C.S,. Sim-
ilarly, if yeS,, then yC.S,. Now let xS, and yeS,. Clearly,
x¢¥ and y¢x. Let z be a minimal superposition of x and y. We
have zeS,US,. Suppose that zeS,. Let uex®. If ueS,, then
ue)’,i.e., we have A (x,u) = A(y,u) =0.Aszisa superposi-
tion of {x,y}, we obtain that 4(z,u) =0, so that uez’. If
ucS,, then we get again that 4(z,u) = 0. Therefore x°C2°,
i.e., zex, which contradicts the supposition that z is a mini-
mal superposition of x and y.

The proof of the following theorem can be obtained by
essentially the same manner as has been used in Ref. 3.
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Theorem 1.6: Let (S,4) be a tas with dimension of at
least 4 which satisfies condition (1). Let the superposition
principle and postulate of minimal superposition hold. Then
there is a division ring & with an involutive antiautomor-
phism 8: & - &, and a vector space 7" over & with a Her-
mitian form f; 7" X ¥ - <, such that the set ¥ (S) is or-
thoisomorphic with the set .Z° (") of all f~closed subspaces
of 7. (For the details concerning Theorem 1.6 see Ref. 3.)
We recall that a subspace .# of 7" is f closed if 4™ =
where A#° = {ue?": flu,v) =0 for all ve.#}.

To conclude this section, we show some relations
between the elements of & (S) and a representation of a tas.
Let H be a complex Hilbert space. We say that a map ¢:
S— H is a representation of a tas (S,4), if 4(x,y) = (¢(x),
é(»)) for all x,yeS and ¢(M)eA"y for some Me V", (see
Ref. 1). Every tas admits a representation (see Ref. 1,
Theorem 3.2). A tas (S,4) is strong if and only if all its
representations are injective. If ¢: S— H is a representation,
then for any set Me V" ,, d(M)e NV} [i.e., (M) is a base for
H].

Let (S,4) be a tas and let ¢: S— H be a representation.
For any subset .X of S we have

(X °) = ¢{ yeS: A(x,)
= ¢{ yeS: (¢(x),4(»)) = O for every xeX}

=¢(x)' NP(S),
where ¢(X)* is the orthogonal complement of ¢(X)
in H. Therefore ¢(X)= (X)) N($H) NP(S). From
#(X)'NG(S) CH(X)* we obtain ¢(X) DP(X)N(S).
Proposition 1.7: Let (S,4) be a tas and let ¢: S—Hbe a
representation. Then for any event ECS,

(E) = p(E)"NP(S).

Proof: Let ECM, Mc#V . Then ¢(M)etV y, i.e., any
JeH has the form

=D {f4(2))¢(2).
Now let fe¢(E)*. Then

f='3 (f4@)8).

zeM — E

If yeE, then ylz for all zeM — E, so that for any feé (E)*,
@OLL = 3 ([ (1)b2) =0.
zeM — E

Hence ¢(»)ed(E)™ Ng(S). |

Corollary 1.8: If E = {z,,2,,...,2, } is a finite event of a tas
(S,4), then xeE if and only if there are complex numbers
C1sC29-Cp SUch that {( — 1,x),(¢1,21) s (€2, ) JE N,

Proof: We have previously shown that the subset
{(c121)sr(Cprz, )} of CXS belongs to n, if
3?_,¢;A(z;,x) = 0for all xS (see Ref. 1). Now the closed
subspace of H generated by the elements
6(2,),6(2;),....,0(z, ) is just the set of all linear combinations
of these elements. If xeE, then Proposition 1.7 implies that
é(x)ed(E)*, but this implies that

b = Yebz)

i=1

= 0 for every xex}

for some c,,c,,...,c, €C. Then for every yeS we obtain
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Ay — 3 cd(z,9)

i=1

= (4.4 — 3 (@) 0N

i=1

_ <¢(x) . E";ci¢(zi),¢(y)> =0,

i=1
ie.,
{( - l,x),(Cl,Zl),...,(Cn,Zn)}EnA. D

iI. DIVISION RINGS RELATED TO A tas

In this section we investigate the division rings which
can be related to tas’s by Theorem 1.6. We shall show that
only the subrings of the field of complex numbers can be
realized.

Theorem 2.1: Let & and &’ be division rings and ¥~
and 7" be vector spaces over & and &', respectively. Let
the dimension of ¥ be n (n>3). Let £(¥,Z) and
L(7, ') be the lattices of all linear subspaces of 7~ and
7, respectively, and let there be an injective lattice mor-
phism & L(7,9 )L (¥",2") which maps atoms to
atoms. Then there is a subdivision ring &} of &' such that
& and & are isomorphic.

Proof: Let xe?”. We write

D -x ={dx:deF}, (2)

and 2'-x’ is defined similarly for x'e?”. If ceZ, and ¢#0,
then & -x = & - (cx). Supposexe? ", x'€?”. We write x ~x’
when and only when x#0, x'#0, £(Z x) = Z'-x' (as &
maps atoms to atoms, to any xe?”, x#0 thereis x'e?” such
that x ~x’). To continue the proof, we need a lemma.
Lemma 2.2: Let xe?”, x'€?”, and let x~x'. Then, for
any ye¥?” with y#£0 and & -y# & -x, there exists a unique
y'e?” such that
y~y and x—y~x"—y. (3)
Proof: Let y” be some nonzero vectorin £ (% +y). Since £
is a lattice morphism that maps atoms to atoms, it follows
that for some a,bc ",
E(D(x—p)) =2 (ax' + by").
Since ¥ -y#£ % x, Z - (x — ) is distinct from both & -x
and & -y, and since £ is injective, a#0, b #0. Define ¥’ by
y = — {a”B)y".
Then y' 0, y~y',and x — y~x" — '
To prove the uniqueness of ', suppose that 2’40 is in
7" such that y ~z', x — yp~x' — z'. Then for a,beZ’, which
are both nonzero,
z!=ay" x'—z':b(x"”y'),
from which it follows that
x'=bx"+ (a — b)y'.

Since &' x’ and &'y’ are distinct, this implies that b = 1
anda — b =0, so that g = 1. Hence y' = z’ and this finishes
the proof of Lemma 2.2. |

Letxe?", x'e?”, and let x ~x’. We define the mapping
Tx,x’ by
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Tx,x'(o) =0, if yey’ J’750, @x¢@y,

4)

where y'e 7™ satisfies (3). Note that T, . is not defined for a
nonzero y unless 7 y#£ % - x.

Since the dimension of 7" is at least 3, we can choose

three vectors u,u,,u; of 7" that are independent. Let u; 2™

be such that u, ~u; and let u5,u5€?” be defined by

Tx,x’ (}’) =y’

’

uy = Tu,,u;(”z)’ u, = Tu.,u; (uy).

It can be shown that the mappings T, . have all the proper-
ties proved in Ref. 5 (Lemmas 3.4-3.8). As the proofs are
literally the same; we shall not repeat them. We note that all
that one needs to prove these lemmas is the fact that x',y',z’
are independent provided x,y,z are independent. This is
guaranteed by the properties of £.

We can now define a mapping L of 7" into 7. We set

LO=0. (5)
If x50 there will exist an integer / such that 1<i<3 and
9 x+9 u,. We then set

Lx=T, .(x). (5

Again, similarly as in Ref. 5, we prove that L is well defined
and Ly, = u} for i = 1,2,3. Also, L is additive, i.e., if pand z
are vectors of 77, then

L(y+z)=Ly+ Lz (6)

(See Lemmas 3.9 and 3.10 in Ref. 5.)

We now examine the properties of L relative to scalar
multiplication. Similarly as in Lemma 3.12 in Ref. 5, we
prove that

L{cx) =c°Lx
for every xe?". Then o(c —c” ) is a well-defined map of &
into ',

Lemma 2.3: Let o (% ) be theimage of & under 0. Then
o(Z) is a division ring and o (0—¢”) is an isomorphism of
Z onto o(Z).

Proof: First we show that o: & —» %' is a morphism of
Dinto D' Letx#0bein 7. Letc,,c,64 . Then Lx 50 and

(¢;+ ) Lx=L{(c; +cy)x} = L(c;x + ¢c>x)
=L(cx) +L{cyx) = (¢ +¢7)Lx,

so that

(e, + )7 =¢f +¢cf.
Further

(¢y6,)°Lx = Lc,{cx))=ciL{c,x) = c{cILx,
so that

(€)= ¢ic5.

Now if ¢] = ¢5, then for x#01in 77, L(¢,x) = L(cyx), i.e.,
L(cix —c,x) = 0.But Ly = Oif and only if y = 0. Therefore
¢, — ¢, =0, i.e,, ¢; = ¢,. This proves that o (&} is an iso-
morphic image of &, and consequently o (&) is a division

ring. The proof of Lemma 2.3 is finished. 0
To conclude the proof of Theorem 2.1, it is enough to
set Z; =o0(Z). (]

In what follows, we shall use Theorem 2.1 to prove that
the only division rings which can be related to a total tas
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in the sense of Theorem 1.6 are the subdivision rings of the
field of complex numbers.

Theorem 2.4: Let (S,4) be astrong total tas with dimen-
sion of at least 4. Let there be a division ring & with an
involutive antiautomorphism 8: & - %, a vector space #~
over Z, and a Hermitian form f: % X % — & such that the
set .Z(#") of all f-closed subspaces of %  is ortho-
isomorphic with the set # (S). Then there is a subfield C, of
the field of complex numbers C such that & and C, are
isomorphic.

Proof: Let 7 be a subspace of # such thatdim 7" = n
(n>3). Let $,€% (S) correspond to 7. Since S, is finite
dimensional, there is an orthogonal set EC.S such that
S, = E (see Ref. 2). Since (S,4) is total, £ is an event. Then
(S,4g ) is a strong, total tas. Without any loss of generality,
we may assume that (S,4) = (S,,4;), and that ¥ (S) is
orthoisomorphic with the orthocomplemented lattice
ZL(77) of all linear subspaces of 7”. Let ¢: S— H be any
representation. For a linear subspace .4 C 7" set

() =), N

where Xe# (S) corresponds to M. We shall show that £ is an
injective lattice morphism from the subspaces of 7" into the
subspaces of H, which maps atoms to atoms. Then, when we
set J'=C and #” =H in Theorem 2.1, the proof of
Theorem 2.4 will follow.

Let xeS. Since (S,4) is total, x is an event. By Proposi-
tion 1.7,

P(X) = d(x)"NP(S) CP(x)"CTP(x)*.
Therefore
(X)) =¢(x)" =C-d(x).
Now if ve?”, then to the atom & ‘v of .¥ (7”) there corre-
sponds an atom X of the . (S, so that
E(Dv) =¢(X)" =C-¢(x).
This shows that £ maps atoms to atoms.
Let.# |, # , be linear subspaces of 7”. Let X, X, be the

elements of % (S) corresponding to .# ,, .# ,, respectively.
Evidently,

§(/1) Vé—(/z) = ¢(Xl)u\/‘ls(/Yz)uC¢(/Y1Vle)ll
=§(~/”1V/2)-

Now let xeX, V X,, x&X |, x¢X,. As X, and X, are finite di-
mensional, there are x,€X, and x,€X, such that xe{x,,x,}~
(see Ref. 3). Let z,,z, be an orthogonal base for {x,,x,}~,
i.e., {z,,2,}~ = {x;,x,} ~ and z,1z, (such an orthogonal base
exists by Ref. 3). By Corollary 1.8 we have

#(x)) = a,4(z)) + a,b(z,), a,,a,€C,
#(x,) = bi@(2,) + bé(2;), b,,b,eC,
O(x) =cd(2y) +c,0(2;,), c¢,,c,€C.

As ¢(x,) and ¢(x,) are independent vectors in H, we can
express ¢(z;) and #(z,) as linear combinations of ¢ (x,) and
&(x,), so that for some d,,d,eC,

(x) =dp(x;) + dp(x,)eh (X)) VI(X,)".
Thus we obtain that
(X, VX,) CHX )MV (XY,
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and hence
E(MN ML) =E( M )N (MA).

For #e.(7") we have #° ={uc?": f(u,w) =0 for
all ve#}. If XeF (S) corresponds to .#, then X ° corre-
sponds to .#°. Then we obtain

E(A°) = (X ).
Let B be an orthogonal base for X. As (S,4) is total, there is
Me V", suchthat BCM.ThenX°=B%= (M — B) ", and

H(X %) =d(X)'NP(S) CH(X)' Co(B)"-.
As Me V' ,, (M)eV "y, so that for every fEH,

f=3(fd@Nd(@+ T (fid(2))d(2).
zeB 2eM — B
Now if fl¢(z) for all zeB, then

f= 3 B(f,¢(z))¢(z),

zeM —
ie, fep(M —B)". Therefore ¢(B)'CH(M — B)**
CoH(B)" =¢(X%*. From this we obtain that
S(XOH =d(X) ie., E(M®) = d(X)* = E(A)". Now by
de Morgan’s law we obtain that

(M NAML) =5(M)NE(A ).

This proves that £ is a lattice morphism.
Let X = B, where B is an event. By Proposition 1.7 we
have

$(X) = $(E)*N(S) CH(E)Y,

i, (XY CH(E)", and hence ¢(E)" = ¢(X)*". Now if
E(M) = E(N), then g(X)* = ¢(Y)*", where X and Y cor-
respond to .# and ./, respectively. As every finite-dimen-
sional element of # (S) belongs to & (S), we obtain that
$(X) = (X)"N(S) = d(N"NP(S) = ¢(Y).Sinceis
injective, we get X = Y, i.e., # = .#". This proves that § is
injective. |

Example 1: Let H be a complex Hilbert space and let M
(M C H) be an orthonormal base. Let us take all finite real
linear combinations of the elements of M, and complete this
set in H. We obtain a real Hilbert space, which we donote by
H'. Let S={xeH": |x|| = 1} and 4(x,p) = (x,p). Then
(S,4) is a strong total tas. It is not difficult to check that the
set Z (S) is orthoisomorphic with the set of all closed sub-
spaces of H". Clearly, & is the field of real numbers,
@: R - R is the identity, and the Hermitian form fis identical
with the scalar product in H".

Example 2: Let H be a complex Hilbert space and let M
be an orthonormal base in H. Let & = {a + bi: a,b are ra-
tional numbers}. Evidently, & is a division ring and the
complex conjugation restricted to & is an involutive antiau-
tomorphism. Take all finite linear combinations of the ele-
ments of M over & and denote it by 7. Let S = {xe?":
x50} and let A(x,) = (x,p)/||x|| ||v]|- Then (4,S) is a tas.
If the dimension of S is finite, we can use the orthogonaliza-
tion method to prove that any maximal orthogonal set in S'is
at the same time a maximal linearly independent set in 7.
This implies that (S,4) is total.

The map ¢: S— H defined by ¢(x) = x/||x|| is a repre-
sentation. If we set f(x,y) = (x,y), then £} "X ¥ -2 is
a Hermitian form, and 4 (x,y) = Oif and only if f(x,y) = 0.
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lil. STRONG SUPERPOSITION PRINCIPLE

In this section we shall investigate the conditions under
which the set & (.5) of all closed subsets of S, where (S,4) is
atas, is orthoisomorphic with the lattice .%° (H) of all closed
subspaces of a Hilbert space H. Evidently, we can concen-
trate our attention to total tas’s. In what follows, we shall
need the concept of an automorphism of a tas. A map J: S-S
is an automorphism if J is a bijection and 4 (x,y) = A (Jx,Jy)
for all x,yeS.

We say that a strong superposition principle (SSP) holds
in a total tas (S,4) if (i) for every x,y and »,v in S, such that
X #7y and #+#7 there is an automorphism J: §—.5 such that
{up}~ ={UxJy}~; and (ii) there is a representation
¢: §— H such that for some x,yeS, X #y, we have

Co({xy} ) ={s(x) 0 (M}
[i.e., for every c,,c,€C there exists a ceC and ze{x,y} ~ such
that c,¢(x) + c,¢(y) = cé(2) 1.

Lemma 3.1: Let (S,4) be a tas and let J: $—S be an
automorphism. Then for any X C.S we have J(X °) = J(X)°.

Proof: LetyeJ (X °). Thenthereis xeX “such thatJx = y.
Since A(x,z) = 0 for all zeX, we obtain 4 (y,Jz) = O for all
zeX, and hence yeJ (X)°. On the other hand, if yeJ(X)?, then
A(p,Jx) = 0 for every xeX. Let zeS be such that y = Jz.
Then 4(Jz,Jx) = 0 implies that 4(z,x) = 0 for all xeX, and
hence zeX °. From this we obtain that yeJ (X ©), and together
with the first part of the proof this proves that

J(X% =J(X)°. O
Lemma 3.1 implies that for any x,yeS, J({x,y}")
= {Jx,Jy} .

Lemma 3.2: If SSP holds for a total tas (S,4) then
C-d({u,w} ™) = {d(u),p(v)}** for every u,veS such that
7 #T. :

Proof: Let x,yeS be such that for them (ii) of SSP holds,
and let ¢: S— H be the corresponding representation. Let
u,veS be such that ##D. By (i) of SSP, there is an automor-
phism J: -8 such that {#,v}~ = {Jx,Jy} . Then we ob-
tain

p({u,v} ) = p({Ix,Jy} ) = ST ({x,} 7).

By Corollary 4.3 in Ref. 1, there exists a unique unitary oper-
ator U on H such that ¢J = Ug. Therefore,

C-¢J({xy} 7)) = U(C-d({x,y} 7))
=U({g(x),6(}").

We have ¢(u),d(v)eU({g(x),4(y)}*"), and since
¢ (u),¢(v) are independent [in the opposite case we would
have |{¢(u),d(v))| = |A(u,0)| = 1,i.e., 4 =7, acontradic-
tion], we obtain that

{p(w) 6 ()} = U({g(x),60) ") =C-d({uv}).

O

Corollary 3.3: If SSP holds in a total tas (S,4), then the
superposition principle holds.

Proof: Let us suppose that the superposition principle
does not hold, and let #,veS be such that 77 and {u,v} does
not admit any minimal superposition. By the preceding
statement,

C-¢({uv} ) ={g(u),d() 1.
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From the properties of H it follows that there is an element g
in {¢(u),#(v)}**, which is contained neither in #(u )" nor
in ¢(v)*. As geC-¢({u,v}7), there is an element w in
{u,v}~ and ceC such that cg (w) = g. It is easy to see that w
is a minimal superposition of {u,v}. O

Since by Corollary 4.2 in Ref. 1 any two representations
of a tas are unitarily equivalent, it follows that if SSP holds
for a tas (S,4), then the condition (ii) is satisfied for any
representation of (S,4).

Theorem 3.4: If a total tas (S,4) satisfies the strong su-
perposition principle, then the set % (5) is orthoisomorphic
with the set . (H) of all closed subspaces of a Hilbert space
H.

Proof: Let ¢: S—H be any representation. Set
C-¢(S) = {ch(x):ceC, xeS}. Here SSP implies that C-¢(S)
is a linear subspace of H. Moreover, C-¢(.S) endowed by the
scalar product inherited from H becomes an inner product
space. Since (S,4) is total, every maximal orthonormal set in
C-4(S) is a base, which by Ref. 6 implies that C-4(S) is
complete, and therefore C-¢(S) = H.

For Xe% (S) let

p(X) = d(X)*.
Since (S,4) is total, we have ¢(X) = ¢(X)** NS(S), and
since C:¢(S) = H, we obtain that

C¢(X) = ()" =p(X).
For X,Ye.% (S) we have

PXAY) =Cd(XAY)=C-4(X)ANg(Y)

=Cd(X)ANC-4(Y) =p(X) Ap(Y),
and

p(X%) =C-4(X°) = C-4(X)'NP(S) = $(X)*

= (C-¢(X)) = p(X)*.
If p(X) =p(Y), then $(X)" =4(¥Y)" implies that
$(X) = (X)" NP(S) = (N NP(S) =¢(Y). Now
|4(x,y)| =1 implies that X =J. Therefore ¢(X) = ¢(Y)
implies that X = Y. This shows that p is an injective ortho-
isomorphism of .% (S) into .¥ (H). It remains to show that
pis onto. For Ve.? (H) let
X = {xeS: Co(x)CV)
Since C+¢(S) = H, we obtain that C-¢(X) = V. Moreover,

X° = {yeS: ylx for any yeX}
= { yeS: ¢(y) Lp(x) for any xeX}
={yeS: 6113},

ie.,

$(X°) =V'Ne(S).
This implies that

Co(X°%) =V"
Now if xeX, then xly for all yeX°, which implies that
#(x)1$(X°). But then ¢(x)LV*, i.e., 6(x)€eV. This shows
that xeX, and hence Xe.% (S). This completes the proof. O

We close with some open questions.

(1) Do we obtain, by applying Theorem 2.1, that
(¢?)? = ¢, where an overbar denotes complex conjuga-
tion? This problem can be reduced to the following question:
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Is (Lx,Ly) in o(Z) for any x, yeV ? If yes, then we define
g(x,y) = (Lx,Ly)°~'. We have f(x, y) = 0 if and only if
D -x19 -y, and this holds if and only if £(Z -x)LE(ZD -p),
i.e., if and only if (Lx,Ly) = 0. From this we obtain that
g(x,y) = 0if and only if f(x, y) =0, and g is a Hermitian
form with respect to 8 defined by ¢ = ( ¢”)°~'. We then
obtain, from the von Neumann and Birkhoff theorem, that
9=06andf=g, and hence (c®)° = ¢°.

(2) Is the tas in example 2 total if its dimension is infi-
nite?
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In general, the less degeneracy the less transition. A principle for time-
dependent Hamiltonian systems in quantum mechanics
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A principle in quantum mechanics is proposed: “In general, the less degeneracy the less
transition.” Mathematical support of this principle is given in a setting of a slowly varying
time-dependent Schrodinger equation via a theorem of asymptotic decomposition. Formulas
that quantitatively relate transition and degeneracy are developed. Ramifications of those

formulas are discussed.

I. INTRODUCTION

In this paper we discuss the following question. To what
extent does a general setting of quantum mechanics support
the following principle: “In general, the less degeneracy the
less transition?”’ Much of our effort revolves about support-
ing the above somewhat vague statement by an appropriate,
concise mathematical analysis. We will derive an innocent
mathematical formula that will produce, among other
things, the principle mentioned above. It will be shown in the
sequel that our analysis could be associated with the Jahn—
Teller effect,! with the adiabatic approximation theorem in
quantum mechanics (see Born and Fock?), and with a cer-
tain admissibility criterion of self-adjoint time-dependent
Hamiltonian systems.

The basic ideas are as follows. We will consider a setting
of time-dependent slowly varying Hamiltonian systems that
evolve in time according to Schrddinger’s equation. The
qualitative phenomenon of degeneracy will be associated
quantitatively with the “amount” of degeneracy present in
our system. Using a method of asymptotic decomposition
proposed by Gingold® and developed by Gingold and
Hsieh,** we will derive an asymptotic formula for the transi-
tion probabilities of evolving states. The “asymptotic size”
of the transition probabilities as a function of the amount of
degeneracy present in our evolving system will be indicated
by some mathematical formulas. The asymptotic size of the
transition probabilities will indicate for us the “amount of
transition” present in a Hamiltonian system. Their interpre-
tation will lead us to the desired conclusions.

The setting is as follows. Consider the evolution of the
system

ity = H(@Ety, i=y—1, '=%,
where # is Planck’s normalized constant. We make the fol-
lowing assumption.

Assumption 1.1: € is a positive smallness parameter,

O<E&< . Let
H(r): = H(é&). (1.2)

Here H(7) is an n X n Hermitian analytic matrix function on
the closed interval 0<7< 0.

Notice that for each finite time ¢, 0<f < » we have
lim,_,. H(é) = H(0). However, we allow H(0) #H( ).

(L)

T =é€l,
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It is in this sense that our system is “slowly varying.” Evi-
dently, the Hamiltonian system (1.1) is equivalent to the
system

’

iy =H(r)y, O<e=¢h 0<r<cw, z_dd_,

r
(1.3)

Notice that e-0" if €50 orif #-0".

An immediate consequence of our assumption is Rel-
lich’s theorem.®

Rellich’s Theorem 1.2: Let Assumption 1.1 hold. Then
H(7) possesses n orthonormal analytic eigenvectors
uy(7),....,u, (1) on [0,c0 ] that correspond to n real analytic
eigenvalues (energy levels) E,(7),...E, (7).

Thus the unitary transformation U(r) = {u,(7),...,
u, (7)], where u,(7),....,u, (v) are column vectors, satisfies

H(r) = U(T)E(r)U*(7),
E(r) = diag[E,(7),...,E, (T)],

(1.4)
Uu* =1,

where [ is the n X n identity matrix.

The state that evolves will be a column vector solution to
(1.3). Specifically we will be concerned with the set of states
that evolve from the initial eigenstates.

Apology: We intend to study Hamiltonians with multi-
degenerate energy levels. This is in spite of certain works like
Hund’ and Von Neumann and Wigner® which argue in a
mathematical manner that level crossing or degeneracies of
energy levels is an exceptional phenomenon. Let us point out
the possible benefits of studying systems with degeneracies.
First, if indeed degeneracies are exceptional we expect the
exceptional to illuminate the common systems without de-
generacies. Second, transition probabilities for systems with
close energy levels (even if noncrossing) can be better un-
derstood mathematically by assuming a limiting situation of
degeneracies. Third, symmetry plays an important role in
physics. Certain symmetries show up as degeneracies in cer-
tain configurations. Fourth, there is an interest in symmetry
and degeneracy by physicists and chemists. The Jahn—Teller
work is just one article on this subject area. For more details
one can consult Knox and Gold,® Nikitin,'° and Pearson.!'

The order of events in this article is as follows. In Sec. II
we measure quantitatively the amount of degeneracy present
in a Hamiltonian system. In Sec. ITI we classify Hamiltonian
systems according to the type of degeneracy present and we
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mention the availability of asymptotic decompositions. In
Sec. IV we provide an asymptotic decomposition theorem
which is a refinement of a theorem of Gingold and Hsieh.* In
Sec. V we derive our principle from certain mathematical
relations. In Sec. VI we elaborate on a key mathematical
relation and its ramifications.

ll. MEASURING DEGENERACIES AT EACH INSTANT

In order to be able to relate transition and degeneracy
we need to measure the degeneracies in our system (1.3) and
to obtain an asymptotic decomposition for its solutions. To
this end we introduce certain indices whose significance will
become clear in the sequel.

First we introduce an index d that will be associated
with a pair of energy levels (Ej (1), Ex (1)), jk=1,..,n,
j#k, at each (“scaled”) instant 7 of the interval [0,c0].
These indices will help us measure the amount of degeneracy
present in a Hamiltonian system (1.3).

The index d is defined as the order of level crossing in the
following precise way.

Convention 2.1: Let (j,k ) be a fixed ordered set of in-
dices j,k = 1,...,n with j# k. We say that d = d( j,k,7) is the
order of the (turning point) level crossing at 7 for { j,k ) ifin
a neighborhood of a finite time 7,

E (1) — E (1) = (1 — 7)?h(7). (2.1)
The mapping A () is analytic at 7 and
h(7) #0. (2.2)

We say that d is the order of the (turning point co ) level
crossing at ¥ = oo if

E (1) — E (7)) =77 (7). (2.3)
The mapping #(7) is analytic at 7 = « and
h( ) #O0. 2.4)

In other words d is the order of zero of [E; () —Ei(7)]
at 7.

If

E; (1) —E, (1)=0, (2.5)
we set

d(jk7) = o (2.6)

for all times 7, 0<7< .
Notice that by the above convention d = 0 at 7 implies
that at 7 no level crossing occurs. Let

R=(rp)=-U*U', jk=1,.,n. 2.7)
For a given ordered pair { j,k ), we denote by é = &(j,k,7)
the order of zero of ry, (7) at 7. If r,, (7) #0 weset & = 0. If
74 (1)=0o0n [0, 0 | we seté = oo for all points 7 of [0, ].

It is an easy exercise to verify that r, (7) = — r_kj(r),
J>k = 1,...n, since U1s a unitary operator. Therefore &( j,k,7)

= &(k,j,7).

Finally we denote by /1 an “index of local perturbation”

for each pair {j,k ) at each time 7, 0<7< oo, as follows:

m=(¢+1)/(d+1). (2.8)
If 6= o and d = « then we define /7 to be i = . Thus
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our index of local perturbation is defined for all ¢ and d in the
range

0<8< o0, 0<d< . (2.9)
11l. CLASSIFICATION OF SELF-ADJOINT
HAMILTONIAN SYSTEMS

It is natural to distinguish among a few classes in the
family of systems (1.3) with discrete energy levels. The dis-
tinction could be based on the index d defined in Sec. II.
Given a Hamiltonian system (1.3) together with (1.4) we
distinguish among the following classes. ;

Convention 3.1: Class I: Nondegenerate. Namely d = 0
for all times 0<7< 0 and all j,k = 1,...,n, j#k.

Class II: Accidentally degenerate. Namely, for at least
one pair of energy levels E; (7) and E, (7),j,k = 1,..,n, j#k
we have at least one time 0<7< o such that d > 0. However,
we never have d = .

Class III: Partially totally degenerate. Namely, at least
one pair of energy levels E; (1) and E, (7),j,k = 1,..,n,j#k
are identical for all times. At least one pair of energy levels
are not identical.

Class 1V: Totally degenerate. Namely, all energy levels
are identical to one value E,(7) for all times. It is easily
verified that then H(7) = E,(7)I, where I is the identity
operator.

Even though one may believe that classes III and IV
rarely occur in applications, the above classification is useful
for the sake of the completeness of a mathematical discus-
sion. It is evident that for dimensions #>2 the classification
above divides all Hamiltonian systems into four mutually

exclusive classes. . ]
An asymptotic decomposition theorem for solutions of

Hamiltonian systems (1.3) as e »0™" could be instrumental
to the understanding of the evolution of time dependent self-
adjoint Hamiltonian systems. However, such a theorem,
which comprehensively covers all four classes of Hamilto-
nians, has not been seen in the literature until recently.

If a Hamiltonian system (1.3) belongs to the class of
nondegenerate or the class of totally degenerate Hamilto-
nians then a comprehensive asymptotic decomposition for
their solutions can be extracted from the available literature.
Moreover, even in the case that H(7) is infinite dimensional
and is twice continuously differentiable such that

f |12 " (r)||d7 < 0, (3.1)
0

a combination of methods that includes a tool of Kato'? can
be used to obtain a comprehensive asymptotic decomposi-
tion. Compare also with Messiah,!* Chap. XVII. Evidently
the case of a totally degenerate Hamiltonian is trivial. All
solutions of

iey' =E\(m)]Iy 3.2)
have the form
y= (exp(ie)‘1 f El(n)dn)lc, (3.3)
0

where ¢ is a constant initial vector. An asymptotic decompo-
sition for special cases of Hamiltonians that pertain to class
II, namely of accidental degeneracy, can be extracted from
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Born and Fock,? Kato,'? and Friedrichs.'* The most diffi-
cult class that remains is the class of partially totally degen-
erate Hamiltonians.

Recently Gingold*'® provided a comprehensive asymp-
totic decomposition for two-dimensional Hamiltonian sys-
tems. “Invariant” asymptotic formulas and asymptotic de-
compositions in a generalized sense were developed.
Gingold and Hsieh* managed to obtain a complete asympto-
tic decomposition for most general accidentally degenerate n
dimensional self-adjoint Hamiltonian systems. A formula-
tion of an asymptotic decomposition theorem that covers a//
four classes of Hamiltonians including the class of partially
totally degenerate Hamiltonians can be found in Ref. 16.
The details of the proof are given in Gingold and Hsieh.® The
analysis in Refs. 3, 4, 5, and 15 reinforces the fact that
asymptotic expansions in fractional powers of € play a basic
role in systems with accidental degeneracies. It also points
out the fact that traditional asymptotic decompositions
could be impossible to get in systems which belong to the
partially totally degenerate class. An alternative to the tradi-
tional method of stationary phase is also developed in those
articles. This alternative method does not resort to integra-
tion in the complex plane.

A refinement of the theorem in Gingold and Hsieh* will
be elaborated upon in the next section. It will serve us in our
present study.

IV. A THEOREM OF ASYMPTOTIC DECOMPOSITION

Given a system (1.3) we have the following theorem.
Theorem 4.1: Let the slowly varying Hamiltonian sys-
tem

4.1

satisfy Assumption 1.1 and be accidentally (or non-) degen-
erate. Then the general solution of (4.1) is given by

iy’ =H(r)y

y=U(r) [eXP(ie)“ f D(ﬂ)dﬂ](1+ P(7,€))c, (4.2)
0

where U(7) is a unitary analytic matrix function on [0, e ]

which satisfies the relations (1.4). Here D(7%) is a certain

real valued diagonal matrix to be elaborated upon in the

sequel, and I + P(r,€) is an n X n invertible and continuous

matrix function in the domain 0<7< o0, 0<€ < o0, such that

P(0,e) =0, |P(re)||<Ke™ for 0<e<l, (4.3)

where || || is the induced Euclidean norm. Here X is a non-
negative fixed number independent of 7 and €, and m is char-
acterized by

m =inf[ (¢ + 1)/(d + 1)] = inf(/n). (4.4)
The infimum is taken over all pairs of indices j,k = 1,...,n,
J#k, and all points 7, 0<7< w0, according to Sec. I1.

Proof: The proof follows by a slight modification of the
treatment in Gingold and Hsieh.* Rather than repeating the
details we will outline here the basic features. One may dis-
tinguish two stages in the process of asymptotic decomposi-
tion. In the first stage a linear transformation is applied.
Thanks to Rellich’s theorem® the existence of a linear uni-
tary and analytic transformation U(7), which satisfies
(1.4), is guaranteed. Then the transformation
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y=U(r)v (4.5)
takes the differential system (4.1) into
iev' = [E(r) —ieU*U' ]y, (4.6)

where v is an # column vector. The coefficient matrix of the
differential system (4.6) is rearranged into a diagonal and an
off-diagonal part as follows. The diagonal part D(7) is given
by

D(7) =D =E + i€ Diag[g,,....&, ] 4.7
where
Diag [g,..-.8, ]: = — Diag(U*U"). (4.8)

The off-diagonal part is given by
R=(ry)= —U*U’'+ Diag(U*U"), jk=1,.,n.
(4.9)

Notice that by this arrangement
E —ieU*U' =D +ieR, (4.10)
In the second stage of an asymptotic decomposition we first

solve for an approximate n X n fundamental diagonal matrix
solution ¥,

y =0, j=1,.,n

ieV' = DV, V=exp(i6)_‘J.D(77)d1]‘ (4.11)
(1]
Then we set
v= V(I + P)c, 4.12)

where c¢ is a constant vector and P is a certain n X n ““small
perturbation matrix” as e ~0*. Consequently P satisfies the
matrix differential equation

(I+P)=V~'RV(I+P). (4.13)

Moreover, it can be shown that the existence of a solution to
the initial value problem determined by (4.13) and
P(0,e) = 0 is guaranteed if the integral equation

P=LI+L*+L?P,
with

(4.14)

T

LP(7) =J- V-'RVPdy (4.15)
0

possesses a solution with the desired properties. Indeed this
is the case under our assumptions. It turns out that L2 is a
contraction and that L7 and L *I tend to zero uniformly for
0<7< 0 as e~07. Those conclusions can be shown by esti-
mates on terms of the form

f(r)=f rjk(s)[exp(ie—')f[(Ej(u)—Ek<u))

+ ie(g; (u) ——gk(u))]du]ds, (4.16)

Sk =1,..,n, j#k, as €e-0%. It is from such terms that the
role of the indices d, &, and /7 is revealed. For more details see
Ref. 3 and Gingold and Hsieh.* The entries of the matrix P
can be approximated to any level of accuracy by Y= 5L *1,
where N is a non-negative integer.

A good estimate on the size of the transition probabili-
ties depends on estimates on the entries of the matrix P. They
are provided by Theorem 4.1.

We stress again that the importance of relation (4.3) lies
in the fact that the bound Ke™ is uniform for all 0<7< .

H. Gingold 2402



V. SMOOTHNESS OF EIGENSTATES, TRANSITION,
AND DEGENERACY

The purpose of this section is twofold. The first task is to
show rigorously that although we need to assume an amount
of smoothness on the entries of H(7) in order to carry out an
asymptotic analysis, we need not assume from the outset
that the eigenstates themselves are smooth. This is relevant
to our second task, which is to relate quantitatively in an
asymptotic sense the concepts of transition and degeneracy.

Assume that the n normalized eigenstates of H(7) are
the column vectors of the unitary matrix

U(r) = [it,(7), #y(1).nsil, (7) ] (5.1)
which satisfies

H(r) = UME(r)U*(r). (5.2)
Then, the solution to the initial value problem

iey; = H(1)y;, »;(0)=i,(0) (5.3)
is given by

y;i(r)=U(7) [expf (ie)“D(s)ds]

0
X (I 4+ PYU*(0)T(0)e, , (5.4)

where e is the j column of the identity operator.

It is an easy exercise to verify that the matrix function
U*(r)U(r) is unitary and diagonal. This is thanks to the
assumption that H(r) belongs to the accidental degeneracy
class. Thus

U(r)=U(r)explif(r)], (5.5)
where
0(7) = diag[8,(7),...0,(7) ]. (5.6)

The mappings 8, (7),j = 1,...,n, are certain real-valued map-
pings.

Let us combine (5.5) with (5.4). Then the solution
¥;(7) to the initial value problem (5.3) is given by

yi(n) = U() [exp{io(m}) [exp(z‘e)‘1 fD(s)ds]
0

X [I+ P][exp —i6(0)]e;. (5.7)

One may question why it is that from the outset we did
not produce the transformation

y="U(r)v (5.8)

rather then the transformation (4.5). To answer this we
need to remember that U(7) was guaranteed to be analytic.
This was crucial for the derivation of (4.6). However, it will
turn out that we need not restrict ourselves from the outset
with the assumption that the eigenstates themselves are
smooth or analytic.

From (5.7) we conclude that for certain scalar coeffi-
cients ¢ ; (7,€), I = 1,...,n, we have

n

Y =3 c(re)a(r), j=1,.,n

(5.9)

Let us calculate the probability g/ of the statej to continue to
evolve in the statej. Let us also calculate the transition prob-
ability ¢ of the state j to evolve into the state k. Combining
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the superposition principle (see, e.g., Liboff'’ Chap. 5) with
our formulas (5.9) we obtain
Ij'jlzll +Pjil2

|’1j|211 +ij|2 + 2/ 1|’11P1j|2
1)

=421 +ps12 =11 +p;%

|4 kij|2

AP +P1;|2 + 37004 1P1j|2
1#j

EMkijlz = Iij|2’ k #j.

qj: =lcy (r,€)>=

(5.10)

i =lca(re)|* =

(5.11)

The denominators in (5.10) and in (5.11) are identically 1
because

(y¥(n)y;(1)=(y}(0).y;(0)) = (@%(0),&; (0))=1.
(5.12)
The entries 4,,...,4, are given by

diag[4,,...,4, | = exp(ie) ! f D(s)ds. (5.13)
0

Notice that by our assumptions [E(7) — ieU*(r)U'(7)] is
also a Hermitian operator and therefore
(5.14)

By (4.3) we conclude that each entry p ; of the matrix P
satisfies

lp i |* = O(€™). (5.15)
It is evident from formulas (5.10), (5.11), and (5.15) that
the larger m is the closer to 1 is the probability ¢/, in an

asymptotic sense as e -0, for each state y ;(7) tostay in the
eigenstate & ; (7). This is so because (5.15) implies that

g} =1-0(e), =0, k#j, jk=1,..n.
(5.16)

A,1=1, j=1l,..n

Evidently at 7 =0,
(5.17)

It is the size of the transition probabilities and their variation
with 7 and their dependence on € which we intend to utilize
as a measure of the transition in a slowly varying time-depen-
dent quantum mechanical system. Thus we can refer to the
transition of one particular eigenstate i; by analyzing qj We
can refer to the transition of the Hamiltonian system as a
whole by refering to all the eigenstates #;(7) and to their
probabilities g/, j=1,..,n. We discuss the simultaneous
transition of all eigenstates. Before we continue with our
discussion it is worthwhile to point out that a straightfor-
ward well-known calculation reveals that the values of the
transition probabilities g/, q,’-‘ are independent of the value of
6(7) in (5.5). Since, from now on, we will mainly be con-
cerned with the values of the transition probabilities of non-
degenerate or accidently degenerate Hamiltonians, we will
assume without loss of generality that

8(r)=0, U="T. (5.18)

We are ready now to justify our principle: “In general,
the less degeneracy the less transition.”
Consider first the class of Hamiltonians (1.3) for which

g/=1 ¢4=0.
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the off-diagonal entries of U *(7) U’ (1) are identically 0. In
such a class, regardless of the amount and order of level
crossings, it is an easy exercise to verify that the transition
probabilities are independent of time and that

g¢i=1, ¢qf=0, j#k, jk=12,.. (5.19)
“In general” means that in the /arger family of Hamiltonian
systems (1.3) the above class of systems is exceptional.

We turn to the “general case.” We view now a Hamilto-
nian H(r) given by (1.4) as composed of two independent
parts. The one is a set of n orthonormal eigenvectors that
make up the unitary operator U(7). The second part is the
matrix of energy levels E(7).

Consider two Hamiltonian systems (1.3) with coeffi-
cient matrices H,(7) and H,(7), respectively, such that

H(r)=UME(NU*(1), H,(7) =U(n)E,(T)U*(7).
(5.20)

Then H,(7) and H,(7) share the same set of eigenstates
but they could differ in their energy levels in a manner to be
specified below. Also, the jth states that evolve are, respec-
tively,

= U(r)[exp(ie)-‘f D(n)dn](1+Pl)e,-, (5.21)
0

vy, =U(r) [exp(z‘e)_‘f D(n)dﬂ] (I + Py)e;. (5.22)
0

The matrix P, = (p}, ) pertains to the initial value problem
iey; =Hy;, »;(0)=u;(0). (5.23)

The corresponding transition probabilities will be denoted
by g%, ¢% - In an analogous and obvious manner we will
have the matrix P, = (p},), j,k = 1,...,n, together with the
transition probabilities g7,, g%, related to

iey = Hyy;, y;(0) =u;(0). (5.24)
Moreover, with || || denoting the induced Euclidean
norm we have
L P<IPP<KiE™, 1P’ <|IPlP<K3e™,  (5.25)

where m, and m,, K, and K, have, respectively, the same
meaning as in (4.4). Denote by d, ( j,k,7) and by d,( j,k,7)
the order of level crossing in (5.23) and (5.24), respectively.
Assume that for all j,k,7 we have

dl (],k’%) <d2 ( _]’k,%) ’
and that for one specific triplet j,k,7, we have

d,(jk7) <dy(jik7), e(jkT)# .

(5.26)

By the definition of the indices 72, m, we have m, <m, and
therefore for 0 < € € 1 we have €™ > €™. Obviously,

S g =0E€™), jk=1..n, (5.27)

j=1

Sk

> ¢ =0E™), jk=1..n (5.28)

j=1

ok

gl =1—-0(€™), ¢gf, =1—0(e™), as e~0".
(5.29)

2404 J. Math. Phys., Vol. 28, No. 10, October 1987

It is in this sense that we propose the principle: “In general,
the less degeneracy the less transition.” It is in this sense that
Gingold and Hsieh* proposed: “In general, the less degener-
acy the closer is the state which evolves to its initial eigen-
state.”

The index m in (4.3) could be too crude a yardstick to
relate degeneracy and transition quantitatively. The fact
that P =0 in (4.2) implies that the transition probabilities
satisfy ¢/ =1 and ¢% =0, j,k = 1,...,n, j#k, and consequent-
ly S(¢e) defined by

S(e) =€"?2 i aﬁ[pjk(a',e)lzdf (5.30)

jk=1Jo

is a good measure of the amount of transition in a Hamilto-
nian system. However, P(7,€) is a solution of an integral
equation and in general is obtained via a laborious process of
approximations. Mathematical considerations show that
LI=0in (4.14) implies P = 0. Moreover, all of the degener-
acy indices d, the indices &, /m, and the index m can be ob-
tained (read off) from LI. This can be seen in detail in Refs. 3
and 4. Therefore we suggest the following measure of degen-
eracy S, (€):

S1(6)=e‘2§n: f rjk(r,e)[exp(ie)"f [(E;(m)
jk=11J0 0
J#k
2
—E, () +ielg,; (n) —gk(n))]dﬂ]df
(5.31)

Recall that the entries 7 ;, (7,€) are defined by (2.7) and that
the entries g ; are defined by (4.8). We remark on the follow-
ing. If H(7) isnondegenerate thenm>1in (4.3) and .S, (¢) is
a bounded function of € as € 0. In general, if the off diag-
onalentries of U *U/ ' are not all zeroand H(7) isnondegener-
ate then m =1 and S,(€) is a bounded function of € as
€-0%. If H(7) is degenerate then in general §,(¢) is an
unbounded function of € as e - 0. If the off-diagonal entries
U*U’ are identically zero then m = « and S, (¢) =0.

Our analysis seems to reinforce the Jahn-Teller effect’ if
we are willing to accept that less transition implies more
stability. Jahn and Teller' investigated the conditions under
which a polyatomic molecule can have a stable equilibrium
configuration when its electronic state has orbital degener-
acy, i.e., not arising from the spin. They applied group the-
ory to perturbation calculations and concluded that “orbital
electronic degeneracy and stability of the nuclear configura-
tion are incompatible unless all the atoms of a molecule lie on
a straight line.” It is interesting to note that our principle is
obtained in a general and different setting using different
methods. In addition we produced a quantitative relation
which associates transition and degeneracy.

VL. RAMIFICATIONS OF A MATHEMATICAL FORMULA

The asymptotic decomposition (4.2) is associated with

the mathematical relations
”P”<K€m, P= (ij), ijk,<K€m’ j,k = 1,...,”,

(6.1)
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where P may be considered in (4.2) as a transition probabili-
ty matrix by virtue of the relations

= e (re) P =|1+py)* =1+ 0™, (6.2)
= lcu (1) > = |pu | = 0(E™), j#k. (6.3)

The clue to the derivation of the principle “In general, the
less degeneracy the less transition” is an innocent looking
relation

m=Inf[(2d+ 1)/(d+ 1)},

where the infimum is taken over all pairs of energy levels
(E;(7),E, (7)) and entries 7 ;,

(rp)= —U*U’ + Diag(U*U"),

(6.4)

j#k, jk=1,.,n,

(6.5)
at all points 7, 0<7< w0, as explained in Secs. II-V. It seems
that the relation (6.4) [together with (6.2) and (6.3)] is
capable of generating several additional clues.

(1) The relation (6.4) indicates by the presence of & that
““the transition in a slowly varying system (1.3) depends on
the smoothness properties of one set of orthonormal eigenvec-
tors of H(7).” This statement is better understood by recall-
ing that & denotes an order of zero of 7, j#k in (6.5).
Notice that the 7, depend on the smoothness of U.

(ii) The exceptional case, which is termed in our princi-
ple “in general,” is also adequately described by (6.4). Be-
cause then we have r ; =0 for j k and by the convention of
Sec. II we have é( j,k,7) = « for all j,k,7. Consequently,
m = o and €” = 0 is the right interpretation for O <e<1.
This indeed implies that for all times g7 =1 and ¢% =0, j k.

(iii) The formula (6.4) establishes the validity of the
adiabatic approximation theorem in quantum mechanics for
nondegenerate and accidentally degenerate Hamiltonians
H (7). This theorem can be traced back to Ehrenfest'® and to
Born and Fock.? We recall that a version of the adiabatic
approximation theorem in quantum mechanics states the
following: “In a slowly varying time-dependent Hamilto-
nian, a state y; which evolves from an eigenstate u; (0) will
continue to evolve asymptotically as €07 in the eigenstate
u;(7) for all times.” Compare, e.g., with Mesiah,'’> Chap.
XVII and with Liboff,"” Chap. 5. Proof of the theorem for
special cases of degeneracies were given by Born and Fock,’
Kato'? and Friedrichs.'"* A complete proof in the case that
H(r) is finite dimensional and belongs to the class of acci-
dentally degenerate Hamiltonians was given in Ref. 3 and
Gingold and Hsieh.* The proof boils down to showing that
asymptotical-ly g5 ~0, j#k, g/ ~1 as €e-0". The proof is
indicated by (6.4) where we have under the above circum-

stances
é+ 1)=Min(‘§+ 1)= fz"+1 S
d+1 d+1/ d'+1
for a certain pair of numbers d " and &',

(iv) But is the adiabatic approximation theorem true
for all four classes of Hamiltonians? A hint towards its inva-
lidity is given again by our innocent relation (6.4). If not all
é( j,k,7) satisfy € = o we could obtain m =0 if some
a(j,k 7) = «. In other words we may have qj~0(1) as
€—-07 rather than qj ~0(1) as e-07 if for some choice of
the parameters j,k,7 we have d( Jk,7) = . By Sec. II,

M=Inf( 0 (6.6)
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d = w ifforj#k we have E (1) — E, (1) =0. Indeed, Gin-
gold'® took up this hint and produced a counterexample to
the adiabatic approximation theorem for a Hamiltonian that
possesses two identical energy levels. A generalized version
of the theorem was also offered in Ref. 16. It is then natural
to ask what indications we can get from (6.4) if H(7) is an
infinite-dimensional Hermitian operator operating on a Hil-
bert space? It will be shown elsewhere that then if Sup d < oo
(namely the total order of degeneracy is bounded) and if
certain additional conditions hold then we will still have
m >0 in (4.6). Otherwise, we would speculate that m =0
and that the adiabatic approximation theorem may not hold
even if H () belongs to the class of accidentally degenerate
Hamiltonians.

(v) Admissibility of H(7). Assume that we deal with an
evolving Hamiltonian system that pertains to a quantum me-
chanical system which satisfies the following.

Postulate 6.1: The quantum mechanical system is such
that it tends after a long time to settle into a “most stable”
configuration.

In other words our principle “In general, the less degen-
eracy the less transition” is not a consequence of mathemat-
ical manipulations but is a result of the characteristics of
mother nature. What use can we make of (6.4) then? As-
sume that our Hamiltonian is such that é( j,k,7) # « for
J-k,7. Let the matrix U(r) be fixed in advance. Assume that
we are willing to accept “more stability” as “less transition.”
Then, in order to guarantee more stability after a long time
the combination of Postulate 6.1 with (6.4) indicates a re-
striction on the values of d( J»k,7) at times 7 large enough
For 7 large enough, d need not exceed the values of d for
0<7 = &<y, where ¥ is a certain finite number. Thus (6.4)
could be used for obtaining admissibility conditions on
H(r).

(vi) Design of quantum mechanical systems can be aid-
ed by (6.4) and in particular by the principle proposed. As-
sume that we need to design certain quantum mechanical
systems that evolve according to (1.3). Suppose that our
systems are such that we can write the Hamiltonians H(7)
for various possible designs. If we are interested in a most
stable design we would choose an H(7) that is either nonde-
generate or possesses accidental degeneracies and is such
that the off-diagonal entries of U * U’ are identically 0. If this
is impossible, we will create a design with energy levels that
are separated as much as possible, to make m in (6.4) the
largest. This is in accordance with the principle proposed.

It is worthwhile to mention that Theorem 4.1 and (6.4)
could be related to problems regarding adiabatic invariants
discussed in Wasow.'® A recent research text on linear turn-
ing point theory is Ref. 20.
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General properties of the transmission coefficient of an ideal, one-dimensional potential barrier
of arbitrary shape are studied. It is proved that an arbitrary symmetric barrier is perfectly
transparent for at least one energy in each energy band of the related band problem, where the
barrier potential is periodically continued on the whole real axis. Recursion relations are
obtained for transmission coefficients of barriers consisting of 2* structural units. They are
used in a simple proof showing that transmission coefficients of finite barriers composed of m
identical arbitrary structural units have chaotic behavior for almost all energies for m — « in
each energy band. There exists, however, becoming more dense with 7, a countable set of
energies in each energy band where finite repeated barriers are perfectly transparent. The

results are illustrated by a numerical example.

I. INTRODUCTION

The problem of quantum particle passage through a po-
tential barrier still receives considerable attention, mostly
due to the continued progress in tunneling spectroscopy
methods and the possibility of creating a large variety of
artificial layered microstructures (quantum devices).' Be-
sides the well-known studies of tunneling through some
model random potentials originated by Lifshitz and co-
workers,? recent theoretical investigations have been con-
centrated on tunneling in superconductors® and the related
general tunneling problem with energy dissipation.* Much
attention has also been paid to the tunneling dynamics in the
presence of external electric and magnetic fields.>-®

It may seem that the simplest, nondissipative stationary
tunneling problem with its mathematics essentially coincid-
ing with the more than 100 year old Sturm-Louville prob-
lem is a closed subject to be presented in introductory quan-
tum-mechanical texts, discussing standard exact solutions
and equally well-known approximate methods like quasi-
classical approximation. However, the group structures re-
lated to ideal one-dimensional barriers were only very re-
cently investigated® with interesting applications. The
one-dimensional Schrédinger equation also remains a sub-
ject of continuous mathematical investigations,'® with many
quite recent important results.

In this paper we prove five simple lemmas describing
analytic properties of the transmission coefficient for a gen-
eral class of one-dimensional potentials with compact sup-
port. Section II contains necessary preliminaries. Although
its contents can hardly be claimed new, it still gives, in our
opinion, the most concise description of the tunneling prob-
lem (see also Sec. VI where some other pedagogical advan-
tages of this approach are clearly seen). In particular, we
emphasize the relation between the tunneling problem and
the band problem for a periodic potential with a “unit cell”
coinciding with the single barrier shape. Two comparison
lemmas in Sec. III describe analytic properties of the trans-
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mission coefficient at low energies (below the lowest poten-
tial energy in the barrier region). Section IV is devoted to an
elementary discussion of the necessary and sufficient condi-
tions for a complete barrier transparency at some energies.
The main result (Lemma 3) shows that the localization of
the complete resonances (transparency equal to 1) on the
energy axis furnishes some information concerning the band
structure of the related infinite periodic solid. The complete
resonances are also always present for barriers composed of
2% identical structure units. They are discussed in Sec. V,
where a two-variable iterative map is obtained for such a
sequence of barriers, with one component being just a logis-
tic map in the chaotic and ergodic regime. This implies that
the approach to the perfect transparency in the allowed ener-
gy bands for such sequences of barriers is quite specific, with
a dense set of complete resonances interlocked by local mini-
ma. The concluding Sec. VI contains some applications and
numerical illustrations for some model potentials.

Il. PRELIMINARIES

A. Transfer operator in terms of fundamental solutions
Consider the one-dimensional Schrodinger equation
Y +e—Ux))Y=0 (#/2m=1, xeR), (N

where the potential U is an arbitrary, piecewise continuous,
real, bounded function with compact support (U(x) =0 out-
side of a given interval [0,L]). The tunneling problem con-
sists of finding all C* solutions of Eq. (1), parametrically
dependent on ec(0, + «), and behaving as exp(ie'/?x)
+ a exp( — ie'/*x) for x <0 and as ¢ exp(i€'/%x) for x> L
(the case of a normalized particle particle beam incident
from the left). Introducing the variable: &: = ¢, one may
consider the equivalent canonical system

¥ =§ & =(Ux)—ep, 2)

or, in the matrix notation,
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11,’ = G(x;é')’l'}, ’\') = (51) , (3)
where the generator G is the traceless 2 X 2 operator
0 1)
€)= . 4
Glxe) (U(x) —€ 0 @

Together with G one may also consider “evolution” or
“transfer” operators defined on the solution set by

B(x): = M(x,x5€)(x,). (5
[Below we will often set x, = 0, x = L and then use an ab-
breviated notation M (L,0;6) =M () for this type of transfer
operator and other related quantities. ] Operators M (x,x,,€)
are real and unimodular. The simplest way to prove it is to
consider the fundamental solutions of Eq. (3) obeying the
initial conditions

1 0
P (Xp3€) = (0), P (xp€) = (1) (6)

[and thus having the Wronskian W(¥,,1,) = 1]. It is well
known that these solutions are both real, for real eand U. As
¥, and ¢, form the natural, canonical basis in the solution
space at the point x,, the transfer operator can be written in
terms of these solutions

¥ (x;€)
1 (x;€)
which completes the proof.

Representation (7) reduces the tunneling problem to
the solution of the Cauchy problem at x = 0 or, if conve-
nient, for some other intermediate points, with a product
transfer operator and an automatic solution matching at
these points. The resulting group structure of transfer opera-
tors (in several different forms from the above-presented
representations) has been thoroughly investigated in Ref. 9.
Below we will show that this representation is extremely use-
ful in studying the analytic properties of the transmission
coefficient |c|? (also called the “barrier transparency”), as
well as in the numerical calculations.

¢2(x;6)) ’ N

MCxxoi€) = ( ¥} (x;€)

B. Transfer operator in terms of arbitrary solution basis

Let ¢,, &, be two arbitrary, linearly independent solu-
tions of Eq. (1) in the [O,L] interval. The fundamental solu-
tions ¢,, ¥, and their derivatives (matrix elements of the
transfer operator) can be easily expressed in terms of ¢, and

&

Pi(x€) = W1 (1,62)(8; (0,€) ¢, (x;€)
— 91 (0;€),(x;€)),

¥, (x;€) = W_1(¢1,¢2)(¢1(0,€)¢2(X;5)
— 6,(0;€) 1 (x;6)),

¥ (x;€) = W~ ($1,6,) (85 (0,€)87 (x;€)
— #1(0;6)¢,(x;56)),

¥; (x:6) = W 1(1,02)(8:(0,6) 85 (x;€)
— $2(0:€)9] (x;€))-

Formulas (8) are useful when ¢,, ¢, are originally known or
have some known additional properties (like Bloch solu-

(8)
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tions). They can also be used in examining the properties of
the transfer operator at the energies corresponding to the
allowed and forbidden energy intervals (see below, Sec.
II D).

C. Barrier transparency

The transmission coefficient of the barrier, o: = |c|?, is
obviously a function of the energy parameter € and a func-
tional of U. Here o can be obtained by solving the equation

1+a 1

M(€)<ie”2(_i_—a)) =cexp(ie”2L)<i6”2). 9)
This immediately leads to the following expression for ¢ in
terms of fundamental solutions:

a(e) = 1/[p*(e) + v (e)), (10)
where

ule): = Yy, (Lse) + ¢ (Lse)), (11)
and

v(€): = Ne' "y (Lie) — e 2y} (L;€)). (12)

In some considerations below, an expanded version of the
formula (10) will be useful:

o(€) = M3 (Lie) + P32(Lie) + e (Lse)

+ e WA (L) +2) (13)

It follows that o is an analytic function of € for € > 0. Due to
the current [Wronskian W(y*,)] conservation we have
|a|*> + |¢|* = 1, and hence u?(€) + v*(€) »>1and o(€)<1, as
expected. Both functions 4 and v have obvious high energy
asymptotics for bounded potentials U: u(€)~cos e'/2L,
v(€) ~sin €'/2L, and the transparency is arbitrarily close to
unity for sufficiently high energies.

D. Equivalence classes of the transfer operator and
relations with the band structure problem

Representation (7) allows immediate listing of all the
equivalence classes of the transfer operators M(€) (with re-
spect to complex transformations). For any set of real uni-
modular matrices M, these are determined by the solution
type of the eigenvalue problem,

AZ—(TrM)A+1=0, (14)
where, in our case,
Tr M =2u(e) =9,(L;e) + 5 (L;e). (15)

For the reader’s convenience we list once again these well-
known classes: (a) for |u|>1, Eq. (14) has real distinct
roots and

M(e)~(/1(€) 0 );

0 A e
(b) for || < 1, Eq. (14) has complex roots on the unit circle,
A, = exp( + if(¢€)), and

M) ~(exp(u9(6)) 0‘ ) ;

0 exp({ — i6(¢€))

and (c) for pu =1 (u= — 1), Eq. (14) has double root
A=1 (A= —1) and M(e) is either diagonal matrix
[M(€) = + I] or equivalent to

(16)

(17)
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+1 7)
(0 +1 (r70).

The properties of u as a function of € were investigated
in classical papers by Kramers,'! James,'? and Kohn," in
the context of the band structure problem for an arbitrary
periodic potential with period L. There the solution can be
constructed from “cellular” solutions in an arbitrary inter-
val of length L, with the eigenvalues of the transfer operator
uniquely determining a class of “self-matching” (in the
sense of James) solutions obeying the condition

d(L;e) = A(e)d(0se). (19)
These are the solutions of Eq. (3) on the [0,L] interval with
an eigenvector of the transfer operator M(¢) taken as a vec-
tor of initial conditions. For complex A these are the usual
Bloch solutions. Solutions with real eigenvalues A lying out-
side the unit circle are subsequently excluded in the periodic
problem as physically unacceptable (exponentially increas-
ingforx— 4+ w orx—» — ).

The most important property of the u function is that
the zeros of its derivative du/de may only occur'® for |u|>1.
It follows that for any energy € such that |uz(€)|<1, there
exists a whole interval (an energy band) on the energy axis
where u is a one-to-one function of energy, mapping this
interval onto [ — 1, + 1] interval (see Fig. 1). Different en-
ergy bands may still have common end points. This may
happen ifand only if || = 1 and Ju/de = O for some energy.
As usual, for a fixed energy band one can parametrize com-
plex roots setting

cos k(€)L = u(e) (20)

and choosing, e.g., k(e)e[0,7/L], A,=explik(e)L),
A, = exp( — ik(€)L ). So defined, k(¢€) is a one-to-one func-
tion of energy for a given band. As for k #0 and k ##/L
there are always two linearly independent solutions of the
Bloch type, in the standard approach one considers k as a
quasimomentum varying within [ — #/L, #/L] interval
and €(k) = e( — k) by definition. Then there is exactly one
Bloch-type solution for each k€[ — #/L, w/L] (withk =0
corresponding to the band center and k= + #/L to the
band edges in the k-€ plane).

It is obvious that all these general considerations remain
relevant in the tunneling problem, for a potential barrier
consisting of a single or any finite number of identical struc-
tural units. Of course, real exponential solutions are physical
here and contribute to the barrier characteristics. It is also
clear in this context that frequently discussed resonant tun-
neling (usually associated with the existence of an almost
localized, or indeed localized in a “shifted” barrier, energy

P P

“ \
1 Y4l 7N

_@Y y SN2/ A AR

(18)

FIG. 1. Qualitative behavior of the u function for nonoverlapping energy
bands. Hatched regions indicate forbidden energy intervals.
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level, see, e.g., Refs. 1 and 2) can also be considered in terms
of the band limit, where intuitively one may expect a perfect
transparency for band energies and a vanishing one for for-
bidden energy intervals. Below we investigate the resonances
and the existence of the band limit for arbitrary finite size
structures, without any additional approximations, like the
quasiclassical one used in Ref. 14. At present, an immediate
consequence of representation (10) is that o(€) < 1 inside
the forbidden energy intervals. Hence a complete resonance
[o(€) = 1] may only happen at some energies from the al-
lowed energy bands. Before further discussion of complete
resonances (Secs. IV and V) we will consider first the behav-
ior of € in the low energy limit for some general subclass of
barrier potentials.

Ill. NONRESONANT TUNNELING: COMPARISON
LEMMAS

Representation (10) yields two simple lemmas for the
specific case of potential with U, = infi,; ; U(x) > 0.

Lemma I: Given the two tunneling problems
P HEe—UMW=0, ¢ +(—TUmW=0 (21
where ff(x)}U(x) on [0,L]. Then for 0 <€ < U, (see Fig.
2),

o(&[ U <o(e[UD). (22)

Proof: Let ¢,, ¥,, and #,, ¥, be fundamental solutions of
Eqgs. (1) for, respectively, potentials U and U.ForO<e<U,
all these solutions are increasing on the [0,L] interval. (It
follows from the fact that they have the same sign as their
second derivatives in the indicated energy interval and spe-
cific initial conditions.) From the Wronskian theorem we
have

W (), %) =f (T1) — UOW, ()P, (1t
0

(i=12).
Hence
ASIAC)
¥ gi(x)’
Integrating the last inequality'® we obtain P,(x) > ¢, (x)
and hence ¥ (x) > ¢; (x), as well. Inspection of the expres-

sion for transparency in the form (13) completes the proof.
Lemma II: Given the tunneling problem

Y +(e—-Ux))=0, U, =inf,,, Ux)>0, (23)
o is an increasing function of € for 0 <e < U,.

/\HM
]

U(x) !
|
|

!

i
|
!
i
L
FIG. 2. First comparison lemma. Potential barrier U and its majorant [/
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Proof: It can be carried out along the same lines as for
Lemma 1. Alternatively, for two arbitrary energies €, > €,,
from the indicated interval and such that ¢, > €,, one may set
€=¢€, i](x) = U(x) + (€, — €,), and use Lemma I.

Lemmas I and II characterize the so-called® “nonreso-
nant” regime in tunneling, where local extrema in transpar-
ency are absent. Lemma I can be used in uniform estimations
of the barrier transparency using, e.g., piecewise constant
majorants and minorants of a given potential U.

IV. COMPLETE RESONANCES

Let us investigate the necessary and sufficient condi-
tions for a complete barrier transparency at some resonant
energy €,. We already noticed that it may happen only for
energies from the allowed bands, where 1 (€) = cos k(€)L
with real k(e)e[ — w/L,7/L}. Hence at a complete reso-
nance there exists such a wave vector k(¢,) that

¥, (L;e,) + 5 (Lie,) =2 cos k(€,)L, (24a)
€'y (Lie,) — € i (Lie,) = 2sink(e, )L,  (24b)
and, as always,

(L€ )5 (Lie,) — ¥, (Lie, )Y (Lig,) = 1. (24c)

It is easy to check that the only real solution to the system
(24) is

¥ (Lie,) = 5 (Lse,) =cos k(e, )L,
¥, (Lie,) = € V%sin k(e, )L,
¥ (Li€,) = —€*sink(e,)L.

Thus at a complete resonance the transfer matrix must be of
the form

cos k(€,)L

€ %sin k(e,)L)
—€*sink(e,)L

Mle,) = ( cos k(€,)L

(25)

Conversely, for any M(¢€) of the form (25), o(€) = 1.
The same result can be obtained more simply if we note
that at a complete resonance the vector

1
(iel/z) (26)

is an eigenvector of the real transfer matrix M(e, ), belong-
ing to an eigenvalue on the unit circle (¢ =0and |c| = 1).
For an arbitrarily shaped potential U Eqgs. (24) need not
be satisfied and complete resonances may be totally absent.
However, for symmetric potentials, U(x+ L /2)
= U(x — L /2),and one can prove that ¢, (L;€) = ¢} (L;€)
(see Refs. 12 and 13). Then as the only nontrivial condition
of the complete resonance at some band energy we have

¥; (L€, ) /¥, (Lie,) = — €,  tan k(e, ) L. (27)

The rhs of Eq. (27) considered as a function of the wave
vector assumes all values from the ( — o0, + oo ) interval
for ke( — w/2L, w/2L). We obtain the following lemma.

Lemma III: A symmetric barrier is completely trans-
parent for at least one energy from each allowed energy band
of the related periodic structure.

1t is clear from the above considerations that at a com-
plete resonance the transfer matrix need not be of the form
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+ 1, where I is the identity matrix. If it happens, however,
the barrier is certainly completely transparent at this energy.
A transfer matrix of this type may occur, on the other hand,
only for the energies corresponding to the band edges on the
energy axis, if additionally the matrix has fwo linearly inde-
pendent eigenvectors [i.e., case of the Jordan form (17) is
excluded]. Kramers,'? in his analysis of the band structures,
has shown that it may happen if and only if |u(€)| = 1 and
Ju/de = 0 at the given energy, i.e., for the case of overlap-
ping energy bands. He also pointed out that this type of situ-
ation will certainly happen if one works with the u function
defined not for the original unit cell but for a doubled one,
and gave the relation between these two types of u functions
(which is nothing but the “logistic map” see Sec. V below).
These observations are even more relevant in the tunneling
problem, where the period doubling means working with
subsequences of barriers composed of 2* identical struc-
tural units (k-positive integer) and where |p(€)| = 1 and
du/de = 0 simultaneously satisfied always lead to a com-
plete resonance. It follows also that o(€) < 1 at the “nono-
verlapping” band edges, as matrix (18) is not of type (25).

V. FINITE SEQUENCES OF IDENTICAL BARRIERS

In this section we consider barriers composed of m iden-
tical structural units, each of them having the same potential
shape and length L. In particular, we will study the behavior
of the {o,, (mL;e)} sequences for fixed values of energy €.

Let us consider first the case when the energy € belongs
to a forbidden energy interval. In accordance with intuitive
expectations one may prove the following lemma.

Lemma IV: For any energy from a forbidden energy
interval

lim o, (mL;e) =0. (28)

Moreover, sequences o,, become monotonically decreasing
for sufficiently large m.

Proof: Here we exploit the properties of the self-match-
ing solutions in a forbidden energy interval where the trans-
fer operator has real, distinct eigenvalues A and A ~'. For
any energy from this interval there exist exactly two linearly
independent self-matching solutions ¢,(x;€), &,(x;€),
which can be continued on the [0,mL] interval to give

é,(mL;e) = A "¢, (0ze),

(29)
$o(mL.€) =4 ~"¢,(0e) (|]A|>1).
Using representation (8) we obtain
’? L) = i&Zm bi/l—2m+c“
Yi(mL) =a + (30)

P(mL) =aA™ +bjA "+ (i=12),

where primed and unprimed coefficients a;, b;, and ¢; can be
expressed in terms of ¢, (0,€) components and energy €, and
where non-negative coefficients a,, a}, a,, a5 are not all zero
(otherwise using their explicit form one may show that at
least one of the solutions ¢; would be trivial, which is impos-
sible). Statement (28) follows then from Eq. (13). One can
also easily show that a sequence ad >™ + B4 ~2" + y, with
a>0, B>0, is monotonically increasing for sufficiently
large m, which completes the proof. It essentially reduces to
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the observation that a transfer matrix equivalent to

(5 42

must have at least one term proportional to A ™. This type of
reasoning will be exploited below also, for energies from the
allowed energy bands, where the behavior of {0, (mL;e)}
happens to be much more complex. Passing to the investiga-
tion of this case, we begin with an elementary remark.

Remark I: If an arbitrary barrier of length L is com-
pletely transparent at some energy € = ¢,, then all finite bar-
riers composed of its m>»2 replicas are also completely
transparent at this energy. Indeed, if vector (26) is an eigen-
vector of the transfer matrix M (e, ), it will also be an eigen-
vector of the M ™ (¢, ) matrix. A constructive version of the
proof starts with the transfer operator at complete resonance
written as

M(e,) =cos k(e,)L-I+ io, ( — ie"?)sin k(e,)L
= exp[io, ( —i€/*)k(e,)L ],

where the generalized Pauli matrix o, (d) is defined as

0
Ux(d)-'= -1 Z),

and still 0% (d) = I. It follows that
M™(e,) = exp[imo, ( —ie/*)k(e, )L ]

and hence o,, (¢,) = 1 for any m>2.

As the next step, we investigate the {o,, (mL;e)} se-
quences at the end points of allowed energy intervals. If two
such intervals have a common end point €,, M(€.) = + 1
(see above, Sec. II) and trivially o, (mL;e.) = 1 for all m.
For an end point not overlapping with end points of other
bands one has

31

(32)

(£DH" (% 1)"'+‘mr)
0 (£DH”

and M ™(¢e) always contains an element linearly increasing

with m. Thus lim,,,_ _ o,, = 0 there.

For energies within a given energy band let us notice
first that for all wave vectors of the form

M’"(6)~(

k(e) =naw/mL, n=1_2,..mL—1, (33)
the transfer matrix is equivalent to

expl(tk(e)L) 0 )

( 0 exp( — ik(e)L)/ "~ (34)

Hence after m steps it will become equivalent and thus coin-
ciding with the matrix + I. When rephrased this observa-
tion is equivalent to the following remark.

Remark II: For sufficiently large m a repeated barrier
will become completely transparent for all energies corre-
sponding to Bloch waves exp(ik(€)x)u, (x) with the half-
period 7/k(e) of the phase factor commensurate with the
barrier length. All these energies form a countable, dense set
in each energy band. In particular, discrete sets of energies
obtained via imposing the Born—von Karman conditions be-
long to it. However, the measure of this set is zero in each
energy band and it is interesting to investigate how se-
quences behave for all other allowed energies. We will see
that they are divergent for almost all energies in each band.
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Here it is sufficient to consider the subsequences of
{o,, (mL;€)}, corresponding to the barrier size doubling at
each step.

Recursion relations for transparencies: Let us consider a
barrier composed of two identical structural units, each of
them having the same potential shape and length L. Notice,
first, that the simple algebraic identity (4 '+ A4)2

=A 24+ 42?2 can be generalized to an identity for an
arbitrary unimodular matrix A4,

Trd?= (Trd)>-2. (35)

This, in turn, leads to the recursion relation for the Kramers
functions u

u(2Ls€) = 2u*(Lie) — 1, (36)
or more generally, to
iy (€) =213 () — 1,
37)

f,(€):=p(2' " 'Lie),

if we continue the doubling procedure.

Interesting enough, the recursion relation can also be
obtained for the correspondingly defined functions ¥, (€)
= v(2'~ 'L;e). Indeed, for any 2 X 2 matrix we have

1=1.2,.,

(A 2)12=A12 TrA, (A 2)21 =A21 TI‘A, (38)
which immediately leads to
Vi (€) =24, (e)V,(€). (39)

A straightforward algebra with o, defined as (jii; + ¥7) ™!
gives the following lemma.

Lemma V: For a size-doubling sequence of barriers, the
barrier transparencies can be calculated from the two-vari-
able iterative map

Gi.1(€) =a,(e)/[47 ()1 —a,(€)) +&,(€) ], (40)
iy, (€) =2} (e) — 1, (41)

assuming that i ,(¢): = u(€) (the “band structure’) and
7,(€): = o(e€) (single barrier transparency) are known.

For arbitrary finite structure, the transparency is always
greater than zero for all € > 0. (This follows from the expres-
sion for o used in the proof of Lemma I.) For positive ener-
gies one may then define the resistances g, (€) as

pi(e):=0d7"(€) — 1, 42)

being just the ratio of the reflection to transmission coeffi-
cients. In terms of the p, i variables the map (40) and (41)
simplifies to

Prr1(€) =4ii(€)p,(€), (43)

iy, (6) =23 (e) — 1. (44)

Previous general statements can be easily checked here:
o =1 is an obvious fixed point of the map (40) (compare
Remark 1) and in any forbidden energy interval where
|£1| > 1 the map for & along obviously diverges; Eqs. (43)
and (44) show then that p, tends monotonically to infinity
for /-« (o, tends monotonically to zero—compare
Lemma IV). At the band end points with o, < 1 (p,7#0) we
havep, —» + .

To investigate the {o,} sequences for all other, internal
band energies we note that the transformation (37) coin-
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cides, after the linear transformation p; = — 2x, + 1, with
the logistic map in its canonical form: x, , ; = ¢x,(1 — x;)
for g = 4. Hence it exhibits chaotic and ergodic behavior on
the [0,1] interval. For a given value of g, it is also a doubling
transformation in terms of the angular variable @ defined by

6e[0,7]. (45)

So defined, 8 is a single-valued function of energy in each
band, which coincides in the L = 1length scale with the non-
negative quasimomentum in the reduced-zone scheme. We
have

i1, (€) = cos 2'8(e). (46)

Maps (40) and (41) or, equivalently, (43) and (44) in
angular parametrization (46) allow reconstruction of all
complete resonances at internal band energies occurring in
barriers composed of 2/~ structural units. We already
know that they have to occur for all & of the form

ne/2'"Y, n=12,..2""1-1. (47)

The same result may be obtained by noticing that i, _, =0
necessarily leads to &, = 1. Moreover, all angles 8e(0,7),
leading to i, _ , = Ounder the transformation (46), are giv-
en by

O, = 25+ )m/27", 5=01,.,2"2—1. (48)

It is clear that the sum of the sets (48) coincides with the set
(47), as each element of the set (47) can be written &, for
some k < L and vice versa.

A more interesting observation is related to the exis-
tence of the other (besides u = — 1) fixed point of the map
(44), p = — L Sets of all 6e(0,7) that will give i, (8)

= — } for some k have elements

6N =2'"%(2s+2/3)r, O =2""K(2s+4/)m,
s=0,1,..,25"2— 1. (49)

For all such @ the resistance will become frozen at its
Pr —1(€(8)) value equal to

k—2

B (€)= [ Ha.le(O) ple(d))

s=1

Once again, the sum of all sets (47) is a countable, dense set
on [0,77]. The transparencies for the corresponding energies
will preserve some fixed value, smaller than unity, for all
sufficiently long doubled barriers.

Finally, it is not difficult to prove, using a representation
like (50), that 5 sequences are divergent for almost all ener-
gies from a given band. Indeed, the infinite product

VAR

s—1
(where we can now assume that all i, 20) diverges for al-
most all €. This is because the sequence {In|2u, (€)|} does
not converge to zero for almost all energies, due to the ergo-
dic character of the map (36).

To summarize, for almost all energies from an allowed
energy band {o,, (mL;e)} sequences will have an erratic,
oscillatory behavior for increasing m, in contrast to naive
expectations. However, the “amplitude” of these oscillations
should, in general, decrease with energy for bounded poten-
tials (compare Sec. I C).

p(e) = cos 8(e),

(50)

(51)
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VI. EXAMPLES, NUMERICAL ILLUSTRATIONS, AND
FINAL REMARKS

A. Rectangular barriers

For the simplest “‘rectangular” barrier with constant
potential Uon [0,L] the generator G does not depend on x:

1
G(e)=():)Z O)’ K:=U—g¢,

(52)
and Eq. (3) can be integrated leading to
M(x,x5€) = exp[G(e) (x — x,)]. (53)
Writing G(€) as
G(€) = ko, (k) (54)

with, as before, o, (x) belonging to the equivalence class of
the Pauli matrix o,

-1
7 (K): =(2 Ko )

K1/2 0 K——l/2 0
N0 2 Ox 0 K1/2)?

(k) =1,

we obtain

(35)

M (x,xp€) = expl(x — xg) 0, (k)

= cosh k(x — x¢) "1 + o, (k)sinh kK (x — x;).
(56)
The fundamental solutions can be read from (56):

¥ (x,x;€) = cosh k(x — x;),
¥, (x,x;€) = sinh k(x — x,). (57
The unimodularity property reduces here to the simple trig-
onometric identity, which, conversely, may be considered as
a very special case of Wronksian-type identities for pairs of
fundamental solutions of second-order, linear differential
equations. The relationship between the unimodularity and
the traceless character of the generator G is particularly
clear here, as for any matrix 4, det 4 = exp(Tr 4).

One can immediately write the transfer operator for
a finite array of rectangular potential barriers, i.e., for a bar-
rier with piecewise constant potential U: U= U, for
xX€(X;_ 4, X)), O0<xg<XyyisX, _y <X, = L. Continuously

extending potentials U, onto closed intervals [x, ,, X, ]
we have
1%
U' ] i + 1
' H :
| ! !
> | | |
U' ] [ I:
.
L—a L+a L
2 2

FIG. 3. Symmetric double barrier. Here k% = U, — €, i = 1,2.
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FIG. 4. Solving numerically the Cauchy problem on [0,L] one can find fundamental solutions ¢, and ¥, and determine u (¢) and v(¢). Then &, and &, can be
found using recurrence relations (40). (a)~(1) numerically caiculated &,, &, (I =0,1,...,5) for the asymmetric model potential (61) (x, = 0.7). Note that
each zero of the /i, function generates one complete resonance after period doubling [compare Eq. (40) ]. At given energy scale fast i, oscillations soon cause
the loss of graphical resolution in the first narrow energy band and then close to the band edges in higher-energy bands (shadowed regions ). Here o, does not
have much structure for a single asymmetric barrier and complete resonance are absent in the considered energy intervals. However, the o, plot (fora barrier
composed of 64 structural units) allows one to localize, quite precisely, the band-edge energies and shows the peculiar behavior inside each band. (m)-(x)
the same for the symmetric potential (61). Note the presence of a complete resonance in each indicated energy band (Lemma III) for a single-unit barrier.
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N
ML) = H M, (I;e), M, (&)
k-1

= cosh kI, + o, (x,)sinh k. [,
(58)

Products of this type can be used to approximate uniformly
transfer operators for arbitrary potential. This also furnishes
an independent proof of the unimodularity property of
transfer operators for traceless generators.

Representation (58) reduces to a minimum the algebra-
ic calculations for rectangular barriers (still rather lengthy
in most quantum-mechanical textbooks), and may be used
in obtaining systematic density expansions for disordered
barriers of the 4, B, etc. type. As a simple illustration let us
consider a symmetric double barrier structure (Fig. 3). Just
multiplying three binomials

lk:=xk—xk_1, Kk:=(Uk—€)l/2.

{cosh i, [ (L — a)/2] + o, (ky)sinh k[ (L — a)/2])

X (cosh x,a + o, (x,)sinh ka)

X(cosh ;[ (L — a)/2) + o, (x,)sinh ki, [ (L — a)/2]),
we have
M, (€) = My,(€) = u(e) = cosh k,a cosh k,(L — a)

+ 3(ky/K, + Ky/k,)sinh k,a sinh x, (L — a)
(59)

and

M, (€) =3 l[cosh K,a sinh k(L — a) + sinh x,a

)
2 ]

X(ﬁsinhzle‘ —4 +ﬂcosh2x2L —a)] .
K, 2 Ky 2
(60)

Explicitly known matrix elements of the transfer opera-
tor allow one to write an expression for the transparency of a
double barrier [Eq. (13)]. The equation u(€) = cos k(€)L
with u(€) given by (59) coincides, of course, with the im-
plicit dispersion relation of the Kronig—Penney model (with
the U, barriers of length L — a separated by U, wells of
width a).

Another almost trivial application is a kind of Ram-
sauer effect for finite disordered sequences of rectangular
barriers of two types, where tunneling phenomena depend
on four parameters: L,, Ly and kx,, k5. From representa-
tions (59) and (60) it is obvious that a disordered barrier
will behave as a uniform, shorter barrier of the 4 type for all
energies such that kL, = inw.

Ky . L—a «
X (——‘- sinh? x, + =2 cosh? x,
K, 2 K

B. Numerical example

For graphical and numerical illustration we have cho-
sen a barrier of the form

U(X) =a(x—x0)2+b1 xe[o;lly (61)
with parameters a = 100, b = 2, and x, = 0.7 and 0.5 (for
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asymmetric and symmetric barriers, respectively). Results
for single and double barriers (up to 2° structural units) are
presented in Figs. 4 and 5.

C. Final remarks

The above-presented band-type characterization of
transparencies for single barriers and for sequences of identi-
cal barriers may have some practical application in electron
spectroscopy and in designing quantum tunneling devices.
Here we stress again the localization of complete resonances
in symmetric barriers (Lemma III), and erratic transparen-
cy behavior in allowed energy bands.

The numerical examples clearly show that chaotic
transmission fluctuations have some lower-bound envelope,
most likely analytic in each energy band. It will be interest-
ing to investigate this problem closer.

All described phenomena should be common for other
systems with similar mathematics such as transmission lines
or layers of inhomogeneous dielectric transmitting electro-
magnetic waves. The “perfect transparency” Lemma III can
also be used there. In particular, the wave equation in a layer
region with symmetric permittivity profile can be trans-

Vo

0 20 40 60 80 €
- ©
Yo
0 P
7
! | ! [ 1 ' I ' T
0 20 40 60 80

€
FIG. 5. Here v functions are for a single barrier (61): (a) asymmetric case,
(b) symmetric case.
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formed into a Schrodinger-like equation with an effective
symmetric potential. This problem and some related ques-
tions (the case of an oblique incidence, curvilinear dielectric
layers) will be considered in a separate paper.

Realistic sequences of barriers can hardly be considered
as made of identical units. Therefore, it will be interesting to
investigate the influence of some barrier shape or energy
noise, e.g., on the two variable map (43) and (44). Random
effects are usually studied in the L — oo limit. They are cer-
tainly important, however, for finite microscopic layers and
lead to interesting mathematics. As a preliminary result in
this direction we can announce another simple lemma stat-
ing that the potential noise about some given average poten-
tial U can only decrease the average barrier transparency.
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In this paper a reformulation of the inverse scattering theory for a three-dimensional
Schrddinger equation is given in terms of the standing wave solutions and the reactance
matrix. A counterpart of the generalized Marchenko equation is given as well as a trace-type
formula for the potential. Derivations are based on the d method in the complex & plane.

I. INTRODUCTION

The standard formulation of the inverse scattering prob-
lem for the three-dimensional Schrodinger equation is to re-
construct the underlying scattering potential from the
asymptotic amplitude of the outgoing scattered wave. As
was shown by Newton,' a generalized Marchenko equation
can be derived from the fact that the outgoing and incoming
solutions of the Schrodinger operator are related to each
other via the scattering amplitude.

The aim of the present paper is to show that the inverse
scattering theory can also be formulated in terms of the so-
called standing wave solutions and the corresponding reac-
tance matrix. The direct scattering theory for standing
waves was developed by Kouri and Levin.? (See also New-
ton> and references therein.) The main tool in this paper will
be the d equations, introduced to scattering theory by Beals
and Coifman*® and later successfully developed by
Ablowitz and Nachman.%’

In Sec. I1, we shall summarize some results from the
standing wave scattering theory. In Sec. II1, the main results
are given. We derive a counterpart of the generalized Mar-
chenko equation and give a reconstruction formula for the
potential from the standing wave solution and the K matrix.
Finally, the necessary d equations are briefly summarized in
the Appendix.

(. STANDING WAVE SOLUTIONS

To fix the notations, we shall consider the Schrodinger
equation

(—A+MY=K?,
in R®. Generalizations to other dimensions are straightfor-
ward. In this paper K means complex wave number and & its
real part, i.e., K = k + igeC, k,geR. The scattering potential
V is real and assumed to satisfy

2
171z + supf [ﬂ_ﬂ}ﬂj_‘l] V() |dy < oo,
<m Jp L x —y
for some constant a > 0. This class of potentials was intro-
duced by Newton.®
The principal value Green’s function G? is defined
through the formula

1\
GP(x,k) = (——) PV
27

(2.1)

eix{ d
e gE®

) Permanent address: Department of Mathematics, University of Helsinki,
Hallituskatu 15, 00100 Helsinki, Finland.
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(2.2)

(a) Loof e
= | — de it-x
2\2r) Jo P e

where keR and § = |£ |9EIR3, and # stands for the Cauchy
principal value integral. It is very well known® that

GP(x,k) =G % (x,k) + iA(x,k), (2.3)

where G * are outgoing ( + ) and incoming ( — ) Green’s
functions, respectively, i.e.,

G (x,k) — (L)s __ﬁ_dg
2r) Jw k240 —|C |
1 exiklxl
- T 4r x|

and A(x,k) is given by

3
A(x,k) = sgn krr (—1—) f 5(|E |2 — k2)de
27 R?

2 s oa
- (-1—) kf o (2.4)
47 2
Formula (2.2) gives also the simple relation
G?(x,k) = 4G " (x,k) + G~ (x,k)) (2.5)

between Green’s functions.

To discuss the principal value Green’s function further,
we recall some basic facts from the standard scattering the-
ory. )

Let ¢* (x,K,8) denote the outgoing scattering solution
of the Schrodinger equation with plane wave incidence, i.e.,
¥~ satisfies the Lippman~Schwinger equation

¥+ (x,K,0) = Yo (x,K,0) + G+ (V) (x,.K.0). (2.6)

Here 9, (x,K,0) = exp (iK6-x) denotes the plane wave, and
& * is the convolution operator with kernel G *. The solv-
ability of (2.6) has been discussed by several authors under
various assumptions on the potential V. (See, e.g., Refs.
8-10.) Here we shall refer to Ref. 8, where it was shown that
under assumption (2.1), Eq. (2.6) has a unique solution for
all KeC* = {KeC|Im K>0} except possibly for a finite
number of values on the imaginary axis, K = ix,,...,ix,,,
0<%, < -+ <x,,. Throughout the paper, we shall assume
that K = 0 is nonexceptional, i.e., 0 < x,.

Similarly, the incoming scattering solution ¥~ (x,X,0),
KeC™, is defined in terms of G ~.

For fixed keR, the scattering operator *:
L?(S?)>L?%(S8?) is defined by
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F)(0) = p(d) +—f AkBD (Db,
27

where the kernel 4(k,8,0 ') is obtained as the scattering am-
plitude of the outgoing wave ¢*:

AhDD) = — L

e~ %= pix)p+ (x,k,0")dx.
47 Js

(2.8)

The following theorem relates the existence of the standing
wave solutions of the Schrodinger equation to the properties
of the S operator and the underlying potential.

We shall use the notation || V|| for the Rollnik norm of
V,ie.,

VIR = [ PR ax gy

-

Further, we use the notation  F°(4)(x)
= fp G?(x —y,k)p(¥)dy, and ¥,(x.k, 6) = exp(zkﬁ x)
denotes the plane wave.

Theorem 2,1: The equation

P (x,k,0) = Yo(x,k.0) + TP (VYP) (x,k0)  (2.9)

has a unique solution # ? if the potential satisfies (2.1) and
the corresponding scattering operator does not have the
eigenvalue — 1. Especially, a unique solution exists if one of
the following conditions is fulfilled: (i) ¥eL,NR, R denot-
ing the Rollnik class and ||V ||z <4m; (ii) |V (x)|<C(1
+ |x|) ~# for some constants C>0 and > 1, and |k | is
large enough.
Proof: Factorizing first the right-hand side of Eq. (2.3)
one gets

1—-%*?V=1—~9 V—iAV
= (1= F*"V(1 + (ik /4m).A),

where .# is an integral operator with kernel
M(xpk) = — - J P (x,k,0)e ~ &7 V(y)do.
4qr Js?

Following the argument in Ref. 8 we notice that
Tr 4" =Tr &,

o/ being the integral operator L 2($2) - L2(S?) with the
kernel A(k, 00 ). Hence, using the product formula for
modified Fredholm determinants,? denoted as det,, we have

det, (1 — 97V) =det, (1 — G Vdet (1 + (ik /4m) )
Xexp (—Tr (1 — G+ V) (ik /4) A
=det,(1 — ¥ *V)det (1 + (ik /47) o)

X exp (Lk— V(x)dx) R
4r Jw
which proves the first part of the theorem.

The special cases (i) and (ii) are treated as follows: In
the standard way, Eq. (2.9) is transformed to a Fredholm
equation by multiplication with |F(x)|"/% Result (i) fol-
lows by Theorem XI 43 in Ref. 9 and representation (2.5).
Result (ii)is a consequence of a theorem of Sait5%: The oper-
ators ¥ * are compact operators
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G L (R)-L% 5 (R, }<6<l,
with norm less than C/|k | for large |k|. Here

L(R®) = [feL (R")

flf(x)l (1+[x)*dx< oo}

We shall skip the details of the proof. a

The solution #? is called the standing wave solution.
The connection between ¢ and ¢™ is given in terms of the
scattering amplitude. We have

Y (x,k,0) = ¥ (x,k,0)

l A, a, A I.
J; ¢ (;"‘:’6 )44([:,6 ,6 )d6

This result can be found in Refs. 2 and 3.
Defining the reactance matrix K (k,6,8 ') by the formula

KkB0')= — zl— f e~ XY (x) PP (x,k,0 " )dx,
T
we also have

¥ (x,k,0) = PP (x,k,0)

Ik J I+ (kDK (kO",0)db".

T Js?

(2.11)

Integrating (2.10) with e~ "’“z""V(x) we arrive at Heitler’s

integral equation
K(k,0,0') =A(k6,6")
— -’i‘—f K(k,0,6")4(k,0",8")d0".

T Js?

This equation takes a simple form, if written in terms of the
scattering operator and the reactance operator %
L*(S*)-L*(SY,

F o) = ——f K(k8,0")4(8")db".

We have

i.e., & is the Cayley transformation of the unitary operator
S

K =1-2L)1+7)""

Remark 2.2: The above discussion gives the following
denseness result as a corollary: If {#, |neN} is a dense set in
L2(S?) and assumptions (i) or (ii) of Theorem 2.1 hold,
then {¢, + #¢, |neN} also form a dense set. This type of
denseness result may have some significance in fixed energy
inversion schemes.

Ill. THE d EQUATIONS

The definition and a brief summary of the J operator in
Cis given in the Appendix.

We start by defining the Green’s function for
K = k + igeC by the formula

G(xK) = ( L

1x§
27) wK:—|C? I§|2
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Obviously, G(x,K) =G * (x,K) for KeC* ={K=k +
ig| + ¢>0} and G(x,K) = G?(x,k) asg = 0.
Using Eq. (A2) we get

5 d
3 =—=G
G(x,K) Fre (x,K)

- (5117)3 w 2‘|1§| 5(1(—1 il 1<+1 ¢ I)eix'g
~(3) | E e ~i6D

— 8 (K +[§))e™ s = 8(q) A(x.k),

where A(x,k) is defined in (2.4). This is simply a manifesta-
tion of the fact that d of a sectionally holomorphic function
results in a density i/2 times the jump of the function along
the cut. .

Next, let ¢¥(x,K,0) be the solution of the equation

v=1v,+ I (VY), 3.0

where we assume that ¥ is a potential that allows a unique
solution of the above equation for all KeC. The bound states
are especially excluded. Clearly, ¢y = ¢* for KeC*, ¢/* de-
noting the outgoing and incoming solutions, respectively,
and ¢ = ¢” for K real. Applying d on both sides of the equa-
tion one gets

I(x,K,0) — G (Vay) (x,K,9)
=39 (V) (x.K,0)

2 " . “
=6(q)(—1——) kJ de'f dy 9 =PV () h(pk,0)
41r 52 R’

4
which yields, by the assumption of 7,

= —5(q) —k—J e x K (k,0',0)do’,
SZ

I(x,K,0) = —6,(q)2k— f $P(x,k,0 VK (k,6',0)dd".
T JS?

Toreconstruct ¥ we need information of the large | K | behav-
ior of the solution . Let us assume that the potential V

satisfies
Vix+y)

.[13 146y

for all xeR?, HeS 2. Then, with a minor modification of the
proof of Newton,'' we see that the mappings
K-e %% (x,K,0) — 1 are in H*(C* ), the Hardy
classes of the upper and lower half-spaces, respectively. [In
Ref. 12, it is shown that e ~ %?*y(x,K,9) — 1 behaves like
(1/|K |) under more restrictive conditionson V than (3.2).]
Therefore we can use formula (A1) with Q@ = {|K | <R}
with R — 0. However, one has to be careful on the real axis,
since the reconstruction formula holds originally only for
C'(Q) functions. We shall denote by y(x,K,8) the outcome
of (Al),i.e.,

2
dy < o

(3.2)

Y(x,K,Q)e K= _1

1 (3 PPk —1) 5 p ke
2mi Je K—-K’
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=—L ” k,
4 J)_ . K—k’

— ik'®x

X f YP(xk',0)K(k',8',0)d0' dk'. (3.3)
sz

Ifg#£0, weget y (x,K,0) = ¢(x,K,9). On thereal axis, the k ’

integral has to be interpreted as a principal value integral;

therefore

X (x.k,0) = §(¥* (x,k,0) + ¥~ (x,k,0))

#PP (x,k,0).

The solution y appears also in the paper of Kouri and Levin.2
They give the relation

¥ (x,k,0)
~ 2 A ~ -~ ~
= y(x,k,0) + %f x(x,k,6"K*(x,0',0)d6",
SZ

(3.4)

which is a direct consequence of (2.11). Here X 2 is under-
stood in the operational sense. Combining the results, we
have the following theorem.

Theorem 3.1: Assume that the potential admits a unique
solution of (3.1) for all KeC and satisfies the condition
(3.2). Then we have the inverse scattering equations

¥ (x,k,0)e %> _ 1
1k
4772 — w0 k—k'

—_ e~ ik 9 x

xf PP(x,k" 0K (k',8',0)dd’ dk’,
S2
lﬁ"(x,k,@) = x(x,k,@?)
2 ~ ~ ~ ~
+ f—f YkDNK (kD" B)db",
47 Js2

for the reactance matrix K.

Equation (3.3) may be viewed as a counterpart of the
generalized Marchenko equation of Newton. This interpre-
tation has the following ground: if the jump of 3y on the real X
axis were expressed in terms of A matrix and ¢, as usually
in inverse scattering theory, i.e.,

(K0 = — K 5() f A(=KD0"

87 52
X+ (x,k,0')d8’,
the reconstruction formula (A1) would yield exactly the
Fourier transform of the Marchenko equation.

Equation (3.3) gives the following reconstruction for-
mulas for the potential.

Theorem 3.2: Assume that V satisfies the assumptions of
Theorem 3.1. Then ¥ admits a representation

V(x) — __i__é.vf k:f e—"k'@"‘zp"(x,k',é')
2 — s?
xK(k',0',0)d6" dk’. (3.5)

Proof: We use the fact that y satisfies the Schrédinger
equation. Applying A + K2 to y in (3.3) we get
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Vx)y(xK,0) = (A + szx,x,é)
1 - -]

- K — f K(k",0",0) (A + K2) (e K~ xgn(x k' B7)\dk" dB’

4P

277

——1- B __k_l__ i(K—k")0-x 2y 0P - S A A, ,
4172]_«, K—k' Lf (A+ k) YP(xk",6")K(k",0",8)dd" dk .

In the above equation, the identity
(A + K2)(e—i(K— k')é-:ff(x))
= 'K~ k')@-x(A +k lZ)f(x)
+ 2i(K — k')ex0*9-V(e—* = £ (x))

was used. Comparing the large |k | behavior of both sides in
(3.5) we get the desired representation. a

This trace-type formula should be compared to the one
given by Newton in Ref. 13, which is obtainable from the
generalized Marchenko equation in the same way as done
above. Note that Eq. (3.5) is “miraculous,” of course, in the
sense that the apparent 8 dependence of the right-hand side
does not show up on the left-hand side.

Equation (3.5) together with the integral equation
(2.9) may be viewed as an alternative formulation of the
inverse problem for standing waves.
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APPENDIX: THE 3 OPERATOR
This short Appendix provides the basic J equations used
in the text. For further details and proofs see, e.g., Hor-

mander.**
Let K = k + iqeC, k and g real. The antiholomorphic
derivative d with respect to X is defined as

- 8 1(d , .9
a———_-—( —).
3K % T3

Here K denotes the complex conjugate of K.

Let QeC be a bounded domain with C' boundary dQ
and feC '(0). Then for Ke() we have the generalization of
the Cauchy integral formula,

1 SK) '
Ky= —-—— | Z——dK
/&) Zm'J K—-K'

f af(K ) 4K’ NdK". (A1)

21rz
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— L oKty f k' f e~ *®oxpr(x k',0VK(k',0',0)do" dk’
— = s?

(3.6)

—

Furthermore, since d applied to any holomorphic function
vanishes, we get in () the equation

af<K>=— f Je AK 3K — K"~ AdK .

On the other hand, the equation Q f(K) =u(K), Ke,
has a solution for allueC* () anddK'AdK' =2idk’ dq/,
we may identify

I((K—K") ") =76 (K—K")

=ndk —k')6(q—¢'). (A2)
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The possibility of expanding the S matrix in a multiple-reflection series (Debye expansion) is
shown for an arbitrary-shape short-range potential. Ambiguity in the definition of outgoing
and incoming waves inside the potential leads to an infinity of expansions. These are analyzed
in a simple example (square well or barrier) in order to characterize the correct choice of

outgoing and incoming waves.

I. INTRODUCTION

Classical and semiclassical methods have turned out to
be very useful in the description of heavy-ion elastic scatter-
ing.! They fail, however, in the explanation of heavy-ion phe-
nomena, like rainbow and glory, where interference effects
are important. These phenomena can, nevertheless, be ana-
lyzed without abandoning the appealing picture of trajector-
ies. The procedure consists in writing the exact quantum
mechanical S matrix as a series, known as Debye expansion,
whose terms can be viewed as due to multiple reflections of
the incident wave in the interaction region: an incoming
spherical wave partially transmitted to the interior of the
potential is totally reflected from the origin, then partially
reflected to the interior at the potential surface, and so on, to
be finally transmitted, in part, to the exterior.

That procedure, applied by Debye? to the scattering of
electromagnetic waves from a circular cylinder and by van
der Pol and Bremmer” to the case of a sphere, has been suc-
cessfully utilized by Nussenzveig® in the treatment of light
scattering from water droplets. Its application to heavy-ion
elastic scattering has been considered by Anni, Renna, and
Taffara in a series of papers® dealing with analytically solv-
able potentials or with JWKB approximations, and by
Agassi and Avishai® in the “staircase” approximation to the
potential. The second term of the Debye expansion, for sev-
eral realistic ion—ion potentials, was considered by Brink and
Takigawa’ in their analysis of the barrier penetration effects
in the semiclassical theory of elastic scattering.

The usefulness of the Debye expansion in the explana-
tion of rainbow and glory effects was already emphasized by
Nussenzveig.* Our purpose in a current research was to ap-
ply the Debye expansion in the analysis of the phenomenon,
in heavy-ion physics, known as ALAS (anomalous large an-
gle scattering) and reviewed in a report by Braun-Mun-
zinger and Barrette.® However, as we were trying to develop
our program, we encountered an ambiguity in the definition
of the Debye expansion.

We show in Sec. II that a Debye expansion of the .S
matrix is always possible for a spherically symmetric poten-
tial, independently of its shape: one needs only to specify
which solutions of the wave equation are to be interpreted as

® On leave of absence from Universidad de Zaragoza, Zaragoza, Spain.
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outgoing and incoming spherical waves. Their radial parts,
which we shall denote, respectively, by ¥ and ¢", can be
expressed as linear combinations of ¥ and ¢/, the regular (at
the origin) and the irregular solutions of the radial Schro-
dinger equation, with the only limitation that the sum of the
outgoing and incoming waves must produce the stationary
one, i.e., the regular solution. Therefore,

P = +iay, "= —iay, (1.1)
where a is a parameter measuring the “component” of the
irregular solution in the traveling waves. The ambiguity
mentioned above stems from the fact that the parameter a
can be arbitrarily chosen. An infinity of Debye-like expan-
sions can be obtained in this way.

In the case of a step potential, as considered by Nussenz-
veig,* one infers which is the “orthodox” choice of traveling
waves inside and outside the potential from the motion of
their wave fronts. In the more realistic case (in heavy-ion
elastic scattering) of an attractive nuclear potential with a
Coulombian tail, the behavior at large distances makes it
possible to recognize the outgoing and incoming waves in the
outside region; but there is no a priori guidance to distinguish
the orthodox choice from the heterodox ones inside the po-
tential.

The continuity of the radial current as one passes from
the external to the internal region does not help to eliminate
the ambiguity in the choice of ¥ and ¥*'. We are going to
show [see Egs. (2.11)—(2.14) below] that the continuity of
the radial current is guaranteed by the continuity of the loga-
rithmic derivative of the scattering solution of the Schro-
dinger equation, that is assured if the correct expression of
the S matrix is taken. But the S matrix [Eq. (2.2) below]
does not depend at all on the outgoing and incoming waves
in the internal region.

Toillustrate the preceding considerations, let us assume
that " and ¢'in Eq. (1.1) have been taken to be real (always
possible for energies above the barrier) and the parameter a
also real. The radial current associated to ' is then given by

J = (A/2m)aW (), (1.2)

where W means the Wronskian. Obviously, ¢” and ¢ could
be redefined by multiplying them by arbitrary factors. In
particular one could choose the same factor, let us say 2, for
both ¥ and ¢*. The Wronskian would then become multi-
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plied by 4 and the parameter a should be divided by 4 to
obtain the same current. The new ¢' so obtained would be
different (i.e., linearly independent) than the previous one,
so making evident the existence of the ambiguity.

In order to obtain some criteria which are helpful in
removing such ambiguity, we consider in Sec. III the case of
a step potential, for which the orthodox choice of outgoing
and incoming waves is evident. An analysis of the conver-
gence of orthodox and heterodox Debye expansions is made
as well as a comparison of the corresponding reflection coef-
ficients.

Finally, some conclusions are mentioned in Sec. IV. As
long as our step potential is an oversimplification of the real-
istic heavy-ion ones, the possibility that some of our conclu-
sions are valid only in the case under consideration cannot be
discarded. The ambiguity in the Debye expansion, seen in
evidence in this paper, should be analyzed for more general
(complex) potentials, preferably analytically solvable, in or-
der to draw more general conclusions.

Il. DEBYE-LIKE EXPANSION

Let us consider scattering by a spherically symmetric
potential such that two regions, interior and exterior (la-
beled, respectively, by 1 and 2), are clearly distinguished.
The spherical surface of radius b separating the two regions
will be referred to as the potential surface. In the external
region the potential is assumed to be constant or purely Cou-
lombian, so as to yield an unambiguous definition of outgo-
ing and incoming waves in that region. Due to the spherical
symmetry of the potential, the scattering can be analyzed in
terms of partial waves of definite angular momentum. In
what follows, a label / denoting the angular momentum is to
be understood although it is not explicitly displayed.

The wave function inside and outside the potential sur-
face is given by

%egular ( r) ,
tp.izncc:)ming ( r) _ Slpgutgoing ( r) ,

r<b,
r>b,

¥(r) = [ 2.1

where S represents the -wave component of the S matrix. By
imposing continuity at » = b of the logarithmic derivative of
the wave function one obtains

incomin ¢+, fincomin, ’ egular
_ ¢ In’ Y7°™"¢ — In’ Y7®

- utgoi tgoi ’ egular ’
¢(2) going lnl ¢<2m going ln ¢|i gul

(22)

where all intervening functions are to be taken at = b. For
brevity we write

‘0; = ¢gutgoing’ %I = %ncoming' (23 )
These two functions are well known in both cases of poten-
tial with constant or Coulombian tail.

Let us now consider in the internal region “outgoing”
and “incoming” waves, ¥ (r) and ¢{(r), arbitrarily chosen
with the only restriction

P (r) + (7)) = g (). (2.4)
The S matrix given by Eq. (2.2) can then be written, after
some straightforward manipulations, in the form
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I 0 P
S= — ‘:% [Rzz + TZl%p;o ("&';IILIM—) le}: (2.5)
with the notation
Ry=—(In'y; —In'¢1)/(In' 5 — 0’ ¢"), (2.6)
Typ=(In'¢] —In' i)/ (In’ 5 —In' ¥), 2.7)
Ry=— (I’ —In" )y /(In’ ¢, —In’ ¢}'), (2.8)
T=(In"y¢; —In’ 43)/(In' ¢, — In’" ¢}), (2.9)

and provided the geometrical series in the right-hand side of
Eq. (2.5) is convergent, i.e.,

|R11¢{/¢}I|<1- (2.10)

If one associates the coefficients R,,, T}, R,,, and T, re-
spectively, with internal reflection on, transmission to the
exterior through, external reflection on, and transmission to
the interior through the potential surface, the expansion on
the right-hand side of Eq. (2.5) can be interpreted in terms
of multiple reflections, just like the Debye expansion,* no
matter whether ¢} and ¢}' are the true outgoing and incom-
ing waves or not. An infinity of Debye-like expansions can,
therefore, be considered.

The reflection and transmission coefficients are not in-
dependent. They satisfy relations that are formally the same
for orthodox and heterodox choices of ¥} and #}'. From Eqs.
(2.6) and (2.7) one immediately obtains

14+R,, =T, (2.11)
In + R, In' ' =T, In" ¢} (2.12)
These relations merely express the continuity at » = b of the
function and its derivative for a wave incident from the inte-

rior on the potential surface. Analogously, for a wave inci-
dent from the exterior, one has

1+ Ry=T,,
In' '+ Ry, In' o = T, In’ Y,

trivially deduced from Eqs. (2.8) and (2.9).

Until now no limitations, apart from Eq. (2.4), have
been imposed to ¥} (#) and ¢1'(r). It seems, however, con-
venient to restrict these functions to be solutions of the wave
equation, since they are interpreted as traveling waves. The
Schrodinger equation in the internal region has two indepen-
dent solutions, for instance ¥{*"** and /™ ®"*" in terms of
which ¢} and ¢! can be written as

¢{ (r) =%¢|l'egular(r) +a¢ilrregular(r)’ (2153)

#I(r) —_ %ﬁegular(r) - a'ﬁilrregular(r)’ (2.15b)
the parameter a being complex for the moment. In the case
of a real nuclear potential ¥#* (7) and ¢""®'*" () are solu-
tions of a differential equation with real coefficients and can
be taken as real functions.

In the case of a constant potential the outgoing and in-
coming waves are complex conjugates of each other. It

seems, therefore, plausible to impose in our heavy-ion prob-
lem the condition

h () =9, (2.16)
at least at energies above the barrier. This condition is satis-

(2.13)
(2.14)
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fied if the parameter a in Eqs. (2.15) is taken to be purely
imaginary.

Finally, another requirement in analogy with what hap-
pens for free waves could be

P(—r=(—DY», (2.17)
associated with the fact that an incoming wave is totally
reflected from the origin to give an outgoing wave.

As stated above, the validity of the Debye-like expan-
sion in Eq. (2.5) is conditioned by the convergence of the
geometrical series

S (2.18)
p=0

where
p=Ry, v/ (2.19)

We shall refer to this parameter p as the Debye parameter. In
order to analyze its magnitude, we are going to obtain some
useful relations.

The product of Eq. (2.12) times the complex conjugate
of Eq. (2.11) gives
In' ¢} + Ry, In" ¢+ Ry In’ ¢} + |Ry |2 In’ ¢!

=|Ty,|* In" ¢}. (2.20)
If the condition expressed in Eq. (2.16) is satisfied, one ob-
tains from the real and imaginary parts of Eq. (2.20),

|To* Re{in’ ¢} —1n’ ¢4 } + 2 Im{R,,}Im{In’ ¢} } =0,
(2.21)

1—|Ry |2~ | Ty, Im{ln’ £ }/Im{In' ¢} } =0. (2.22)
Analogously, from Eqs. (2.13) and (2.14), it follows that

I’ ¥ + Ry, In' 4% + Ry In' ¢ + |R,,|2 In'

= |Ty > In’ ¢} (2.23)
In the case where
Vi (r) =¢3(r) (2.24)

(as it happens for constant or Coulombian potential tails),
Eq. (2.23) gives
|T5|* Re{ln’ ¢ — In’ '} — 2 Im{R,, im{In’ % } =0,
(2.25)
1 — Ry |? + | Ty | Im{1ln’ ¢"}/Im{In’ 2 } = 0.
(2.26)
Equations (2.22) and (2.26) are what we need to analyze
the convergence of the Debye-like expansion. Bearing in
mind the definitions of T,, and 7,, and Egs. (2.16) and
(2.24), these equations can be written in the form

_ 2_ w{li} |2 w{vi}

R ey wieey 4
e | w{vlyi}

1 —|R,)*= Wih Y| WiEAT (2.28)

where W stands for the value of the Wronskian of the two
corresponding functions at » = b. Except for the trivial case
of the parameter « in Eqgs. (2.15) being zero, the outgoing
and incoming waves are independent in both the internal and
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external regions and, therefore, the Wronskians in the nu-
merators of the right-hand sides of Eqgs. (2.27) and (2.28)
do not vanish. We can then conclude that

|R;| <1, |Ryl <, (2.29)
if the parameter a has been chosen such that

sgn (W {9595 }) =sen(iW {9l 1 }), (2.30)
whereas

|Riy|>1, [Ry|>1, (2.31)
in the case

sgn(iW {33 }) =sen( —iW{ylwi}). (232)

Since, due to Eq. (2.16), the Debye parameter and the inter-
nal reflection coefficient have the same modulus,

lol = |Rls (2.33)

the convergence or divergence of the Debye-like expansion
depends on the choice of the parameter ¢ in Egs. (2.15) soas
to give, respectively, Eq. (2.30) or Eq. (2.32).

Some other interesting relations among the reflection
and transmission coefficients can be written whenever Eqgs.
(2.16) and (2.24) are satisfied. From Eqs. (2.22) and
(2.26) it is immediate to obtain

1—|Ry|*— Ty,T,, =0, (2.34)

1 —|R22’2—T12T2_1=0- (2.35)

Equations (2.34) and (2.35) imply that the product T, 75,
is real and, therefore,

Ty =T, Ty, (2.36)
Comparison of Egs. (2.34) and (2.35) allows us to conclude
that

|Ryi| = |Ry| 2.37)

To end this section a brief comment concerning bound
states and resonances is in order. As is well known, both
bound states and resonances are associated with poles of the
S matrix at negative or complex energies. In both cases one
has

In’ it = In’ o} (2.38)
and, in consequence,
p=1 (2.39)

Notice that this result is compatible with the inequalities
(2.29) or (2.31). The latter have been obtained by assuming
the validity of Eqs. (2.16) and (2.24), which obviously do
not hold at negative or complex energies.

l1l. AN EXAMPLE: STEP POTENTIAL

In order to illustrate the ambiguity in the Debye expan-
sion pointed out in the preceding section, we consider here
the scattering of a particle of mass m and energy E by a short-
range spherically symmetric potential of radius » and con-
stant intensity ¥ (positive for a barrier, negative for a well).
The internal and external dimensionless wave numbers are,
respectively,

2, =b[2m(E — V)|V, z,=b(2mE)"*/4. (3.1)
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In the external region the outgoing and incoming / waves
are, obviously,

B (r) =hj(z,r/b), Y3(r) =hZ(z,r/b). (3.2)
In the internal region we take

UL (r) =j,(z,2/b) + iay,(z,r/b), (3.3a)

V() =j,(z,r/b) —iay,(z,1/b). (3.3b)

In these expressions 4,, j,;, and y, represent the spherical
Bessel functions.” The parameter @ could be an arbitrary
function of the energy. For our purposes it is enough to con-
sider it as a constant. Moreover, we restrict it to real values in
order to have Eq. (2.16) satisfied. Obviously, the orthodox
choice is a = 1. The Wronskians of the internal and external
waves at 7 = b turn out to be

W } = 2ia/z,b, (3.4)
W{'/’gl’%} = 2i/z,b, (3.5)

and, therefore, z, and z, being real and positive, the Debye-
like expansion is convergent for a > 0 and divergent fora < 0.

In our subsequent discussion of the reflection and trans-
mission coefficients we do not need to consider both signs of
a, in view of the existing relations among coefficients corre-
sponding to opposite values of a. If we label with a superin-
dex ( + ) the waves and coefficients for positive @ and with
( — ) those for the opposite a, we have

P = gl gli—) gl (3.6)
and, in consequence,
(—=) — (+)
R nmn - = 1/R 11+ ’ (3_7a)
Ryi’=—(RLEVHR{P+1)/R{,
TL,’=TE/R{, T’ = —T{P /R,
(3.7vb)
p T =1/p' ), (3.7¢)

In what follows we shall consider only positive values of a.
By substitution of the explicit form of the outgoing and

incoming waves, given in Egs. (3.2) and (3.3), into the cor-

responding definitions, one obtains for the Debye parameter

J
_ Z5h ll(zz){h 1(22) -+ C_'](Zl)} —z;h 1(22){}1 11(21) + cj'(zl)} (3.8)
2h V" (2,){h%(2)) + ¢z} — 2R (2R ¥ (2) + ¢ (2} '
and for the reflection coefficients
Ry, =plh%(z)) + )W {h ' (z)) + ¢z}, (3.9)
Ry,= — Zz{h 2'(22)/}1 2(22)} {n 2(21) + Cj(Zl)} —‘21{h 21(21) + Cj’(Zl)} , (3.10)
{h " (2)/h (2R (2) + ¢z} — 2B % (2) + ¢ (2D}
where
c=(1—a)/a. (3.11)

For simplicity of notation, the subscript / for the Bessel functions has been omitted. Approximate expressions of those
coefficients can be obtained in the limits of high and low energies.

A. High energies
Let us assume that E— + oo. This implies
z,=2,(1—V/E)'*> 0, z;-w.
By defining
6=V /2E,
approximating
z,~2z,(1 — V/2E),

(3.12)

(3.13)

(3.14)

retaining only the first terms of the Taylor expansion of the Bessel functions #(z,) and j(z,) about z,, and making use of the

differential equation they satisfy,” we find

cW{jh't—z,6{h (" + ') +h'(h' +¢)}

pP=

WA Y+ W {ih Y~k (WY o) +h AP+ )Y
Ry=p{h*+¢—2,0h* + ¢V} {h'+¢—28h" +¢)},
ht W{jh% —2,8[h¥(h¥ +¢f') + h2(h2 +¢f)]

R22=

where all Bessel function are to be taken at z,. To the lowest
order, the above expressions can be approximated in the
form

p=(a—1)/(a+1),
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TR WY+ e WUR Y — 28V (RE g ) + R B2+ )]

(3.15)

(3.16)

(3.17)

I
__(I+a)/(1 —a) +exp[i20] Ny

" (14 a)/(1—a) + exp[ —i26] exp[ — 20 Jp,

(3.19)

(3.18) Ry=[(1-a)/(1+a)lexp{i26}, (3.20)
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The transmission coefficients are trivially obtained from the
reflection ones in view of Egs. (2.11) and (2.13).

with

0=z, — (I+ )n/2. (3.21)
All these expressions have been obtained under the assump-
tion that a#1, i.e., in the case of a heterodox choice of the

outgoing and incoming waves in the inner region. For the
orthodox choice one has

B. Low energies

Let us consider now the case E—~0, i.e.,

_ z,-2y=b( —2mV)V*/#, z,-0. (3.25)
p=expli(2z, — Im)}V /AE, (3.22) . . . .
By retaining only dominant terms in the expressions of the
Ry =~ —V/4E, (3.23) Bessel functions and their derivatives,” one has from Egs.
R,, =V /4E. (3.24) (3.8)-(3.10),
|

itz +¢i(z0)} + 20 V(zp) + ¢ (20)}

s 3.26
(1 4+ D{h%(z) + ¢j(20)} + 25{h ¥ (25) + ¢ (24)} (3.26)

141+ z4{h V' (z9) + ¢ (20) }/{h ' (20) + ¢i(z,)} (3.27)

n=

Ry~ —1. (3.28)

In the case of a potential well (z, real) it is immediately
obvious that |R,,| - 1 as E—0, whereas for potential barrier
(z, purely imaginary) R,, tends to a real constant.

C. Intermediate energies

We have evaluated numerically the expressions given in
the right-hand side of Eqs. (3.8)~(3.10) as functions of the
energy E for the orthodox value of the parameter a(a = 1)
and for two heterodox ones (@ = 2 and a = }). Two different
values of the angular momentum (/=0 and /=5) have
been considered for both cases of well (V= — 25#/2mb ?)
and barrier (V = 25%#%/2mb?). The results are shown in
Figs. 1-8.

0
{-E)? 5 0 5 10 EV?

FIG. 1. Moduli of the Debye parameter and the internal and external reflec-
tion coefficients for S wave (I = 0) scattering by a square well potential of
range and intensity as given in the text. The continuous line corresponds to
the orthodox choice of the outgoing and incoming internal waves. The
dashed and dash—dotted lines result for two different heterodox choices,
corresponding, respectively, to values a = 2 and a = } for the parameter on

the right-hand side of Eqs. (3.3) in the text.
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1414 2,{h 7 (20) + G ) AR (20) + ¢i(20)}

Equations (3.8)-(3.11) allow us to define reflection
and transmission coefficients at energies at which one of the
regions becomes classically forbidden. It is interesting to re-
mark that, the wave number being purely imaginary, the
reduced logarithmic derivative of the wave function is real in
a classically forbidden region. Therefore, in the case of a
potential well one has

lo| =Ryl =1 for V<E<O, (3.29)

the particular value p = 1 corresponding to bound states,
whereas in the case of potential barrier

- o
't
0 I~ . 4 4
- Al'g Raz ,___--—“"/ ,./// /’/’ ,//‘ // // s
1 1 1L L
-E)2 5 0 5 10 g™

FIG. 2. Phases of the Debye parameter and the internal and external reflec-
tion coefficients whose moduli have been shown in Fig. 1. The continuous,
dashed, and dash—dotted lines correspond to the same cases as before. The
arguments have been reduced to the interval [ — 7,7] by adding or sub-
tracting a multiple of 27.
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FIG. 3. Moduli of the Debye parameter and the reflection coefficients for
H-wave (I = 5) scattering by the same square well potential as in Fig. 1.

IV. CONCLUSIONS

As we have seen in Sec. I1, there are an infinity of possi-
ble choices of outgoing and incoming waves in the nuclear
region, all of them leading to convergent Debye-like expan-
sions of the S matrix. Although these expansions are correct
from a mathematical point of view, a physical meaning could
hardly be assigned to their successive terms if the choice of
outgoing and incoming waves is not the correct one. It is,
therefore, interesting to find signatures of the orthodox elec-
tion.

From the example considered in Sec. III, it turns out
that the most relevant features of the orthodox choice appear
in the high-energy behavior of the Debye parameter and the
reflection coefficients. In the orthodox case, the moduli
|p| = |Ryy] = |R,,| decrease monotonically to zero as the
energy increases, and Arg{p} increases monotonically
whereas Arg{R,,} and Arg{R,,} remain nearly constant

_Tr =
1
(-E)¥25 0 5 10 g2

FIG. 4. Phases of the Debye parameter and the reflection coefficients whose
moduli are shown in Fig. 3. The same convention as in Fig. 2 has been
adopted. The discontinuity (of value — ) in Arg {R,,} corresponds to a
pole of R,,.
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0 . .
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FIG. 5. Moduli of the Debye parameter and the reflection coefficients for S-
wave scattering by the square barrier mentioned in the text. The comments
in caption for Fig. 1 are also valid here.

and equal to a multiple of 7. In the heterodox cases, the
moduli tend, with oscillations of decreasing amplitude, to a
finite constant, and Arg{ p} varies slightly around a multi-
ple of 7 whereas Arg{R,,} decreases and Arg{R,,} in-
creases monotonically.

Another feature that allows us to distinguish the ortho-
dox Debye parameter from the heterodox ones is the behav-
ior at resonances. All parameters become real at resonant
energies, but, whereas the phase of the orthodox p varies
rapidly as the energy passes the resonant value, the phases of
the heterodox ones remain nearly stationary, and, whereas
the modulus of the correct p decreases uniformly, those of
the incorrect ones present relative maxima or minima.

The potential well considered in our example has two S-
wave, one P-wave, and one D-wave bound states. At the cor-
responding energies, p = 1 independently of the choice of
outgoing and incoming waves. However, we can see in Fig. 2
that, for negative energies and /=0, Arg{R,;} and
Arg{R,,} have a smooth dependence on the energy in the
orthodox case and an oscillatory behavior in the heterodox

ones.

E 172

o
n
IS}

FIG. 6. Phases of the Deby parameter and the reflection coefficients whose
moduli can be seen in Fig. 5.
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FIG. 7. Moduli of the Debye parameter and the reflection coefficients for
the H-wave scattering by the same square barrier as in Fig. 5.
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A greatest lower bound for the total (integrated) energy of closed timelike curves in Gédel
space-time is derived. (Here “energy” is determined relative to the velocity field of the major
mass points of the universe.) The derivation is then used to reconstruct and extend a remark of
Gédel’s concerning total (integrated) acceleration requirements for “time travel” in his model

universe.

I. INTRODUCTION

Gaddel space-time,' of course, is not a live candidate for
describing our universe. But it is an interesting geometric
structure, and a source of insight into the possibilities al-
lowed by relativity theory.

In this paper we present an elementary, but perhaps
somewhat curious, proposition concerning the geometry of
closed timelike curves in Godel space-time (Proposition 2).
It establishes a greatest lower bound for the total (integrat-
ed) energy of such curves (where “energy” is determined
relative to the velocity field of the major mass points of the
Universe). The proposition turns on the possibility of reduc-
ing questions about total energy (of closed timelike curves in
Gaodel space-time) to more tractable questions about area
enclosure by curves in the hyperbolic plane ( Proposition 1).

By way of application, we also invoke the proposition to
reconstruct and extend a remark of Gédel’s? concerning to-
tal (integrated) acceleration requirements for “time travel”
in his model universe. It was this remark that first suggested
our question about total energy. We close with a brief discus-
sion of a conjecture on minimal total acceleration require-
ments.

Il. PRELIMINARIES

In this section we recall several basic facts about Godel
space-time and introduce some notation.’

We take Godel space-time to be the pair (M,g,,,)
where M is R* and g,,,,, is a Lorentz metric on M character-
ized by the condition that for some point (and hence, by
homogeneity, any point) p in M, there is a global adapted
(cylindrical) coordinate system ¢, », @, ¥ on M in which
t(p) =r(p) =y(p) =0and

Emn =4[ (dD),, (d1), — (dP),, (dr), — (dp), (dy),
+ (sh*r — sh? r) (d@),, (dp),

+2y2 sh? r(d@) ,, (A1) ]-
(We use sh r and ch r, respectively, to abbreviate sinh 7 and
coshr.) Here — o0 <t< 0, — 00 <y < 0, 0<r < 0, and
0<p <27 with @ = 0 identified with ¢ = 27. The metric
&... 18 a solution to Einstein’s equation
Rmn - %gmnR = 817K[p77m7’n _p(gmn /P )]
for a perfect fluid source with four-velocity #™
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= (d/3t)™ /2u, mass density p = 1/(16mxu®), and pres-
sure p = 1/(16mxu®).*

Here, 7™ is a unit timelike Killing field, and defines a
temporal orientation on (M, g,,, ). The integral curves of
the field, characterized by constant values for 7, @, and y, will
be called matter lines. The (3 /@)™ is a rotational Killing
field with squared norm 4u?(sh* r — sh® r). Its (closed) in-
tegral curves, characterized by constant values for ¢, r, and y,
will be called Godel circles. Gédel circles with critical radius
r. =In(1 +2) are closed null curves (since shr. =1).
Those with radius 7> r. are closed timelike curves. Here
(@/dy)™ is a covariantly constant field with squared norm

— 42,

Let S be a t = const, y = const submanifold of M. Or-
thogonal projection of g,,, induces a (negative definite)
metric

e =t = () 3).5). - G).5).]

on S.> Now

(G0,

and

= 4u*[ (d1),, +2sh?r(dp),, ]

d
) = —42(dy),.
(%), = -,

So
B = — 42[(dP),, (dr), + Ish* 2r(dp),, (dp), ].

Once h,,, is presented in this form it is not difficult to verify
that the pair (S, — 4,,, ) is a complete two-dimensional Rie-
mannian manifold with constant curvature — 1/u2¢

In what follows we use the following notation. Given a
timelike curve’ y in (M, g,,., ), We take its four-velocity (i.e.,
unit tangent vector field) to be £, and set

a™ =£"V, ™ (the acceleration of ¥),
a=(—a™a,)"? (the magnitude of ’s acceleration)
E={",

(7’s energy with respect to the unit Killing field ™ ).

We also use the parameter s for arc length ( = elapsed prop-
er time) along 7, and set

PT(y) = f ds (total elapsed proper time of ),
Y
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TA(y) =fads

Y

(total acceleration of ¥),

TE(y) = f Eds (total energy of 7).
Y

Note that E>1(since £™ and ™ are both future directed,
unit timelike vectors), and that E = 1/(1 — v*)'/?, where v
is the speed of y relative to matter lines. In terms of the
coordinates above, E is given by

(2] o 2]

A

In the special case where y is a Gddel circle of radius 7> 7,
we have

()

where
de _ 1
ds  2u(sh*r—sh?r)/2’
and hence,®

E=\2sh*r/(sh*r—sh?r)'?,

a = (1/4u)sh 2r(2sh? r — 1)/(sh* r — sh? r),
PT(y) = 4mu(sh® r — sh?r)'/2,

TA(y) =7 sh 2r(2sh? r — 1)/(sh* r — sh® 1) !/,

TE(y) = 42mu sh? r.
Ill. ENERGY AND AREA

Clearly, 427u is the (unrealized) greatest lower bound
of TE(y) as y ranges over Godel circles of radius 7> r¢. In
this section we prove that it is actually the greatest lower
bound as y ranges over all closed timelike curves. The first
step in the argument is to give TE(¥) an intuitive geometric
interpretation.

In what follows let ¥ be some closed timelike curve, let §
be some ¢ = const, y = const submanifold of M/, and let ¥* be
the closed (at least piecewise smooth) curve that results
from projecting ¥ into S. Notice first that since y is closed, we
have (using our coordinate expression for E)

TE(y) = 2\2u f sh’ rdg.

Y
The integrand on the right depends only on r and ¢. So we
may perform the integration over y* rather than y. Thus

TE(y) = 2\/—2/4J‘ sh? rdp.
v

We can evaluate the right-hand integral using Stokes’
theorem. Let S be assigned the orientation, say, determined
by the field (3 /dp)™ . Assume for the moment that y* is a
simple (i.e., non-self-intersecting) curve. Then it forms the
boundary of an (oriented) region G in S, and we have

f sh’ rdp =J‘d(sh2rd:p)
r* G

1
= | sh2rdrd =—-fdA,
J;; ¢ 2u* Jo

where dA4 is the area element 2u° sh 2r dr dg on S. Now no-
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tice that the formula, suitably interpreted, holds even in the
case where ¥ is allowed to be self-intersecting. For in this
case y* can be decomposed as a “sum” of simple closed
curves, and we can associate with it a corresponding sum G
of oriented regions bounded by these curves. To extend the
formula we simply apply it to each element in the sum, and
add.

In what follows, “area” should be understood in the
extended sense of “signed, summed area.” On that under-
standing we can formulate our conclusion as follows.

Proposition 1: Let ¢ be a closed timelike curve, and let G
be the (oriented, summed) region obtained by projecting ¥
into any ¢ = const, y = const submanifold S. Then

TE(y) = (ﬁ/,u)' the area of G.

Now we determine a greatest lower bound for the right-
hand side of the equation. We do so using an “isoperimetric
inequality.” Consider any complete two-dimensional Rie-
mannian manifold of constant curvature k. Let L and 4,
respectively, be the length of, and area enclosed by, a (possi-
bly self-intersecting) closed curve in the manifold. Then

L*>(4r — kA)A,

and equality holds iff the curve is a circle.® (It follows that of
all closed curves of given length, area is strictly maximized
by circles.) The case of interest to us is that in which
k= —1/u2

Let 7, *, and G be as above, let £ be the four-velocity
of ¥, and let o™ be the component of £™ orthogonal to
(8/3t)™ and (8/dy)™. Then

—o"0,, =E*—E,>—1,

where E, = £™ (3 /dy),, /2u.Soif L is the length of y* and 4
is the area of G, we have (by Proposition 1)

L=f (E?—E>— 1)”2ds<JEds= (V2/p)A.
¥ v

Combining our two inequalities (with k = — 1/u?) we ar-
rive at our principal result.

Proposition 2: Let v, y*, and G be as above. Let L be the
length of 7*, and let 4 be the area of G. Then

(a) 4> 47y’ and L > H27p.
Hence (by Proposition 1),

(b) TE(y) > 42mp.

Given our previous remarks about Godel circles, it fol-
lows that 427 is the greatest lower bound of TE(y) as ¥
ranges over all closed timelike curves. It also follows that the
two lower bounds in (a) are greatest. For this we need only
observe that Godel circles ¥ of radius 7> 7 have area and
length

A= (u/\2)TE(y) = 4nu’sh’r,

L =f (E*—1)V?ds = (E*— 1)V2PT(y) = 2mu sh 2r.
v

We can think of clause (a) as asserting, simply, that no

closed timelike curve has an associated area, after projection,

that is as small as the area of a disk of critical radius 7. (ora
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length, after projection, as small as the circumference of that
disk).

IV. GODEL’S REMARK

In a paper devoted to a discussion of the philosophical

significance of his discoveries in general relativity, Godel
cites a calculation of “fuel requirements” for travel along
closed timelike curves in his universe:
“Basing the calculation on a mean density of matter equal to
that observed in our world, and assuming one were able to
transform matter completely into energy, the weight of the
“fuel” of the rocket ship, in order to complete the voyage in ¢
years (as measured by the traveler), would have to be of the
order of magnitude of 10??/¢ ? times the weight of the ship (if
stopping, too, is effected by recoil). This estimate applies to
t< 10" yr. Irrespective of the value of ¢, the velocity of the
ship must be at least 1/42 of the velocity of light.”

It seems likely that Godel was considering time travel
along Gddel circles, and calculated the fuel required to acce-
lerate from zero velocity to the velocities characteristic of
those circles, and then back again.'® (Here “velocity” is un-
derstood to mean “‘speed relative to matter lines.”) That is
why he can refer to the (unchanging) velocity of the ship.''
Using Proposition 2, it will be possible for us to recover Go-
del’s numbers without assuming that the time traveler tra-
verses Godel circles (or sections thereof).

We make use of a lemma'? that connects total accelera-
tion to changes in energy value.

Lemma 3: Let ¥ be a timelike curve connecting points p
and ¢g. Then

TA(y) > [In E(g) — In E(p)|.
[Here, of course, E(g) is the value of E that y assumesatg. ]
Proof-Letg.,, = 8mn — Em&, bethe (negative definite)

metric that results from projecting g,,, orthogonal to §™.
Since ™" is a Killing field, we have

dE n ngm n n ’ m_n
E=§ vnE=§ g Vnnm +77na =N =8mn’ @

Hence, by the Schwarz inequality (applied to — g, ),
\EE’ =|—gnn"a"|
ds mn

<( _g;n"aman )1/2( _g;m‘ﬂmnn )1/2
=a(E?*—1)Y2«aE.
So a> |d(In E)/ds|, and therefore

TA(}/)=fads>|lnE(q)—lnE(p)}. [ ]
Y

The corollary we now state concerns closed timelike
curves that have initial (and perhaps final) four-velocity
1™ . They represent the trajectories of time travelers who
start out (and perhaps end up) at rest relative to the major
mass points of the Universe.

Corollary 4: Let ¢ be a closed timelike curve.

(a) If ¢ has initial four-velocity #™, then

TA(y) > [In(427u/PT(p))|.
(b) If ¥ has both initial and final four-velocity #™, then
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TA(y) > 2|In(&\27u/PT(p))|.

Proof: Let p be the initial ( = terminal) point of ¥, and
let ¢ be a point on ¥ at which E achieves its average value. By
Proposition 2,

E(q)-PT(y) = f Eds>42mu.
Y

Let E(p* ) and E(p~) be the initial and terminal values of E
at p. In case (a) we have E(p™) = 1, and the assertion fol-
lows immediately if we apply the lemma to that stretch of
running from p to ¢. In case (b) we have E(p~) = 1 as well,
and so we can apply the lemma, in addition, to the return
stretch of ¥ running from ¢ back to p. [ ]

Now we establish the connection between total accelera-
tion and “fuel consumption.” '* Suppose ¥ represents the
trajectory of a point particle “rocket ship.” Let m be its mass,
and J” the energy momentum of its exhaust. Let us assume
that the rocket is suitably isolated during its trip. (It is not
refueled, nor hit by meteors.) Then the energy momentum of
the rocket’s exhaust must balance precisely the rate at which
the rocket itself loses energy momentum, i.e.,

J'= —EPV,(mE") = — (E"EPV,m + ma™).
And the mass of the rocket must be nonincreasing (i.e.,

£7V,m<0) since the rocket is consuming fuel. Hence, since
J” is causal (i.e.,J"J,>0),

a<(— &'V, m)/m= —d(Ilnm)/ds.

Let m, be the mass of the rocket’s payload (the rocket with
empty fuel tanks), and let m, be the mass of the fuel with
which it starts. Assuming that the rocket arrives with empty
fuel tanks, we have (by integration)

(m, + m)/m,>e™".

Now let us insert some numbers. Recall that the param-
eter u is correlated with cosmic mass density p by the rela-
tionp = 1/(16mxu?). If we take for p the value 10~*° g/cm?
(the estimated mass density of our universe), then x ~ 10"
yr, and 4/27u ~ 10" yr. Hence, in our two cases (a) and
(b), assuming PT(y) € 10" yr,

case (a): m;/m,>10'"/PT(y),

case (b): m;/m,>10%/(PT(y))?
[where PT(y) is given in years].

V. A CONJECTURE

Corollary 4 applies only to closed timelike curves y that
are initially tangent to matter lines. And even within this
restricted class, it places no lower bound on 74 (y). It leaves
open the possibility that 74(y) can be made arbitrarily
small if PT(y) is allowed to be arbitrarily large. (A suffi-
ciently patient time traveler might not need much fuel for his
rocket ship.)

It seems natural to ask what the greatest lower bound of
TA(y) is as y ranges over all closed timelike curves. Let
GLB be this number.’® In earlier work we showed that
GLB > 0.% It now seems to us overwhelmingly likely that
GLB = 27(9 + 6y3)'/2~28. (This would yield a fuel con-
sumption ratio m,/m, larger than 10'%.)
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One arrives at that particular number by considering
Gddel circles. As noted in Sec. I1., Godel circles ¥ of radius
r> rc have total acceleration

TA(y) = wsh2r(2sh®>r — 1)/(sh* r — sh? r)/2,

This expression assumes a minimal value of 277(9 + 6/3)'/2
when sh? 7 = (1 +3)/2.

One might hope to prove the conjecture using ideas re-
lated to those in Sec. III, i.e., by reducing it to an assertion
about closed curves in the hyperbolic plane, and then invok-
ing the “‘isoperimetric inequality” (or something similar).
But we have not been able to do so. The best we have done so
far,'* is to show that Godel circles of the required special
radius are the only closed timelike curves that minimize total
acceleration against local variation. So if the value GLB is
realized by any closed timelike curve, the conjecture must be
true. It seems overwhelmingly likely that the value is real-
ized (because of the nature of the sectional curvatures of the
Godel metric).
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A model of anisotropic fluid with three perfect fluid components in interaction is studied. Each
fluid component obeys the stiff matter equation of state and is irrotational. The interaction is
chosen to reproduce an integrable system of equations similar to the one associated to self-dual
SU(2) gauge fields. An extension of the Belinsky—Zakharov version of the inverse scattering
transform is presented and used to find soliton solutions to the coupled Einstein equations. A
particular class of solutions that can be interpreted as lumps of matter propagating in empty

space-time is examined.

I. INTRODUCTION

Anisotropic fluids are found in general relativity when
electromagnetic fields or a viscous term are present.' But
they may also be found using two perfect fluid compo-
nents>~ or even more components.’

Models with multifluid components are increasingly be-
ing used in cosmology,®’ in the description of collapsing
spheres,® and in the problem of halo and hole formation®'°
in expanding universes to represent inhomogeneous zones
that develop galaxies and voids."'

In the present paper we study a model of anisotropic
fluid with three perfect fluid components in interaction.
Each fluid component obeys the stiff matter equation of state
and is irrotational. The interaction is chosen to reproduce an
integrable system of equations similar to the one associated
to the Yang equations'? for self-dual SU(2) gauge fields
with axial symmetry. For instance, these equations can be
solved using a simple generalization of the Belinsky-Zak-
harov solution generating technique'® (BZSGT).

The application of the BZSGT opens the possibility of
finding solitonlike solutions for the fluid. In particular, we
can describe lumps of matter coupled to gravity propagating
in empty space. The description of lumps is greatly simpli-
fied in the three-fluid model, since we only need a two-soli-
ton solution, i.e., a scattering matrix with two complex
poles.* For the two-fluid model we need four complex poles,
a fact that makes the analysis of the solutions quite compli-
cated.

These solutions may be generalized to represent the col-
lision of cylindrical lumps which may show some features of
the merging of galaxies. These generalizations will be treated
in a future paper.

In Sec. II we present a summary of the main formulas
for the model of anisotropic fluid with multifluid compo-
nents, of Ref. 5. In Sec. III we examine a three-fluid model
with potentials interacting via a Yang-type of equation. In
Sec. IV we study the Einstein equations coupled to the three-
fluid model for cylindrically symmetric space-times. In Sec.
V we present a class of two-soliton solutions for the self-
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gravitating anisotropic fluid of Sec. III and analyze a partic-
ular subclass that describes the propagation of a lump of
matter on a flat space-time. In the Appendix we extend the
usual BZSGT valid for symmetric matrices to the case of
Hermitian matrices.

Il. A MODEL OF ANISOTROPIC FLUID WITH
MULTIFLUID COMPONENTS

The stress-energy tensor for the anistropic fluid is
formed from the sum of three tensors, each of which is the
energy-momentum tensor of a perfect fluid, in the particular
case that the fluids’ four-velocities are linearly dependent,’
ie,

3
TH = z tey, (2.1)
i=1
tiy =@ +p)ulyuly —pig*”. (2.2)
The four-velocities uf;, are restricted by
Wintn, =1, 2.3)

and the existence of quantities b, different from O such that

3
Z but, =0.

i=1

(24)

The functions p, and p; are the fluids’ rest energies and pres-
sures, respectively.
With the transformations®

B+ € 172 .
iy, »uly = cos gutfy, + (——7/3— sin gu¥,,, (2.52)
B+ aep,
Brae,\ "
uly, sul, = — (———— sin guf,, + cos gut,,,
B+ vyep, ’

(2.5b)
where

tan(2¢) = 2[(B + a€,,) (B + ve)1'*/ (@ —B), (2.6)

and the condition (2.4), we find that the energy-momentum
tensor (2.1) can be cast in the form

TW=(p+m)U*U  + (o —m)y*y" —mg™. (2.7)
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The quantities €,,, @, 7, and § are related to the fluid compo-
nents by

€; = €=ty Lj= 1,2,3, (2.3)
_ 2
az<p1+p1>+(p3+p3)(f’—3i—%fﬁ) . @9
— €12
_ 2
y=(2+p2) + (pﬁpﬂ(%—%ﬁl) . (2.10)
— 12
(€13 — €33€12) (€23 — €12€43)
B=(ps+ps5) . (211
3 3 (1—6%2)2

The symbols U*, y*, p, 0, and 7 represent the fluid flux
velocity, the direction of anistropy, the fluid rest energy, the
pressure along the anisotropy direction, and the pressure on
the “perpendicular directions” to y*, respectively. These
quantities are related to the perfect fluid components by

Ut =ulls/(uutya)'’, (2.12)
¥ =uty/(—utut,a)'? (2.13)

p=}(a+y+2Pe,—2m)

+1ila -y +4B +ae,)(B+7re)]"? (2.14)
o= —i(a+y+ 2B, —2m)

+1i(@—)?+4B +aen) B +rven)l'?

(2.15)

7T=p,+P+Ds (2.16)
Also, we have that

UtU, = —xx'=1 U, =0, (2.17)

p=T"U0 U, o=T"y.x,. (2.18)

In general, it is necessary to add supplementary condi-
tions to close the model; this point was treated in some detail
in Ref. 2.

lil. A SPECIAL CASE OF MULTIFLUID WITH
IRROTATIONAL COMPONENTS

A simple closed model of fluid is obtained by assuming
that each fluid four-velocity component is irrotational, i.e.,

u’(li) = ¢8L) /(¢(l'),a¢('g )1/2’ (31)

where, as usual, ¢, =g*“¢,, and ¢, , =3,4,; and
obeys the simple equation of state

P =pi =%¢(_1)2¢(i),a¢2?)’ (3.2)
i.e., each fluid obeys the stiff matter equation of state. Note
that for the first component we recover the well-known
Tabensky-Taub'* relations for the stiff fluid in terms of the
potential A=In ¢,, . Thus the multifluid with fluid compo-
nents obeying (3.2) can be considered as the interaction of a
Tabensky-Taub fluid with other two irrotational fluids. The
case ¢ 3, = 0 corresponds to the fluid studied in Ref. 4.

The condition of linear dependence of the fiuids’ four-
velocities in this case reads

bd* =0, (3.3)
where we have introduced the notation
3
AB = z AnB. (3.4)
i=1
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From (2.1), (3.1), and (3.2) we find
T,uv = ¢(_1)2(¢,;t.¢,v - %gyv‘b,a.(b,a)' (3-5)

The energy-momentum tensor (3.5) can also be derived, in
the usual way, from the Lagrangian density

L =4V — 867170 .0 (3.6)

The simpler condition to determine the fields ¢ ,, is to
impose that they satisfy the Euler-Lagrange equations ob-
tained from (3.6), i.e.,

(\/—:E gaﬁ¢(_1)2¢(1),ﬂ )a t \/tgﬁﬁ(—lf‘b,a'd"a =0, (3.7a)
 —88%88016).a =0 (3.7b)
(N -2 837 3)8) . =0 (3.7¢)
The energy-momentum tensor (3.5) obeys
v, T = (3.8)

as a consequence of (3.7). And for each fluid component we
have

v, 45 #0. (3.9)

The relations (3.8) and (3.9) tell us that the whole fluid is a
closed system with “internal” fluid components in interac-
tion. Also, the anisotropic fluid is completely determinated
by the fields ¢ ,, and their evolution equations (3.7), i.e., no
other extra equation like an equation of state is needed. As a
matter of fact, the anisotropic fluid is completely determined
by the quantities @, B, , 7, and €,, that in terms of ¢ ,, can
be written as

_ 2
a= /{211 [1 +(/113/122 1125'23) ] , (310)
n /111/122_/112
_ 2
,y= /1222 [1 +(/111/123 2’12;113) ] , (311)
(1) /1111’22_2’12

(Aaodis — Aiohss) (Aiidss — Aipdis)
B=\[/1_T 227413 127423 117423 127413 ,
o St Auden — A %)

(3.12)

7= (1/2¢%,,)¢ 0%, (3.13)

€y = A/ Audy (3.14)
where

Ay =8 b pu- (3.15)

IV. EINSTEIN EQUATIONS COUPLED TO MATTER
The Einstein equations
R, —1g.R=—T,,

pmv

4.1

coupled to the energy-momentum tensor (3.5) are equiva-
lent to

R = —80/b.u 0. (4.2)
The integrability of (4.1) is guaranteed by the field equa-
tions (3.7).

We shall consider a space-time with the cylindrically
symmetric metric

ds’ = e°(dt? — dr*) — y,, dx°dx®, (4.3)

where the sum convention is assumed in the indices a and b
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that take the values 2 and 3; (x°x'.x*x3) = (£,1,0.2), Vo

and w are functions of ¢ and r only, and
rY=a) =7, (4.4)
dety =12 (4.5)

From (4.2)—(4.5) and the fact that cylindrical symme-
try implies that the ¢, are functions of ¢ and r only, we get

— (Reo + Ryy)

=0 /t+ 1/t + 3ty +r.yr D, (46a)
=037 (d. 0, +¢,0,), (4.6b)
~ 2Ry =w,/t+ 4ty 7, ), (4.72)
=241,6.0,, (4.7b)

and
v,y D, — @y, vy H,=0, (4.8)

wherey~ ', =(y"1),
The field equations (3.7) in space-time with the metric
(4.3) reduce to

¢(l),tt + ¢(l),1/t - ¢(l),rr =+ ¢(—l)l(¢%2),t - (2) r + ¢(3),r

- ¢%3),r — ¢%1),t + ¢%l),r) =0, (4.9a)
($7b ) — W7 b2r). =0, (4.9b)
(PG b5 ) . — 1BG7Dy,), =0. (4.9¢)

These three equations can be written in a completely equiva-
lent form as the single matrix equation

(10,071, - (1Q,07H, = (4.10)

where
d 1 b —'¢<3>)
= - : 4.11

¢ Py (¢(z> + i, b (4.11)
Note that

0=0" (4.12)

det Q=12 (4.13)

By using definition (4.11) it is not difficult to prove the
following useful identities:

tr(Q, 07 = —263/%,9,, (4.14a)
tr(Q, Q7= -2t 2+ ¢57,d,), (4.14b)
tr(Q,0: ") = — 26576, (4.14c)
From (4.6), (4.7), and (4.14) we get
w,= =2/t—@/Dlyy: +r,v0H
— /2w, 0;'+Q.07h, (4.15a)
w,=— /)ty y; ) —tte(Q, 071,  (4.15b)

The existence of w, i.e., w ,, = ® ,,, is a direct consequence of
Eqgs. (4.8) and (4.10). Thus the solution of the Einstein
equations (4.2) for the metric (4.3) reduces to the solution
of (4.8) and (4.10), and the computation of a quadrature for
the coefficient w. [ Compare Egs. (4.15).]

In the case under consideration we have that the condi-
tion (3.3) is automatically satisfied as a consequence of the
dependence of the function ¢ ,, in only two variables, fand r.
Then, we can have the anisotropic fluid interpretation of the
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field equations (4.2). We find, after some algebra, that the
quantities that appear in (2.8)~(2.12) can be written as

=o=1457 o, —o,||d,+ o, (4.16)
T=4daje (b b, —,d,), (4.17)
—w/2
V26, [(0 o )2
e @2 20,
V26, L6, +6,)'*"

where the vertical bars indicate the usual Euclidean norm
and

w_¢

— (6, — 0)”2,0,0] , (4.18)

1= — 6+ 0o>"2,0,0] . (4.19)

bo=16,—¢.ld,+d,l, (4.20a)

6=, +6,¢, (4.20b)

O:=d,¢,. (4.20c)
Two useful identities are

a—+y+2pBe,—-2r=0, (4.21)

05 +462 — 0% =0. (4.22)

Equation (4.21) is a consequence of (3.10)-(3.15) and
(4.3), and (4.22) follows from (4.20).
Also, we have

by =t/Cws (4.23a)
by = Re(Q12)/Q10 (4.23b)
¢y = —Im(Q12)/Qy; (4.23¢)

Expressions (4.16)—(4.19) can also be obtained directly
by solving the eigenvalue problem for the tensor (3.5) with
the metric (4.3) and ¢,, functions of ¢ and r only. In other
words, the anisotropic fluid interpretation of (4.3) is inde-
pendent of the identifications (3.1) and (3.2). Thus, even
though (3.1) is meaningless in the case that ¢, .4, <0

the anisotropic fluid interpretation of (4.3) is still valid. The
only problem that one has is that 7 < 0. Note that the same
problem occurs in the one-fluid case (Tabensky-Taub flu-
id). 14,15

Equations (3.7) can also be cast as a matrix equation in
terms of the matrix Q whose elements are space-time scalars
[cf. Eq. (4.11)],

V4(Q,0 " =0. (4.24)
In the case of Euclidean metric g,, =§,,, Eq. (4.24) is
closely related to the equation for self-dual SU(2) gauge
fields in the Yang gauge.'” For a cylindrically symmetric
Euclidean space-time (4.24) reduces exactly to the Yang
equation for axially symmetric instantons.'® Hence (4.10)
can be considered as the hyperbolic version of the Yang
equation for self-dual SU(2) gauge fields.

The real case, i.e., @ = Q "is equivalent to the case stud-
ied in Ref. 4. Note that in this case we also havep = g,1i.e.,a
stiff equation of state in the direction of anisotropy.

V.PARTICULAR SOLITARY WAVE SOLUTION

There are many different techniques used to solve Eq.
(4.10), the most commonly used are the Bicklund transfor-
mations and the inverse scattering method. In this section we
study a particular solution obtained using an extension of the
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Belinsky—Zakharov'? version of the inverse scattering trans-
form that we present in the Appendix.

We shall focus our attention mainly in the matter con-
tent of the solution, for this reason we take the metric as
being diagonal along the complete evolution of the space-
time, i.e.,

~I(e“ 0 )
7’0_ 0 e—ﬂ i

The solution for the matter is generated using the Belinsky—
Zakharov solution generating technique with the diagonal
seed solution

="y o)

In this case we have that the Einstein equations (4.8),
(4.10), and (4.15) and the metric (4.3) can be written as

(5.1)

(5.2)

ds? = e (dt? — dP) — 1(e® df? + e~ d2), (5.3)
wep= —int+v[Q] +2v[A], (5.4)
V[Q]E-—;—J-t[(ﬂ’z, +02)dr+20,Q,dr],  (55)
Q," + Q,t/t - Q,rr = O, (5.6)
Ay +AJt—A, =0, (5.7)

This particular solution to the Einstein equation for a
single fluid component, i.e.,

b, =€,
¢(2) = ¢(3) =0, (5.8b)
obeying the stiff equation of motion p, = p, is studied in

Refs. 15 and 17. Note that one recovers the vacuum solution
(Einstein—-Rosen'® solution) in the case A =0 (¢, =1)

and ¢, =@y =0.
The application of the one-soluton BZSGT to the seed
solution (5.2), i.e., to the matter only, yields the solution
(see the Appendix)
2| (pa 1Y 2 + g2 Y2
[l =] — 221"

(5.8a)

Wy = Woo + 2 In

3

(5.9)
¢(1) ____eA lpllzlyllz'i'lqllzlyl'—z R (5103.)
o |*| Y /X | + lqllzlyl/Xll__z
¢(2) — A (|X1‘2 }Xll—z)Re(}—)lqlYl/Yl) , (510b)
p,|? |Y/X1f2+|41|2|_}_’1/xll_2
('Xllz IXII—Z)Im(pquYI/Yl)
by =6t - (5.10¢)
SR PN 97 AL AL 5 b
where
Y, =exp(F, — A/2), 5.1
X, = (/)2 (5.12)

By doing A = ¢; = 0 we have the solution characterized

by
Woy =—lnt+v[0] +1p A= iy = /1| , (5.13)
I:“l - ’
by = I/t (5.14a)
¢(2) =¢(3) =0. (5.14b)
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To derive (5.13) we have assumed that Im z;7#0 used the
identity

(2 — 1) (it — 12) = 2(@; — @)y, (5.15)
and disregarded a constant of integration, a practice that we
shall follow without warning.

A more interesting solution is obtained by applying the
same one-soliton BZSGT to the diagonal one-soliton already
found. We find the two-soliton solution

a)02=—3—lnt+v[ﬂ]l+ln e — Bl s — #2|
et — 2|13 — 27|

+2In(|p, | Y, + |g. 2 Yol ), (5.16)
1Y, + lgu|*| Y| 72
b, = ley | P, || Y, C1E.E 1 (5.17a)
AN TNC A AL AT 2 A
by = — i (JX2® = 1X;] ")Re(Pg: Y,/ Y,)
t Y/ X + g7 Y X TR
(5.17b)
2 —2 - K7,
bor, = Ll Kol = Bl DImGa, T/ Yy) (5 g

t PPV + g Y K T
where

Y., — (t(,“l — ) (2, — 143) )1/2

2= y
Koy
and X, is given by (5.12).

The two-soliton solution (5.16) and (5.17) is a particu-
lar case of the complete two-soliton obtained from the vacu-
um as seed solution.

The solution can be used to represent localized distribu-
tions of matter with cylindrical symmetry propagating in
empty space. This is not possible with the one-soliton solu-
tion (5.13) and (5.14) because the fluid potential ¢, di-
verges when 7— oo.

From the application of the BZSGT to some cosmologi-
cal solutions we know'® that two independent complex pole
trajectories are needed in order to obtain localized solutions

(gravitational solitons). Moreover since the metric coeffi-
cients have to be real, for each complex pole its complex
conjugate is also a pole’®; so that we need four pole trajector-
ies in all. However in the present case, since the matrix Q
describing the fluid potentials is not real, localized solutions
can be obtained by using two complex pole trajectories only.

The way by which localized solutions are obtained is by
taking opposite signs in the square roots of the two pole tra-
jectories £, and u, [see Eq. (A6) ]. With such a prescription
it is easy to see that the fluid potentials ¢ ,, (i = 1,2,3), from

(5.17), approach the seed values (¢, =1, ¢, =,
= 0) in the asymptotic regions in the following way. They
approach the seed decreasing like r~! at €7 — o0, they de-
crease liket ~!at r €¢— oo, and decrease like z ~'/2 along the
light cone r~¢— o This behavior is typical of the gravita-
tional solitons in cosmological’>** or cylindrical models®*
and is an indication that the anistropic fluid is localized
around the light cone r = ¢.

In Fig. 1 the fluid density p and pressure along the radial
direction o( = p) of Eq. (4.16) is represented for the fluid
potentials (5.17). We take a negative sign for the square root
of i, and a positive sign for that of 1,. The density is mainly
localized around a cylinder that expands at the speed of
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FIG. 1. Density p and pressure along the radial direction are given in Eq.
(4.16) with the fluid potentials (5.17). The parameters taken are
pP.=¢,=1and a, = —0.2i, a,= — 0.1i. The time and radial coordi-
nates, ¢ and 7, are both represented in the range (0.1,1). The relatively large
value of |a, — a,| has been taken to avoid sharp picks and to obtain a
smooth figure. The background outside the wave is p = 0 ~0, the space-
time axes are drawn on the origin of the vertical axis: p = 0. The maximum
value of p is 7.5.

light. The shape of the wave (its amplitude and width) is
controlled by the imaginary part of @, — a,. The amplitude
of the density wave decreases as the wave gets far from the
origin. The wave propagates on an essentially empty back-
ground (p = 0).

In Fig. 2 the pressure 7, Eq. (4.17), tangent to the cylin-
der is shown. As for the density we have a wave essentially
localized along the light cone which propagates on an empty
background (7 = 0). The peculiarity here is that 7 takes
negative values on the region 2 . As mentioned in Sec. IV
the interpretation in terms of the fluid (3.1) is not possible
although a fluid interpretation is still valid (see Ref. 15).

This model can be used to represent lumps of matter
coupled to gravity propagating on empty space. The qualita-
tive similarity of the waves of matter with the gravitational
solitons,?*?! which are similar to the hydrodynamical soli-
tons, suggests that the collision of lumps of matter might also

277
(AT

PRESSURE

FIG. 2. Pressure 7 is tangent to the cylinder of Eq. (4.17), with the same
parameters as in Fig. 1. The pressure takes positive and negative values in
different regions of the space-time. The background value outside the “‘per-
turbation” is 7~ 0; the space-time axes are drawn in the negative region of
the vertical axis: 7 = — 5.
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have a solitonlike character. Models representing such colli-
sions are being considered by the authors.

A word should be said about the equality p = 0. Al-
though this is not verified by the general three-fluid case
(2.12)-(2.18) it is a feature of the cylindrical case, already
present in the two-fluid case. The stiff equation of state veri-
fied along the propagation direction seems to be a feature of
systems which admit solitons.?? The reason may be traced to
the fact that there is a unique velocity on the system in the
direction of propagation of the wave,?* in this case the speed
of sound and the speed of the gravitational field are the same:
It is known, for instance,? that an initial perturbation with
cylindrical symmetry on a perfect fluid coupled to gravity
will disperse and form shock waves unless the fluid is stiff.

ACKNOWLEDGMENTS

We want to thank the following institutions for financial
support: “Comision Asesora para la Investigacién de
Espana” (EV), “Ministerio de Educaciéon y Ciencia de
Espana” (PSL), “Departament de Fisica Teorica de 1a Uni-
versitat Autonoma de Barcelona” (PSL), and “Conselho
Nacional de Pesquisas do Brasil” (PSL).

APPENDIX: EXTENSION OF THE BZSGT

In this Appendix we present an extension of the BZSGT
for the use of Hermitian matrices. This extension is already
known for the elliptic case®® [SU(2) case]. Since the hyper-
bolic case can be treated in a completely similar way, we
shall give only the results.

The n-soliton solution constructed from the seed solu-
tion Q, is

o Mk o N((;I)(F_l)lkNgk)
(@)as = — ((Q Jab — —
’ kl;Il t o7al k,12=l yz
(Al)
where, now the indices a and & take the values 1 and 2, and
m((zk)(Q )a ml _
Fklz_%b(_z,b= ks (A2)
Hieftr — 1
Nf(zk)Emlgk)(QO)ab’ (A3)
mO=miPM 3, (A4)
M(k)E'ﬁo_llA:yk, (A5)
e =a, —r+ [(a, —r)*—12]"2 (A6)

The bar denotes complex conjugation, m§® and a, are sets
of complex constants. Here ¥, = #,(t,7,4) is the solution to
the equations

D,y = ((tU, + AVp)/ (t2 — A D)), (A7)

D,ho = ((tVo + AU/ (% — A )y, (AB)
where

D, =4, + (24t /(t* — A ))d,, (A9)

D,=3, 4+ 24/ (t* —1%))a,, (A10)

U=1Q,,05" V=1Q,.05" (A11)

The coefficient @ can be explicitly computed, we find
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,, =c'[)0+21n[t _'"Z/Z(H |,uk|'"+1)

k=1
X(H (eere — g1 —ﬁll)_l)
k1
k>1
m 2—t2 172
x(H li‘il——z—) detr], (A12)
k=1 |ph — 17

where &, denotes the @ function of the seed solution (metric
and matter).

where

t
Fom [ S5 (i, + o, A e
241

+ (W A, + A L)dr). (A14)
The existence of F, is a consequence of (5.7) and that In g,
satisfies the same Eq. (5.7).

For the diagonal seed solution case®’ the expressions
(A2)-(AS) take the simple form,

For the diagonal seed (5.2) Egs. (A7) and (A8) can be m* =p, (u,)"""*exp Fy, (A15)
solved along the pole trajectories, we get?’ m{ =g, ()~ 2 exp( — F,), (A16)
Yola o = (2ak#k)'/2(e""( -F) 0 ) (AL3) NiZ’ =pkt(uk):z exp(F, — A), (A17)

0 exp Fy N =g t(u,) " exp( — (F, — A)), (A18)
J
r, = [pPu oy + = ) + 9ule expl — (£ +F-M)] (A19)
(peaty — 7)) (pacity)
where

@ =m§P/ 2a,)'?, (A20)

a=ms/(2a,) "> (A21)

Note that the usual BZSGT relations, valid for real as well as for complex poles are obtained by letting [, —p,,

77 (k) (
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A geometric interpretation for the Dirac field in curved space
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The imposition of the condition of length invariance on a Weyl manifold that does not lead
uniquely to general relativity is shown. Rather, in this limit, the Weyl vector field can be
interpreted as a Dirac current. The action is also the same as the Einstein Dirac one, if and
only if, the spinor field is anticommuting. The allowed interactions are greatly restricted. They
are only minimal gauge couplings and Yukawa interactions with a scalar field transforming
according to the rules of Utiyama [Prog. Theor. Phys. 53, 565 (1975)].

I. INTRODUCTION

Recently, Tavakol and Van den Bergh' suggested that
the postulates underlying general relativity’ permit more
than just general relativity when the postulate of length in-
variance under translation is imposed. We give an explicit
example of this that is also of physical relevance.

One of the earliest attempts to unify electromagnetism
and general relativity was that of Weyl.? In his model, invar-
iance of lengths under translations was given up to be re-
placed by covariance of four-vector lengths under transla-
tions. This weakening of restrictions allows extra structure
to be associated with the manifold in the form of an intrinsic
vector field. Weyl sought to identify this with the electro-
magnetic potential. There are some difficulties with this in-
terpretation.

(a) As pointed out by Einstein,? lengths of measuring
rods or clock rates will depend on their history.

(b) There is an ambiguity in the choice of sign of this
field.* With one choice, polar vectors transported clockwise
around a loop will contract while, if they traverse the same
path anticlockwise, they expand. With the opposite choice of
sign of the intrinsic vector field, the above statement is re-
versed, clockwise transport causes expansion, etc.

(c) An essential ingredient of scale covariant theories is
that of invariance under the conformal group. This implies
that only massless fields can exist in such a space-time.

Subsequently, work has been done to circumvent these
problems. Utiyama’® suggested incorporating a scalar field in
a special fashion to maintain gauge invariance. Nishioka®
has shown how to generate mass for the vector field using
this. Lucey* also independently discovered the scalar field
method and has shown that if it is chosen to be a doublet, the
parity ambiguity (b) mentioned above can also be circum-
vented. Other interpretations have also been suggested.””®

The common feature of all these approaches is that scale
covariance is retained and additional terms are introduced in
order to achieve it.

If instead scale (“length”) invariance under transla-
tions is imposed on a Weyl manifold, then it does not trivially
reduce to general relativity. The vector field (a doublet) re-
mains and is shown to be equivalent to a Dirac current in the
next section. The additional terms in the Einstein-Hilbert
action due to the intrinsic vector field are shown to repro-
duce the Dirac action in Sec. III. It is also shown there that
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the interactions are greatly restricted by the condition of
length invariance. In the last section we summarize our re-
sults and remark on some possible consequences.

Il. EQUIVALENCE OF THE INTRINSIC WEYL FIELD AND
THE DIRAC CURRENT

The fundamental additional assumption of Weyl was
that lengths are covariant under translation. That is, a four-
vector of magnitude / under translation through dx*
changes in magnitude (length) by d/, where

dl=1Ig, dx*, A*d,=I> (1)

Here, A # is any four-vector field and ¢, is the Weyl vector
field intrinsic to the manifold. Such a manifold is no longer
pseudo-Riemannian and the connection on it is given by?

L =T% +8%(8w0br +810b — 81%,)> (2)
where I" 4, is the connection on the corresponding pseudo-
Riemannian manifold (i.e, if ¢, = 0). We adopt the con-
vention from now on of denoting the quantities pertaining to
the Weyl manifold by an overbar and omitting it in the corre-
sponding pseudo-Riemannian case. Thus to obtain length
invariance, we must have

gua(gva¢,{ + g/la¢v - gv/1¢a) =0. (3)

The trivial solution ¢, = 0O, of course, always exists. Nontri-
vial solutions, if they exist, must be representable as spinors,
as these form the fundamental representation of the symme-
try group on the tangent space at every point if the equiv-
alence principle is to be satisfied. Thus after projection onto
the local tetrad,” we have

&= .= a-:B’;AEB" 8% = %aaAB'UBAB'- 4)
Note that we have restricted ourselves to product represen-

tations as objects on a Weyl manifold are necessarily light-
like. Substituting from the above in Eq. (3),

Uﬁp'eAceB’D'(%aﬁCD’ayEF' +40,cp Oper
— Ngy€ce€pr SR =0. e

This is satisfied for nontrivial ¢, if the factor within the
brackets identically vanishes. Let

TﬂyAB'CD’ =10g45'Oycp + 30,48 Opcp:
— Ngy€ac€B D’ (6)

We use the identity®
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to rewrite Eq. (6) as
Typco = Tucyspy + %GACTEEB'D'
+1€sp Tac" v + $€4c€p T gr. (8)
The last term identically vanishes. For the symmetric term
to vanish, the Weyl current must necessarily be the direct
sum of two independent intrinsic fields of opposite parity. In
this case the middle two terms also vanish as they can be
rewritten as the Dirac algebra as follows:
o=l & ][ ° g"w][g” ] Wath (9
o e A ﬂaﬁaﬁy' 0 ED’ S e
Thus we see that nontrivial solutions are indeed possible in
the intuitively obvious case. Namely, this is when the Weyl
manifold possesses two intrinsic fields of opposite parity, so
that one promptly undoes any changes in length brought
about by the other. This example may seem rather trivial but

we see that the effects of this action lead to a possible phys-
ical interpretation.

Ifl. THE ACTION

As we have imposed length invariance, the simplest pos-
sible action with the full symmetry of the tangent space
group is linear in the Ricci scalar. From Ref. 1 this is

S=[RV=F = [(R-4%, — 9", =g d*.
(10)
First consider the covariant derivative term for the Weyl
field. When we project onto the local tetrad the derivative in
terms of spinor components is'°
At =V*, d*=V*+,0%p 7. (an

As we have two Weyl fields of opposite handedness, the de-
rivative operators acting on them must have opposite sign
(due to the opposite orientation of the basis when projected
back from spinor to tetrad consistently). Thus we see that
instead of vanishing as a total derivative from the action, we
have

¢ =0y 3,4 (12)
Next consider the quadratic term in the Weyl fields. Keeping
in mind the fact that we wish to quantize the field at some
stage, we rewrite this as

[sr8=5a% = [ [pangrcx+an

X, (x) —gdixdi(Ax),  (13)
where p(Ax) is an appropriate smearing function normal-
ized to unity. We now confine ourselves to equal time separa-
tions and substitute from (9),

f¢ “p —gdix= J p(AX)P(x + Ax)y “¢P(xtAx)

X POy, P(x)W —g d*x d*(Ax).
(14)

Imposing the canonical anticommutation relations
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{$(x + Ax,0),9(x,1)} = C8(Ax), (15)
we see that Eq. (13) becomes
J‘¢“¢y\/—gd4x=4CJ¢¢\_ [ —gd*x. (16)

Thus substituting from (12) and (15) in (10), the action is

S= [R— FrG,p+4ChIN g d*

We see, as promised, that under length invariance the Weyl
action is equivalent to the Einstein—-Dirac one. We can now
use the appropriate Green’s function in (15) to consistently
extend our derivation to arbitrary infinitesimal separations.

Next consider the case of possible interactions. All these
must obey our cardinal principle of length invariance, Eq.
(3). We can easily see that (3) is preserved under local uni-
tary transformations

Y-U(x)y = [S exp(ijA (x)dx)]%

where S is a constant unitary matrix and 4 is a Hermitian
matrix field. This is, of course, the gauge principle and thus
gauge interactions are allowed.

The only other permissible interactions are with a scalar
field introduced in the fashion of Utiyama. This has a very
interesting consequence, the anticommutation relations in
the presence of such a scalar field () are

{¥(x + Ax,0),0(x,0)} = Q(x,1)8°(Ax). (19)

When using this instead of Eq. (14), we obtain a Yukawa
interaction in the Lagrangian and the spinor field remains
massless. This is the standard prescription for a Higgs mech-
anism and indeed as Nishioka® has already shown the scalar
field possesses the necessary nonlinearity.

(17)

(18)

IV. CONCLUSIONS

We have shown here that the condition of length invar-
iance usually imposed on Weyl space’ has nontrivial conse-
quences. As this extra structure (the Dirac field ) is observed
it seems reasonable to retain it and the corresponding geo-
metrical interpretation. If the rule of introducing two Weyl
fields seems artificial it does have some justification. In the
path integral quantization of gravity we take a sum over
manifolds. Here if CPT is to be a good symmetry, we expect
the wave function to be a coherent sum over Weyl spaces of
opposite parity contributing equally.

For this it is normally convenient to add an extra bound-
ary term to the action.!! An extension of the methods used
here leads to these giving rise to Weyl spinors. Details of this
and extensions of these results to space-times of higher di-
mensions will be demonstrated elsewhere.
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Bell’s inequalities are briefly presented in the context of order-unit spaces and then studied in
some detail in the framework of C *-algebras. The discussion is then specialized to quantum
field theory. Maximal Bell correlations 8 {¢,.&(Z,), 2 (Z,)) for two subsystems localized in
regions |, and ¢, and constituting a system in the state ¢ are defined, along with the concept
of maximal Bell violations. After a study of these ideas in general, properties of these
correlations in vacuum states of arbitrary quantum field models are studied. For example, it is

shown that in the vacuum state the maximal Bell correlations decay exponentially with the
product of the lowest mass and the spacelike separation of ¢, and #,. This paper is also
preparation for the proof in Paper II [S. J. Summers and R. Werner, J. Math. Phys. 28, 2448
(1987) ] that Bell’s inequalities are maximally violated in the vacuum state.

I. INTRODUCTION

Since Bell stated"* the first special case of what has
come to be called Bell’s inequalities, quite a bit of theoretical
and experimental work has been invested in the attempt (1)
to clarify the content of the inequalities, i.e., to find the prop-
er framework within which to formulate Bell’s inequalities
and to determine the consequences of their violation or non-
violation, and (2) to design and carry out experimental tests
of these inequalities. For partial reviews of this work, see
Refs. 3-5. This paper has the following objectives. (a) We
wish to briefly present a formulation of Bell’s inequalities in
the context of order-unit spaces and then to study them in
some detail in the framework of C *-algebras, in preparation
for the discussion of Bell’s inequalities and quantum field
theory. (b) Then we specialize to a study of Bell’s inequal-
ities in relativistic quantum field theory, formulated in the
most general axiom system known to us—the so-called alge-
braic quantum field theory of Haag, Kastler, and Araki®’
(which subsumes, at least modulo certain regularity condi-
tions,® standard quantum field theories satisfying the Wight-
man axioms”'®). Although we shall have something to say
about Bell’s inequalities in arbitrary states of the system, our
main discussion here will concern the vacuum state. (¢) Fin-
ally, we shall prove that Bell’s inequalities are maximally
violated in the vacuum state by suitable observables local-
ized in spacelike separated regions of space-time for both
Bose and Fermi free quantum field theories. Some of these
results have been announced in Ref. 11. Points (a) and (b)
will be presented in this paper while (c¢) constitutes Paper
1.1

Bell’s inequalities concern results of correlation experi-
ments, and in Sec. II we begin with that which one is con-
fronted with in correlation experiments—preparations,
measurements (observables) on two subsystems, and the
relative frequency of their outcomes. Following the ap-
proach due to Ludwig,'*'* we model these with what we call
correlation dualities (p,.«/, % ), which are comprised of two
order unit spaces «# and % (real vector spaces with a vector
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ordering > and a unit 1), and a bilinear function p:
&/ X & —-R. The observables of one subsystem are repre-
sented by partitions {a; |iel} of the unitin «: 3,4, = 1 with
a; >0 for each iel, and similarly for the other subsystem and
% . Each iel is interpreted as a possible outcome of the mea-
surement of the observable. The probability (relative fre-
quency) of the joint occurrence of the outcomes i€l and je/
in the two subsystems, respectively, is then p(a D).

In the course of Sec. II we introduce what we call the
maximal Bell correlation 8(p,.«7, 4 ) for an arbitrary given
correlation duality (p,o,% ) as mentioned above. It is de-
fined by

B(ﬁ,d,-@)z‘isul’(ﬁ(xh%) + D (x1,p2)
+B(x201) — P(x209,)),

where the supremum is taken over all x,e, y,e# with
—1,<x<l, and —1,<y,<1,, i=12. Then the
Clauser-Horne"® (CH) form of Bell’s inequalities can be
rewritten as

B(po ,B) = 1. (L.D)

In this form an implicit symmetry in the CH-Bell’s inequal-
ities is made explicit and some additional calculational ad-
vantages accrue, as well. We also determine inequalities on
B(p,o/,# ) that serve the same metatheoretical purpose as
(1.1), but for larger classes of theories. In particular,

B(p, o, H#)<2 (1.2)
must hold for any triple (p,.o/,% ) as described above, and

B(p, o, B2 (1.3)

must hold for any theory (such as quantum mechanics or
quantum field theory) in which the order unit spaces ', %
modeling the observables of the subsystems are actually C *-
algebras. Theorem 2.1 gives some general results of this na-
ture and characterizes the elements x;€.7, y,€# for which
the maximum 2 in (1.3) can actually be attained.

Thus B(p,o/,%# ) = 2 is the maximum possible value
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for the Bell correlations in quantum mechanics, and evident-
ly its attainment would be a violation of Bell’s inequalities
(1.1). It is known® that quantum mechanics predicts triples
(p,, A ) for which 2 is attained, and it is known, up to
experimental error, that in nature® 2 is attained.

In Sec. III we discuss the triples (p,«, % ) that arise in
quantum field theory. There the observables that can be
measured in a space-time region & C R* are modeled by self-
adjoint elements of a C *-algebra & (¢ ), and a given quan-
tum field model provides a net of such algebras
{ (&)}, g satisfying axioms that are naturally motivat-
ed by general physical principles. Section I'V occupies itself
with a general study of the maximal Bell correlation
Bp, A (2,),o (&,)) when p arises from a vacuum state.
Among other things, we give a priori bounds on
Bp,Z (), (£,))in the vacuum in terms of the space-
like distance between &, and & ,.

This paper is preparation for the proof that also quan-
tum field theory predicts the maximal violation of Bell’s in-
equalities, i.e., it predicts 8§, (&), A (T,)) = V2 for
certain localization regions ¢, and &,CR* and certain
states p. In Paper II (Ref. 12) we show, among other things,
that if ¢, and &, are so-called complementary wedge re-
gions in space-time and if § arises from the vacuum state for a
Bose or Fermi free quantum field theory [</(£,) and
&/ (& ,) are then the observable algebras for the correspond-
ing free field theory], then 8 (3,7 (&£ ,), (& ,)) = 2, in-
deed. In further work in progress, we intend to show such a
prediction holds for theories with interaction and for states
other than the vacuum state, as well (see Note added in
proof).

Il. BELL’S INEQUALITIES

The aim of this section is to establish notation and the
basic results on Bell’s inequalities in general that we shall
need in our discussion of Bell’s inequalities in quantum field
theory. We are obliged here to assume that the reader has
prior familiarity with the discourse on Bell’s inequalities in
the literature. However, for a detailed discussion of the most
general formulation and derivation of Bell’s inequalities
known to us (which is embedded in an approach to statisti-
cal theories due to Ludwig'>'*) and the connection with that
with which one is presented in the experimental situation—
preparations, measurements, and relative frequencies of
their outcomes—see Refs. 16 and 17, the latter being the
preprint of the original version of this paper.

Bell’s inequalities are a constraint on the statistical cor-
relations between measurements performed at two sites A4
and B or on two “parts” 4 and B of the same system. Follow-
ing Ludwig'*>'*'%!7 we shall assume that the possible mea-
surements at site 4 are described by an order-unit space'®'*
(27,>,1), abbreviated by &, which is a vector space .&Z or-
dered by a convex cone 7 . ={ac./|a>0} with a distin-
guished element 1€/, whose multiples eventually domi-
nate every other element of &7 . Preparations correspond to
positive, normalized linear functionals on ./, called (statis-
tical) states on /. An important subclass of theories with
this structure is constituted by classical theories, for which
& is the set of continuous, real-valued functions on a com-
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pact space X with pointwise ordering [i.e., f>gif f(x)>g(x)
for all xeX]. The points xeX are in one-to-one correspon-
dence with the pure (i.e., extremal states in the convex set
of) states on .. In quantum mechanics .« is the set of
bounded Hermitian operators on a Hilbert space with the
usual operator ordering, and in the quantum field theoretical
setting described below in Sec. III 7 will be the Hermitian
part of a C *-algebra®® with identity and with its usual order-
ing o , ={a*alac«/}. In this general setting a measure-
ment with finitely many possible outcomes il is formalized
by a finite family {a,},, with ;e , and 2, ,a,=1. A
preparation is represented by a statistical state w on =, and
w(a; ) is the probability for obtaining the result / in an experi-
ment with preparing and measuring devices represented by
o and {a, },;, respectively.

A set of correlation experiments is then described by the
following structure.

Definition: A correlation duality consists of two order-
unit spaces &/ and # together with a bilinear functional p:
' XH#—-R such that aeo/, be#, and a,b>0 imply
bla,by»0and p(1,1) = 1.

Then p(a,,b; ) is the probability for obtaining both the
result i at site A and j at site B for measuring devices de-
scribed by {a, },; C«/ , and {b,},., C # . and a preparing
procedure described by p. Inthe C *-algebraic setting (which
actually subsumes all the examples mentioned above) &
and & are typically elementwise commuting subalgebras of
a larger algebra 7 and p is given by a state @ on € by
Pla,b)=w(ab).

A crucial assumption about the correlation experiment
being modeled is built into this structure. Consider two mea-
suring devices {a, }; and {a/}., at 4. Then by definition
1l =3a; =3a;, so that for any beZ#, Z,p(a;,b)

= 3,p(a;,b) = p(1,b). Thus the probability for a certain
outcome at B does not depend on the measuring devices cho-
sen at 4. This is the typical “locality” assumption in deriva-
tions of Bell’s inequalities. We emphasize that this assump-
tion is not to be confused with locality in the sense of
relativistic causality. For the correlation dualities studied in
this paper Bell’s locality is indeed a consequence of Einstein-
ian causality, because the full causal structure of Minkowski
space is built into algebraic quantum field theory (see Sec.
III). But the locality assumption in the definition of correla-
tion dualities is valid in a much broader context. In particu-
lar, both the classical and quantum mechanical schemes for
describing composite systems lead naturally to correlation
dualities.

The measurements considered in the standard ver-
sions™'>?! admit two outcomes, say { +, — }, and are thus
given by pairs {¢,,0a_}Co with a, >0, a_>0, and
a, +a_ =1 Clearly such pairs are in one-to-one corre-
spondence with the elements ge” with — 1<a<|1, by set-
ting @, =4(1 1 a). Two such measurements are consid-
ered for each of the two sites 4,B. We shall say that
(a,,a,,b,,b,) is an admissible quadrupleifa,,a,€ %, b,,b,€ %
and —1,<a;<1,,i=12and — 145 <b;<l4p,j=12.

Definition: If (p,«#,# ) is a correlation duality and
(a,,a,,b,,b,) is an admissible quadruple, the latter is said to
satisfy Bell’s inequality if
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iﬁ(al’bl) +ﬁ(al9b2) +ﬁ(az,b;) “-ﬁ(az,bz) ! <2. (2. 1)
Itis a triviality to see that (2.1) is equivalent to the version of
Bell’s inequality presented in Ref. 15. This inequality is
usually derived assuming both o7 and & are classical.

The following Theorem is the basic result of this section.

Theorem 2.1: Let (p,o7, 4 ) be a correlation duality, let
we/ * be the state w(a) =p(a,1), and let (a,,a,,b,,0,) be an
admissible quadruple. Setting

x =4lplayb; + by) + plarb, — b)),
one has the following: (1) ¥<2. (2a) If & is the Hermitian
part of a C *-algebra, then y<+2. (2b) If y = 2 in this case,
the following identities hold for all ae& and i=1,2:
w([a;,a]) =0,w(ala) = w(a), w((a,a, + a,3,)a) = 0. (3)
If any one of the following conditions holds, then y<1. (a)
& is classical. (b) @ is pure on &. (c¢) There are states
£,€9*, n,€%* and positive reals 4, such that for allaco/,
be#, pla,b) =ZA, £, (a)n, (b).

Proof: (1) If — 1<a<land — 1<b<1,then 1 — p(a,b)
=} p(1+a1—b)+1}p(1—al+5)>0, and similarly
1 + p(a,b) >0, so that each of the four summands in y is
bounded by §.

(2a) Let {r,, #,,0} be the cyclic Gel'fand—Nai-
mark-Segal (GNS) representation”® of .« associated with
the state . Then for each be Z with — 1<b< 1, the equation
w, (a)=p(a,b) defines a linear functional w, on & with

— w<w; <w. Thus there exists a unique ber,, () [the
commutant of 7, (&) in Z (%, )] with — I<b<] (Iisthe
identity operator on #,) such that p(a,b) =w,(a)

= (Q,m, (a)bQ) for all ac/. Let A=ir,, (a, + ia,) and
B=(1/2{2) (b, + b, + i(h, + b,)). Then

A*4 +A4* =ir, (a} +a})<]
and

B*B +BB*=4(b} +
Moreover,

VZy = 4 Re(1,4 *BQY)

=2 Re(A40,B0) + 2 Re(B *,4 *)
= 49| + |BOI? - [|(4 — B)Q| + ||B*Q|*
+ 4l — |(B* —4a Q|

<(N,(4*4 +AA* + B*B + BB*)Q()<2. (2.2)

Ot

)<L

(2b) Suppose that equality obtains in (2.2). Then
AQ=B0, A*Q=B*Q, and (Qr,(d? +al)0)
={0,(4*4 + 44 *)Q) = 1. Since a?<l1, this implies
7, (@) =Nfori=12aswellas (4*4 + A4*)Q = Q.
Hence for arbitrary ae.</,
w(aa®) = (Q,m,(a)r, (a?)N) = w(a)
and
wla(a, + iay)) = 2{Q,7, (a)AQ) = 2(Q,7,(a)BQ)
=2(B*Q, 7, (a)Q) =2{4*Q, 7, (a)2)
- w((al + iaz)a);
Since 520 = 520 = Q, we have
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7, (@18, + a,0.)Q = (2/i) (4% — 4A**)Q
= (2/i)(B?* — B*)}
=(b? -b2)N =0,

which implies the remaining, final assertion of (2b).
{3a) Since a is Abelian, the four elements

as.sz E%(l + 51‘11) (1 + 62(12)

with €,6,€{ 4+, — } are positive. By direct computation

X =ﬁ(0++,b1) +ﬁ(a+—9b2) —ﬁ(a_+,bz) —ﬁ(a__,bl)
blay,+a,_H+a_,+a_ _H)=p1)=1

(3¢) Since p(L,1) =1and £, (1) =7, (15)=1,
one must have 24, = 1. Hence y = 31y, with

Xa =36 (a)n, (b +b,) + £, (ay)n, (b, — b)),

and it suffices to show y, <1 for each a. This is readily done
by introducing the four numbers

aelsz Eili(l + 61§a ((11))(1 + elga (02))
and proceeding as in (3a).

(3b) Purity of w entails that the functionals w, €2/ with
—w<w, <o given by w, (a) = p(a,b) are of the form
w, (@) =n(byw(a) with — l<y(b)<l (see Ref. 20).
Hencep(a,b) = w(a)n(b) factorizes and one may apply the
proof of (3c). 0

Part (3) of Theorem 2.1 gives three different conditions
on a correlation duality (P, , % ) such that Bell’s inequality
is satisfied by a/l admissible quadruples in the correlation
duality. By (3c) Bell’s inequalities are satisfied even for
quantum systems whenever the correlations are produced by
a mechanism which can be simulated by a classical random
generator (producing the “outcome” a with probability
Ag).

If @ as defined in Theorem 2.1 is a faithful state on &
[ie., if xeo/, x>0 and w(x) = 0 imply x = 0], then the sec-
ond and third equations in part (2b) are equivalent toa? = 1
and a,a, + a,a, = 0. Thus, if y = 2 when .« is the Hermi-
tian part of a C *-algebra, the corresponding elements a,a,,
anda;= — (i/2)|a,,a,] form a realization of the Pauli spin
matrices in .. The first equation in part (2b) then implies
that the state w restricted to the 2 X 2 matrix algebra M,(C)
spanned by 1,4,,a,,a, is the normalized trace. This is precise-
ly the case realized in the well known idealized description®
of the Aspect experiment in terms of a singlet state on
M,(C) @ M,(C). Within experimental error (now very
small), the maximal Bell correlation (and violation of Bell’s
inequalities) \/2 has indeed been found in nature.*

Note that since classical, quantum mechanical, and
quantum field theoretical models are all subsumed in the C *-
algebraic framework, part (2a) informs us that y = 2 real-
ly is the maximal possible correlation. The bound y<y2
(which has also been noted by Cirel’son?? and others) con-
strains “local” quantum theoretical descriptions in the same
way that Bell’s inequality ¥ <1 constrains local classical de-
scriptions. Thus a correlation experiment reliably yielding a
result y > +/2 would have to be taken as a falsification of stan-
dard quantum mechanics just as Aspect’s experiments ex-
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clude “local hidden variable theories.” Theories predicting

x > 2 in some experiments are not obviously absurd, as can
be shown by the straightforward construction of a correla-
tion duality and admissible quadruple with y = 2. Thus the
bound in part (1) is optimal without further assumptions on
P, A, % ).

It is clearly natural to make the following definition.

Definition: The maximal Bell correlation (5, <, % ) in
a correlation duality (p,/, %) is

B(p, o, B ) =4sup(p(a,b,) + p(a,,b,)

+ ﬁ(azybl ) —ﬁ(aZsz))y
where the supremum is taken over all g,e4/, b;e# with
—1,<a;<1, and —1,;<b;<1,4.

Thus, A(p,o/,#) =1 (resp. 2,2) means that every
admissible quadruple in the duality satisfies the CH version
of Bell’s inequality (resp. the upper bound y2, 2 is arbitrarily
well approximated by y’s for some admissible quadruples in
the correlation duality).

In the remainder of this paper we shall study the exis-
tence of admissible quadruples of observables violating
Bell’s inequalities in correlation dualities naturally arising in
algebraic quantum field theory. If 8(p,«/, % ) > 1 we shall
say that Bell’s inequalities are violated in (p,«/,# ), and
since we are working henceforth in the C *-algebraic context,
we shall say that the inequalities are maximally violated if
B(p, o, #) = 2. We shall see in Paper II that quantum
field theory predicts the attainment of the maximal violation
V2. But first we shall discuss in Sec. III the appropriate for-
mulation of quantum field theory and in Sec. IV the special
properties of B(p,o/,%# ) when p corresponds to the prep-
aration of the vacuum state.

lil. BELL’S INEQUALITIES IN ALGEBRAIC QUANTUM
FIELD THEORY

In this section we shall specialize the discussion to statis-
tical dualities (p,.#,# ) coming from relativistic quantum
field theory (QFT). In our view the proper framework with-
in which this can be accomplished is so-called algebraic
QFT,%” which has the advantages over the standard QFT>'°
of being more general and of dealing directly with observa-
bles and states.

As already mentioned, the basic structure is an assign-
ment to each open space-time region & CR* a C *-algebra
& () (which one can think of as a norm-closed, *-algebra
of bounded operators on some Hilbert space), and this as-
signment must satisfy certain axioms, motivated by physical
principles.

(1) Isotony: if &,C &,, then &/ (&,) C & (&7 ,); with
this assumption one can think of each .7 (¢ ) as a subalgebra
of the C *-algebra o generated by U, ./ (&). It is as-
sumed that .« has an identity 1 and that le.e/ (&) for each
¢ . Here . is called the quasilocal algebra.

(2) Poincaré covariance: there exists a representation
{a;|AeZ", } of the identity-connected component Z ', of
the Poincaré group by a group of automorphisms on <,
such that
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a (A (ON=A (),

where & ; is the image of & under the transformation corre-
sponding to A.

(3) Locality: if & | is spacelike separated from & ,, then
every element of .« (£ ;) commutes with every element of
A(O,).

If one considers heuristically each algebra .« () as the
algebra ‘“‘generated” by all observables measurable in &,
then these assumptions are perfectly natural for a relativisti-
cally covariant theory over Minkowski space.

Before proceeding further we wish to remark that axi-
oms (1)-(3) with the algebras { &/ (£)} Abelian would
naturally be fulfilled by classical field theories and hidden-
variable theories which have the idea of relativistic locality
built into them. It should also be pointed out that axiom (3)
can be viewed, at least heuristically, as a consequence of Ein-
steinian causality, but, in fact, it is strictly weaker (in partic-
ular, the locality axiom says nothing about the impossibility
of superluminal signals). Axiom (3) is exactly what is re-
quired in the algebraic framework in order to satisfy the re-
quirement that observables in spacelike separated regions be
jointly measurable in correlation experiments (see Ref. 23).

Continuing now with the axioms of algebraic QFT, the
following is also assumed.

(4) Existence of a physical representation: there exists a
faithful (i.e., one-to-one) representation 7 of &/ on a separa-
ble Hilbert space 5 such that on 5% there is a nontrivial,
strongly continuous, unitary representation U(Z', ) of
(the universal covering group of) the Poincaré group # ',
satisfying (a) U(A)7(A)U(L) ™' = mla, (4)), for each
Aes, AcP'_, (b) the generators {P, }} _, of the transla-
tion subgroup U(R*) CU(Z", ) satisfy the spectrum con-
dition P — P? — P2 — P2>0 and P,>0, where P, is the
generator of the time translations.

Self-adjoint elements Ae. (&' ) of the local algebras are
interpreted as observables measurable in the corresponding
space-time region ¢ CR*. In particular, self-adjoint 4 with
0<A4<]1 can be viewed as yes—no observables, i.e., observa-
bles corresponding to (equivalence classes of ) measuring de-
vices that have only two outcomes. A mathematical state (a
positive, normalized linear functional®’) ¢ on the C *-alge-
bra o is supposed to correspond to a physical state of the
system whose local observables are represented in the net
{ (&£)} (although it is not necessary to assume that every
such mathematical state is physically realizable). For such a
state ¢ and an observable de/ (&), ¢(A) is interpreted as
the expected value of the observable 4 of the (statistical)
system that has been prepared in the state ¢. In the case of an
observable satisfying 0<A4< 1, ¢(A4) is the probability of the
outcome *“yes” and ¢(1 — A4) that of the outcome “no” in
the state ¢. Self-adjoint projectors are special cases of such
“yes—no”’ observables.

A C*-algebra o with identity is in a natural way an
order unit space. The ordering > is defined as follows: 4>B
ifand only if 4 — B>0, and the latter inequality means that
there exists a Ce” such that4 — B = C*C.If & and Z are
commuting C *-algebras and ¢ is a state on a C *-algebra ¢
containing both «/ and %, then (¢,«,% ) determines a
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correlation duality by p(4,B) =¢(AB), for each Ae,
Be . Thus, if ¢ is a state on the quasilocal algebra .« gener-
ated by a net of local algebras {7 (£)}, and if ¢, and &,
are any two spacelike separated regions in Minkowski space,
then (¢, (&), # (& ,)) s a correlation duality, by the axi-
om of locality.

In Ref. 8 can be found necessary and sufficient condi-
tions that a net of local algebras can be in any way associated
to a standard QFT satisfying a weak regularity condition,
and the precise sense in which this association can be made is
identified. It should be emphasized that it was found that
either there is no net associated in any way to the quantum
field or this association is very tight. As these matters are
technically involved, we shall not try to give any details here.
Suffice it to say that necessary and sufficient conditions are
determined such that given a standard QFT {J¥,¢(-),
Uz’, ),Q} satisfying them there exists a net of local alge-
bras {#(Z)} such that for any fe¥(R*) with
supp( f) C &, the operator ¢( f) (on the usual Wightman
domain) is affiliated, in the sense of von Neumann, with the
algebra & (&), i.e., the operator ¢( f) commutes with all
elements of &7 (£ )’ [this means, in a well-determined math-
ematical sense, that all bounded functions of the operators
@(f) arein & (£)]. It is shown that, with the assumption
of a weak regularity condition, the said net of local algebras
is associated in the same way with every element of the
Borchers class®** of the field @ (). Thus, typically, to each
net {&7 (&)} are associated many quantum fields, which
can be viewed as alternative descriptions of the same phys-
ical situation. This fact has also emerged in work?>->° where,
starting from a representation of a net of local algebras,
quantum fields are constructed as limits in certain topologies
of elements of the algebras &/ (¢ ). We remark that when
nets of local algebras and quantum fields are found to be
associated in the manner suggested, both the nets®*>° and the
fields®! manifest desirable properties that are not present in
the general situation.

After the discussion above and in Sec. II, it should be
clear why we consider Bell’s inequalities in quantum field
theory in the form

for peo/ (1  + (the set of states on &7 ), &, spacelike separat-
ed from & ,, and with &/ (¢ ,) and &/ (&,) the correspond-
ing von Neumann algebras (weakly closed C *-algebras®®) in
a net of local algebras { .« (#)}. Here &/ (&) and (& ;)
are interpreted as the algebras generated by the observables
measurable in the space-time regions ¢, and ¢, for the two
subsystems in a correlation experiment, and ¢ is viewed as
the state of the total system as prepared in the given experi-
ment. &, and &, will be taken to be causally reflexive in the
sense that

O, =07, i=12. (3.2)

Here &' is defined to be the interior of the set of all points in
Minkowski space that are spacelike separated from ¢, and
#"=(¢')". In particular, if a measurement is made in &,
then Z" is necessarily causally reflexive and is regarded as
the causal shadow of the measurement. ¢ " is the largest
(open) space-time region that is spacelike separated from all
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points spacelike separated from ¢. We shall typically con-
sider regions from two classes: the wedges #~ and the double
cones %". The set %~ of wedges is defined to be the set of all
Poincaré transforms of

We =1{xeR*x, > |x, |},

and the set 7" of double cones is defined to be the set of all
nonempty intersections of a forward light cone with a back-
ward light cone.

We are interested in finding states ¢ and regions ¢ | and
&, such that (¢, (£ ), (2,)) =2, ie., Bell’s in-
equalities are not only violated, but maximally violated by
suitable observablesin &/ (# ) and & (£ ,) in the state ¢. In
Paper II (Ref. 12) we show that for free quantum field the-
ories, if ¢ is a vacuum state and #, and &, are wedges satis-
fying &, = &}, then B is indeed equal to 2. (In work in
progress we have the beginnings of more general results of
the type desired.) Thus, with the reservations already men-
tioned about interpreting elements of local algebras as phys-
ical observables, quantum field theory predicts, just as quan-
tum mechanics does, maximal violations of Bell’s
inequalities.

In the following section we study S (¢, (&£ ), (& ,))
in some generality when ¢ is a vacuum state and &, C &},
before going on to Paper II.

V. BELL’S INEQUALITIES AND THE VACUUM STATE

In this section we specialize the discussion even
further—here we shall present results concerning Bell’s in-
equalities in arbitrary vacuum states. The setting we shall
work in is as follows. We shall consider a net {7 ()} —
of concrete C *-algebras acting on a separable Hilbert space
&, on which there exists a strongly continuous, unitary rep-
resentation U(R*) of the translation group satisfying the
spectrum condition and acting covariantly upon the ele-
ments of {7 (£)} ie.,

£ CRrRY?

Ux)Z(O)YUx)'=A(F,), xR, JCR“

Moreover, there exists, up to a factor, a unique vacuum vec-
tor e, by which we mean a translation-invariant unit
vector which is cyclic for 7. This entails®” that .7 acts irre-
ducibly on 7#°. We comment that under weak technical as-
sumptions,*® if the subspace of translation-invariant vectors
were more than one dimensional, a “central decomposition”
could be performed to reduce the problem to the situation
assumed above.

Let ¢, be the state on .« defined by ¢,(4) = (,40),
Aea/ . The crucial characteristic of this vacuum state ¢, is its
clustering properties. That is to say, it is known thatif £ ,&,
are bounded space-time regions and geR* is any spacelike
vector, then

lim ¢,(U(ta)AU(ta) ~'B) = ¢o(A4)do(B),

t— o
for any Ae/ () and Beo/ (& ,). In fact, one has the fol-
lowing theorem. Part (a) gives an upper bound on the rate of
clustering in massless theories, while part (b) provides the
(best possible) bound in theories with a mass gap.
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Theorem 4.1: (a) (Ref. 33) Under the assumptions
above,

|6o(U(x)AU(x) ~'B) — $o(4)$o(B) |
<C(2,7,) [x172([|49]|- B *Q|| + ||BL|-|l4 *|
+ (Ixol/[x1*) (| HAQ|-||B *Q|
+ | HBQ||-l4 *QD 1,

for any deo/ (&) and Beo/ (& ,) with AQ and B in the
domain of H, the self-adjoint generator of the time-transla-
tion subgroup of U(R*), where C(&,,& ,) is a constant pro-
portional to the volume of the convex closure D, of Dy, xeD |
and [x] is the shortest spacelike distance between x and D,,
and D, is the complement in the hyperplane {xeR*|x, = 0}
of (£, — &,)' N{xeR?*|x,=0}; i.e, if &, = £,% then
D, is the double cone with base centered at the center of #,
and with twice the diameter.

(b) (Ref. 34) If, in addition to the assumptions above,
the spectrum of H is contained in {0} U [m, o ), with m > 0,
then for x a spacelike vector,

¢ Ux)4U(x)~'B) ~ $o(4) 4o (B)|
<~ {|l4 Q|- B -l4|-| B *Q||},

forany Ae/ (&) and Be. (& ,), where &, and & , are not
restricted to be bounded and d(x,&,,&,) is the maximal
timelike distance &, , can be translated before &, , ¢ 7.

Thus, roughly speaking, in the massless case clustering
goes like R ~?and the massive caselikee ~ ™R , where R is the
spacelike distance between &, , and & ,. Animmediate con-
sequence of these clustering properties is given in the follow-
ing corollary for the massive case; the analogous result for
the massless case should then be clear.

Corollary 4.2: Under the assumptions of Theorem
4.1(b)

B (ol (0,), (0,))<1 4 2e~ 7407172,
where 7 ,,&,CR* are arbitrary.

Proof: For any 4,,4,€«/ (&) and B,,B,es/ (7 ,) with
— 1<4;<1 and — 1<B;<1, i = 1,2, Theorem 4.1(b) en-
tails
[ifold (B, + B,) + A,(B, — B,))|

2e~mAOInT) 4 %,¢0(A1)¢0(Bl) + @o(4,)4o(B,)

+ @o(A42)Po(B) — $o(A4,)6o(B,)].

But the supremum over all self-adjoint contractions
A€ (O)), Bied (0 ,), of the expression

Bo(A1)8o(B,) + $o(A1)o(B) + $o(42)¢o(B))
— $o(42)¢o(B2)

[which is a product state over o/ (£ ,) ® o (& ;) evaluated
on A,® (B, +B,)+ 4,9 (B, —B,)] is 2, by Theorem
2.1. |

Since Bldo & (), A (F,))>1, we have
0<B (@0 (1), (&) — 1< 2~ 40772 (this slightly
improves the estimate given in Ref. 11). Hence, if
d(0,¢,,¢,) is much larger than a few Compton wave-
lengths of the lightest particle in the theory, then the maxi-
mal Bell violation (if any) in the vacuum state of measure-
ments made in &, and &, will necessarily be too small to be
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observed. In a theory with massless particles the clustering
“rate” can be much smaller, so that d(0,£,,&,) could in
principle be allowed to get much larger before the maximal
violation (if any) could be unobservable. However, in that
case it would be necessary to have efficient counters for arbi-
trarily soft photons, because a lower bound € on the photon
energies that can be efficiently read serves as a lowest mass ¢,
leading to a similar bound on the maximal possible violation
that can be detected in the vacuum by the said counters. The
next theorem formalizes this statement. With techniques
parallelling those used in the proof of the theorem in Ref. 34,
one can prove the following result.

Proposition 4.3: Under the assumptions of Theorem
4.1(a),forany e >0and §<e "<, A tobe freely chosen from
R,, and for any 4;e&/(¢,) such that — 1<4,;<1 and
1E 0,61 40 QUI/|| 40 R <6, i = 1,2, then

l4do(41(B, + B,) + 4,(B, — B,))|
<1 +2e—e-rc(i.)(1 +6esrﬂ)’

where c(A) = (2/m)tan" 4,
B, Bed (&,) satisfy — 1<B;<1.
For any self-adjoint Ac.oZ (£), & CR*, and unit vector
e,
<'/”E[o,s ]AE[o,e 1'/’) = (E[O,s 1¢,AE[o,e ]¢)

gives the expectation of 4 in that part of the state (1, ") that
involves energies less then €. Thus, y.(4)=|E o AR/
||4Q|| is an approximate indication of the low-energy re-
sponse of the measuring device represented by A4 in the vacu-
um state ¢o(-) [note that if ||[E, ., AE o, || is sufficiently
small, then y, (4) is also small]. If 4 responds inefficiently
to soft photons, then y, (4) should be small (recall, 42#0
unless 4 =0, so y. is well defined). If, in particular, for
some €>0 one has y.(4;) =0 for both 4, and 4, in
& (2 ,), then from Proposition 4.3,

B¢0(A1(Bl + B,) + 4,(B, — By))|<1 + 2~ A0InTD)

forany B,,B,eo/ (& ,) with — 1<B, <1. Thisis exactly anal-
ogous to the estimate in Corollary 4.2. If, however,
Xe(4,)#0, then the bound given by Proposition 4.3 does not
decreaseto 1 as 7— .

In the light of the theorems presented in this section, we
certainly do not suggest that someone look for violations of
Bell’s inequalities in the vacuum. But we shall prove in Paper
II that, at least in some quantum field models, Bell’s inequal-
ities are indeed maximally violated in the vacuum state.
Thus, maximal violation is a prediction of such theories, just
as it is of quantum mechanics.

Before we close this section, we wish to point out a few
additional facts about Bell’s inequalities in the vacuum state
for theories that are dilatation invariant. The dilatations
R*3x-Ax,A >0, form a group of transformations of Min-
kowski space. A model ({« (&)}, g, %, U(R*)} of the
kind discussed in this section is said to be dilatation invariant
if there exists a strongly continuous, unitary representation
{U(A)},. o of the dilatation group that acts on % and satis-
fies UA)N=90, for all 1>0, URA)L(F)ULA)™'

= (AF), where A0 ={ix|xef}, and U(A)U(x)
= U(Ax)U(A), A >0, xeR*. The following theorem relates
the maximal correlation 3 (¢,.2 (& ), (& ,)) for algebras

7=d(0,0,,Y,), and
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associated to certain regions to the maximal correlation for
algebras associated to certain other regions, assuming dilata-
tion invariance. We shall need a mild technical assumption.
A net of local algebras {.&# (£)}, g will be said to have
wedge algebras that are locally generated if for each wedge
WCR?, o (W) is equal to the C*-algebra generated by
{(O)|feX and & C W}. Nets of local algebras coming
from standard quantum fields are known to satisfy this prop-
erty.®

Theorem 4.4: In a dilatation-invariant quantum field
theory in which the wedge algebras are locally generated,
B(dos A (AE ),/ (A ,)) is independent of A >0 for any
&,,0,CR* Thus, if W, and W, are spacelike separated
wedges, then

B(¢09~({(Wl))ﬂ( Wz)) =B(¢O’M(m)9d(W:))a

i=1.2.

Moreover, if 4, and &, are tangent double cones (i.e.,
spacelike separated double cones whose closures intersect at
one point), then for any wedge W such that &,CW and
ﬁzc W', B(¢o,d(ﬁ1),&/(ﬁz)) =ﬂ(¢o,-97( W), ( W’))-

Prooft Since ' (A0)=UA)F(F)YUA)™" and
A= for all A>0, it is obvious that
Bdo A (A,),o (AL ,))is independent of A > 0. [Similar-
ly, B (£,,),4(F,,)) is independent of xeR*.]
Thus,
B (¢09-27(ﬁ1),-!{(ﬂ2)) = l/ggﬁ (¢Ow‘2{(iﬁ1),ﬂ(ﬂﬁz))

= lim B (o (A0), o (A7)

But if W, and W, are spacelike separated wedges,
B (@0l (W), (W) =B ($o ( Wl,x,-)""Z[( Wz,x‘)),

i = 1,2, where x; is the translation that puts the apex of W, at
the origin. Thus,

B (¢0’~Q{(W1),~M(W2)) = ljff)lﬁ(‘po’&{(/l(Wl,x,))’

A AW,,))).

But lim;  A(W,,)=W,, and lim; ,A(W,,)=W],,
i#j. Therefore,

B (b0 (W), (W) =B (b0, (W), (W7))
=B(¢O’M(W5)"Q{(W2)),

using the assumption that the wedge algebras are locally gen-
erated, which implies that, e.g., the inductive limit*
limg, o &AW, )= (W], ). A similar argument
proves the final assertion of the theorem after one notes that
lim,, A(Z,,)=W, and lim,  A(F,,)=W_,
where x, is the translation that takes the point in the inter-
section of the closures of the tangent double cones &, and
& , to the origin. a

The free, massless, scalar field and the pure electromag-
netic field®>>¢ are examples of such dilatation-invariant the-
ories. It is known?’ that any dilatation-invariant theory in
which there are massless particles must have a trivial § ma-
trix.

Finally, we remark that Theorem 2.1 (2b) entails that if
A;esf and B,e A are admissible, i = 1,2, and satisfy
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ibold, (B, + B,) + A,(B, — B,)) = 2, 4.1)

then the A, (resp. B;) are in the centralizer (see Theorem
5.3.28 in Ref. 38) of o/ (resp. & ) in the state ¢, But it is
known*® that the centralizer of any wedge .« (W) in a pure
vacuum state ¢, is trivial, i.e., consists only of multiples of
the identity. Thus, at least if & and % are commuting
wedge algebras, it follows that there is no quadruple {4; ,B;}
that would satisfy (4.1), even though it is possible, and that
will be shown in Paper II, that admissible quadruples can be
found so that the left-hand side of (4.1) comes arbitrarily
close to 2.

Note added in proof: See our paper in Commun. Math.
Phys. 110, 247 (1987).
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In the context of the study of Bell’s inequalities carried out in Paper I [J. Math. Phys. 28, 2440
(1987)1], it is proven that Bell’s inequalities are maximally violated in the vacuum state by
suitable spacelike separated observables for both Bose and Fermi free quantum field theories.

I. INTRODUCTION

In this paper we continue our study' of Bell’s inequal-
ities in quantum field theory with the proof that in both Bose
and Fermi free quantum field theories these inequalities are
maximally violated in the vacuum state by suitable spacelike
separated observables. As explained in Paper I, the form of
Bell’s inequalities with which we work is as follows:

ﬁ(¢’~9[(ﬁ1),d(ﬁ2)) =1,
where
B (6,4 (2,),4 (7))
=} sup #(4,(B, + B,) + 4,(B, — B,)),

and the supremum istaken overall4,e«/ (&), B,e# (Z,),
with 4, =A4,*, B, =B,*, —1<4,<1 and - 1<BK],
i=1,2. Here &, and &, are spacelike separated regions of
Minkowski space and ¢ is a state on 7, the C *-algebra of
quasilocal observables generated by a given net of local ob-
servable algebras {7 (&)} (see Sec. I1I of Paper I for nota-
tion and background). For each quantum field model to be
considered here we shall explicitly define the algebras
{7 (£)} at the appropriate place.

From Theorem 2.4 in Paper L it follows thatif &, C &5,
then

B (6.2 (F ), (0))<N2, (1.2)

for any state geo/ ¥ ). If the equality holds in (1.2), we
shall say, for obvious reasons, that Bell’s inequalities (1.1)
have been maximally violated. It is precisely this equality
when ¢ is the vacuum state of a free quantum field theory
and #, and &, are certain space-time regions (e.g., &, and
& , are complementary wedge regions) that will be proven.
In work in progress we intend to show that the equality in
(1.2) holds for more general classes of quantum field models
and states (and regions & ,,&,). But in a sense, it is maximal
violation in the vacuum for free fields that could be regarded
as the least expected of such results, since the very strong
correlations between certain spacelike separated observables
that are implied by the maximal violation of Bell’s inequal-
ities can then neither be attributed to a special preparation of
the system nor to some nontrivial interaction of the fields
under consideration. The point to be made is that already
vacuum fluctuations manifest correlations that are too large

(1.1)
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to be modeled by “local hidden-variable theories” (see Sec.
II of Paper I).

In Sec. II we present the main results of this paper,
which are then proven in the subsequent sections. Some of
these results were previously announced in Ref. 2.

Il. MAIN RESULTS

To facilitate an overview of the theorems proven in this
paper, we start by collecting here the main results. We follow
the notation established in Paper 1.

If @( - ) denotes the free Bose quantum field of mass
m>0and Dis its standard domain in the Bose Fock space 7%
(see Ref. 3), then it is well known that for every real-valued
tempered test function fe.” (R*) the operator @( f) is es-
sentially self-adjoint on D. Moreover, if for each open
& CR* & (£) is defined to be the von Neumann algebra

A (0)={e?D| feF o (RY), supp(f)CI}" (2.1)

generated by the self-adjoint closureof ¢ ( /) | D forallreal-
valued f€.¥ (R*) with support in &, then {.&/ (£ )} is a net
oflocal algebras satisfying the axioms (1)-(4) in Sec. III of I
(see, e.g., Ref. 4) transforming covariantly under the action
of the representation U(Z',_ ) of the (covering group of
the) Poincaré group &', associated with the field ¢( - )
(Ref. 3). If Q is the vacuum vector in 57, then

$o(4)=(Q,4Q), Aeo, (2.2)

defines a state on the algebra of quasilocal observables gener-
ated by the net {7 (£)} just defined. We remark that in
order to keep notation within bounds and the reader’s atten-
tion on the essential points, we have tacitly assumed that the
field ¢( - ) is neutral and has spin 0. But by making use of
Refs. § and 6, for example, the methods of this paper can be
easily extended to fields of any spin, but with finitely many
components.
Theorem 2.1: With the above definitions,

B (b (W), (W) =42,
for any wedge region We%".

Here, Wand W' areeach other’s causal complement and
are called complementary wedges. See Theorem 2.4 for simi-
lar results for regions other than complementary wedges in
the case m = 0.
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If ¥( - ) represents the free Fermi quantum field® of
mass m>0 and spin s = n/2, neN (but finitely many compo-
nents), then the anticommutation relations entail that ¢/ ( /)
is a bounded operator for every test function f. For that rea-
son one can directly define the free Fermi field algebras as

F(0)={¢(f)|supp(fHCI}". (2.3)
Here, {.% (£)} is a net of local algebras satisfying axioms
(1), (2), and (4) in Sec. I1I of Sec. I. Because field operators
¥(f) and ¥(g) with supp(f) spacelike separated from
supp(g) anticommute, it is necessary to modify axiom (3)
for the field algebras. This is done by introducing a unitary
Klein transformation Z ()% (&) that yields
F(O)YCF (F') for every region & CR* as the appropri-
ate expression for the locality of the field operators (see Sec.
IV for more details). If, once again, €} is the vacuum vector
in the Fermi Fock space, then

Po(F) ={(Q,FQ), Fe¥F , (2.4)

defines a state on the algebra ¥ of quasilocal field operators
generated by the net {# (&)}
Theorem 2.2: With the above definitions,

B (b F (W), F (W")') =2,

for any wedge region We#".

Once again, Theorem 2.4 has similar results for different
regions when the field has zero mass.

The fact that there are anticommuting elements of alge-
bras associated with spacelike separated regions is a conse-
quence of the fact that there are nonobservable operations in
F (&). In particular, there are local operators carrying
charge. With the reservations made in Sec. III of Paper I in
mind, the standard way’ to choose the “observable algebras”
for the free Fermi fields is to take the fixed point subalgebras
under the gauge group induced by the free charge operator
o

a,(F)=e"%Fe— "2, 2.5)

which defines a unitary group of automorphisms on #.
Then the observable algebras are given by

A (O)={Fedd ()|a,(F)=FforallteR}. (2.6)

Elements in & (&) clearly do not carry charge. Also for
these Fermi observable algebras we prove maximal violation
of Bell’s inequalities.

Theorem 2.3: With the above definitions,

B0 (W), (W) =12,

for any wedge region We#".

These results, together with Theorem 4.4. in Paper I,
entail the following additional maximal violations. Note we
are considering only free fields and not generalized free
fields, so there is only one mass in each theory. If the free
field theory is massless, it is dilatation invariant.

Theorem 2.4: If the mass of the free quantum field the-
ory is zero, then

B (b (W), (Wy)) =2
[=B(¢O’y(Wl)’~7(W2)1)]

and
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Blpod (£),4(0))=\2 [=BuF (0),.F(F,)")]

for any two spacelike separated wedges W,,W,€ % and any
two tangent double cones ¢ ,,&,€% (tangent double cones
are spacelike separated double cones whose closures inter-
sect at one point).

We shall say a few words about the strategy employed in
the proof of these results. In Sec. III (resp. Secs. IV and V)
we prove Theorem 2.1 (resp. 2.2 and 2.3). But all three have
much in common. First, the local algebras and the vacuum
state can be constructed explicitly in each case in terms of
suitable test function spaces. We look in all three cases for
large Bell correlations in subalgebras generated by finitely
many field operators. Thus, we study first an analogous
problem for finite-dimensional test function spaces. Under
suitable conditions on the test functions we find almost max-
imal correlations for these finite-dimensional test function
spaces. We then obtain the maximal violations by taking
certain limits that, however, remain in the original algebras.
The fact, in all three cases, that this limit can indeed be taken
in the manner we require rests upon the result of Bisognano
and Wichmann®® that the modular automorphism group
{A"} g of a wedge algebra generated by a standard quantum
field in the manner we have indicated above coincides with
the subgroup of Lorentz velocity transformations leaving
the corresponding wedge invariant, so that the modular op-
erator & in the test function space has absolutely continuous
spectrum containing the point 1.

We advise the reader that any undefined notation in this
paper has aiready been established in Paper 1.

. MAXIMAL VIOLATION FOR FREE BOSE QUANTUM
FIELDS

We begin by defining the local algebras of a free Bose
field theory in terms of spaces of test functions. Formally the
field is a linear assignment of a symmetric operator ¢ ( f ) on
a Hilbert space 7 to each element f of a test function space
7 . Here 7 is a real vector space (possibly the real part of a
space of C"-valued functions, where N is the number of com-
ponents of the field). Two real bilinear forms on .7 deter-
mine the structure of the theory. One is the antisymmetric
(or “symplectic”) form ¢ that determines the canonical
commutation relations (CCR), which we write in terms of
the unitary Weyl operators W( f') = expligp( f)) as

W(SfIW(g) =exp((i/2)o(f)W(f+g). (3.1)

The C *-algebra generated by the Weyl operators is called the
CCR algebra over (7,0). The second bilinear form g is
symmetric and determines the vacuum state ¢, on the CCR
algebra through the relation

S W () =exp( —4q(£,S)), feT . (3.2)

We assume that there is a vector Qe that is cyclic for
{W(f)|fe7} and satisfies (QW(f)Q) = (W (f)).
The positivity of the state @, is equivalent to the inequalities

(e (f£2))<q(f,f)9(88) (3.3)

(see, e.g., Ref. 9). In particular, o is continuous with respect
to the norm on .7~ given by q. Consequently, the form o and
the commutation relations (3.1) can be extended by contin-
uity to all £g in the completion of .7~ with respect to that
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norm. Henceforth, we shall assume, without loss of genera-
lity, that .7 is complete with respect to g. Inequality (3.3)
also implies the existence of a bounded operator 4 on.7” with
o( f.g) =q(f,Ag) and 0< — A%< 1. A state ¢, determined
by (3.2) onthe CCR algebrais pureifand onlyif 4 2 = — 1.
The vacuum state of a free Bose field is indeed pure, and we
shall denote in that case the operator 4 relating g and o by i,
thus making .9~ a complex Hilbert space with inner product
{f.8) =q( f.g) —io( f,g). For a free scalar Bose field of
mass m>0 this inner product is given directly by

(fg) = 1 (%o (o))

=fd ‘P8 —m*) fp)EP) (3.4)
for f,geSg (R*) and f the Fourier transform of f(x).

We shall denote by M( &) the closure in 7 of the real
linear space of test functions with support contained in the
open space-time region & . Then the usual locality condition
for Bose fields requires that for /,eM(&,) and 7, and #,
spacelike separated, the field operators @( f,) and @(f;)
commute, i.e., a( f3, ;) = 0. Thus, if

M'={fc7 |o( f,g) =0 for all gcM} (3.5)
denotes the symplectic complement of a subset M C .7, then
locality may be stated in terms of the test function spaces as
M(O")YCM(TY. (See Ref. 10; also Refs. 4 and 11 for the
“equal time formulation.”) We then define the observable
algebra &7 (&) associated to a region & as L (M(2)),
where & (M) is defined for each subspace M C .7 as the von
Neumann algebra generated by {W( f)| feM}. In terms of
the symplectic complement (3.5) of a closed real subspace
MC.7, (3.1) implies that o (M ') C o7 (M)’, the commu-
tant of &7 (M). In Ref. 11 (see also Refs. 10 and 12) it was
shown that, in fact, &/ (M)’ = o/ (M), which is called ““ab-
stract duality.”

By the Reeh—Schlieder theorem'? the vacuum vector
is cyclic and separating for each local algebra &/ (&) for
which & and ' are nonempty. An equivalent condition is
that the space M(Z) is standard" in the sense that
MNOiM = {0} and M + iM is dense in 7. For standard sub-

spaces Rieffel and van Daele'* set up a modular theory close-
ly analogous to that of Tomita-Takesaki.'> Specifically, one
defines a closed antilinear involution s on .7~ by s( f + ig)

= f— ig for f,geM. Then feM if and only if sf = f. The ca-
nonical involution s has a polar decomposition s = j§'/2 such
that the unitary group 7 — 8" leaves M invariant. The canoni-
cal involution of the complementary subspace M ' is equal to
s* = §'%j = j5~ /2. The operator § is related to the modular
operator A of the von Neumann algebra .« { M) with respect
to the vector €2 by the equation A"W( f)A —* = W(8f) for
JEM. Similarly, the operator j is related to the modular invo-
lution Jof {7 (M),Q} by JW( f)J = W(jf ) (seeRef. 12).

We shall utilize this connection to characterize the

group {6"},.x in an important special case, namely when
O = We¥ is a wedge region in space-time (Paper I). In
this case a general result of Bisognano and Wichmann®*
states that A” = V(#nt), where {V(#)}. is the subgroup
representing the Lorentz velocity transformations leaving
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the wedge W (and W') invariant in the representation
U(Z', ) of the (covering group of the) Poincaré group
', under which the free field transforms covariantly.>®
Since the scalar product in (3.4) is Poincaré covariant, the
boosts {¥(#) },.g are represented by a unitary group {, }..x
on.Z [and thus on M(W)]. Then we have

W (nt)f) = V(xtyW( f)V(art)*
=Ai'W(f)A_"=‘—’ W(SI:f) ,

and hence v(wt)f=8 for all feM(W). Since
M(W) + IM(W) is dense, the unitary operators " and
v(srt) must coincide. This may be derived by more direct
means, but the above argument has the advantage of being
immediately applicable to free fields of any spin.

It should now be clear that the maximal Bell correlation
B ($es (& 1), (& ,)) can be defined completely in terms
of the real linear subspaces M (& ,),M(&,) C7 . Since the
restriction of ¢, to an algebra &/ (M) is determined by ¢
restricted to M, it even suffices to know the forms ¢ and o
restricted to M(Z ) + M(Z ;). Thus we divide the proof of
Theorem 2.1 into the two steps of establishing a property of
forms ¢ and o on M, +M,C7  implying
B ($orl (M), (M,)) =2 and of demonstrating this
property for the concrete spaces M, =M (7 ,), k=1,2.

Note that in order to define £ (¢o, /' (M), (M,)) we
have to assume that &/ (M,), & (M,) commute ele-
mentwise, i.e., o( f;, ;) = 0 for f,.eM, . If for such pairs we
also had ¢( f,, £3) = 0, this would imply

A W(SIW(L2)) = W(S1))* o W(12))
and hence B (¢, (M), (M,)) = 1 by Theorem 2.1 (3¢)
of Paper I. In fact, Theorem 2.1 (3c) implies a stronger re-
sult: if g is another bilinear form on M, + M, satisfying
(3.3) for the same o, such that §( £}, ;) = O for f,.€M, and
G<gq, then ¢ is a Gaussian average over translates of another
state 55, each of which is a product state,'® hence
B (#o (M), ol (M3)) = 1.

These remarks indicate in which situations one might
look for large violations of Bell’s inequalities. Here,
B {do, o (M), o/ (M,)) is obviously convex in ¢, so that
large values will be attained if @, is 2 pure state on the algebra
o (M) V o (M,) generated by &/ (M,) and &7 (M,). On
the other hand, the elements in &7 (M,) may be viewed as
inducing particular decompositions of the state ¢, restricted
to .o/ (M,). These decompositions are trivial if ¢, restricted
to & (M,) is pure, implying S ($o, (M), (M,)) =1
[Theorem 2.1 (3b) in Paper I}. Thus £ may be expected to
be larger if ¢, is almost pure on &/ (M) V & (M,) but very
impure (or even a tracial state) restricted to each &/ (M, ).
This intuition is essential for the proofs to follow, because we
choose the test functions generating subalgebras of the origi-
nal algebras in such a way that ¢, does manifest said behav-
ior on these subalgebras.

This now said, we proceed to the proofs.

Proposition 3.1: Let 7 be a complex Hilbert space with
real subspaces M, Nsuchthat MCN’. Let0 <A < 1 and sup-
pose that for each € > 0 there are test functions f;, f,eM and
£1,.8,€N (the dependence of these test functions on € will be
suppressed in the notation) such that
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A IAP=0+23/0 -2 =g’ k=12,
(ii) <.f1’.f2)z’z<gl’g2> ’

(i) (fog)=24/(1 =A%) = — (f0.82) »

(iv) (/18 =0=(/f281) ;s

where x =~y means |x — y|<e. Then

B ($or (M), (N))>\2[24 /(1 + A 7)] .

Proof: (1) With f,, f,eM define M( f,, f;) as the real
linear span of f; and f,. Then &/ (M( f,/5))C &/ (M) and
using similgr notation f0£ N, one has B (¢g, o (M), (N))
>B(de (M f1, 12)),Z (N(81,8,))). The latter quantity in-
volves only CCR algebras over finite-dimensional test func-
tion spaces. In fact, by a trivial rescaling, one may assume
that Im{ f;, £>) = Im(g,,g,) = i, which fixes the commuta-
tion relations for all operators W(h), with
h=2,_., (af + B,g;). Thus, by von Neumann’s unique-
ness theorem, M(M(f,,fz))—.%(%), M(N(gl,gz))
=B (K, and -Q[(M(fvfz)) M(N(gpgz))
=% (#) e B (%), where 7 and J7" are Hilbert spaces
carrying a fixed representation of the CCR for one degree of
freedom. The real parts of the inner products in (i)—(iv)
determine the restriction of the quadratic form || - || to
M + N and hence a density matrix pe7 (¥ @ %) with
trpW(h)) = exp( — §||A ||?).

Let f),....g, be functions for which (i)—(iv) are satisfied
with equality, and let p denote the density matrix obtained
from f;,...,g, in the manner described above. Moreover, let
{p"},n be a sequence of density matrices obtained in this
way from a sequence {f,,g, "} satisfying (i)-(iv)
elementwise for {€} .y a sequence of positive numbers
converging to 0. Then it is asserted that

Tim B (p™, B (H), B (F))>B 5, B (), B (K ))=RB,

so that /3 is a lower bound for B (o (M), (N)). To see
this, suppose that A4,,4,€# () and B,B,e#B (") are
self-adjoint contractions such that Jtr(p(4,(B, + B,)
+ A,(B, — B,)))>B —€,, €,>0 given but arbitrary. By
Kaplansky’s density theorem'® 4,,B; are (strong limits of)
linear combinations of Weyl operators over M( f,,f,) and
N(g..g,), respectively.  Thus, T=}(4,(B,+ B,)
+ A,(B, — B,))is a (strong limit of) linear combination of
Weyl operators over M + N, so that tr(pT) depends con-
tinuously on the inner products (i)-(iv). Hence, for any
given €, > 0 and all sufficiently large v,

B (bod (M), (N))>tr(pT)

>tr(pT) —;>B — €, — €, .

Since €, and €, are arbitrary, the assertion is proven.

(2) By step 1, any number itr(p(4,(B,+ B,)
+ A,(B, — B,))) with self-adjoint contractions 4,€ % (#°)
and B;e % (") is a lower bound for B (¢, & (M), o/ (N)).
In order to construct such operators 4;,B, to satisfy the low-
er bound of the proposition, it is necessary to have an explicit
representation of the density matrix p. Thus, write
Wia,fi +a, /o + B:i& + 582)

= exp{i(@,Q, + a,P, + B,Q> + B.P,)}
})j ka ] =15

with canonical operators satisfying i[ ks ok
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=1,2. Let {|n);}7_, denote the set of eigenstates of
1(P*+ Q) and let [nm)=|n), ® |m),e# ® ¥ . Then
trpW(h)) = (QW(h)Q),
with
Q= (1-4%"2 izl”lnn) .
n=0

This is verified most conveniently by noting that { is the
ground state of

H=[(14+4A%/(1-AH)14 (P2 +Q1+Pi+Q3)

+ [24/(1 =A%) (PP, — 0,0,) -
Thus, in particular, p determines a pure state on
R (F) ® B () whose restriction to each factor is given
by a density matrix with eigenvalues (1 — A 2)4 ", which is
therefore very impure when A is close to 1.
Define

Aj|2n)lzei“’|2n + 1),
A4;|2n + 1),=e " |2n),,
with ;,8,€R. Then
(04,8 B,0) =2(1+412) "' Re(1e" ) .
With the particular choices a, =0, a, = 7/2, 6, = — 7/4,
B, = 7/4, one has
Q4,8 (B, + B,) + 4,8 (B, — B,))})
= [44 /(1 + A 2)]cos(m/4) .
The proposition is thus proven. ]
We now utilize this result to take the next step towards
proving Theorem 2.1.
Corollary 3.2: Let M be a standard real subspace of a

complex Hilbert space with canonical involution s = j§'/2,
Suppose that 0 <A ? < 1 is in the spectrum of 5. Then

Blporol (M), of (M) )>2[24 /(1 +A?)].
In particular, if 1 is not an isolated eigenvalue of 5, then

Blbod (M), of (M)') =12

Proof-Picke >0sothat0 <A ? —e<A? + €< landletg
be a unit vector in the spectral subspace of & for
[A2 — €,4 % + €]. ¢ must therefore be in the domain of defini-
tion of 8, thereby also in the domain of definition of s = j§'/2
and s* =j6~ "', since j is bounded. Because j& =87, j
must exchange the eigenspaces of § above, resp. below, 1;
hence (d,5¢) = ($5*¢) =0. Let p, =(464) and

Bj|2n)25e'ﬂ"[2n +1),,
Bl2n + 1y,=e*j2n),,

u_={(4,6"'¢), and define

L= +s5)(1—p, )",

L=+ —pu )"V,
=(1+s*)(u_ 17",

&=—(1+s*)(u_—1)""%g.

Then since s>=1, one has sf, =f, for k=12, and
s*g, =g, for k =1,2. Hence f,eM and g, eM ', since s* is
the canonical involution for the subspace M ‘. Moreover,

(Sofa) = U —p )7 GBI + (8%, j5"%id))
=il—p )7 —p) =i,
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and, by similar computations,
NfelP= (1 4+p )/ =p,),
lexllP=+p )/ (w_—-1), k=12,
(8182) =1, (f1.82) = (f»8:) =0

and

(fr€) = —{fog) =21 —p )" (u_ —
As € tends to zero, u, -4 2, u_ —A ~? so that conditions
(i)—(iv) of Proposition 3.1 are satisfied. Thus the assertions
of the corollary follow directly from Proposition 3.1. O

We have now collected all that is necessary for a proof of
Theorem 2.1.

Proof of Theorem 2.1: As already discussed, for a wedge
region W, t—§&"is a one-parameter boost subgroup in a non-
trivial representation of the Poincaré group. Hence the spec-
trum of its generator In § is equal to R. In particular, 1 is a
nontrivial accumulation point of the spectrum of 8. Thus,
Corollary 3.2 implies 8 (¢, (W), (W)’) = 2. But by
the duality of the wedge algebras,*>® o/ (W)’ = o/ (W),
completing the proof. O

-z,

IV. MAXIMAL VIOLATION FOR FREE FERM! QUANTUM
FIELDS: FIELD ALGEBRA CASE

The definition of the local field algebras of a free Fermi
field theory in terms of spaces of test functions is in many
points quite similar to that presented in Sec. III for bosons.
Once again let the test function space 7 be a real Hilbert
space with g a positive symmetric bilinear form on 77, and
let f-¥/( f) be a real linear mapping satisfying

[$(f)¥(8)]. =q(fg), fgeT . (4.1)

They generate an abstract C *-algebra .7 (.7 ,q), called the
canonical anticommutation relation (CAR) algebra over
(7 9. Quasifree states ¢ on &/ (7 ,q) are determined by
bounded operators 4 on 7 by

$.(1) =1, ¢,(HY(Q)= 1(g(fg) +iqg(4fg)),

4.2)
where A satisfies g(A4f,g) = — g(f,4g) and ||4||<1 (see
Ref. 19). If 4 satisfies, in addition, 4 2 = — 1, thenitinduces
a complex structure on .7 by

A+ i)f=Af+ 2,4, A AR, f£F, (4.3)
with a complex inner product
(f8)=q(fg) +iq(Afg) . (4.4)

In terms of this inner product the CAR (4.1) becomes

()9 ] =Re(fg) . (4.5)

Itisknown'® that @ is pureon o7 (.7 ,q) precisely when
A?= — 1. Under such circumstances one can define cre-
ation and annihilation operators and ¢, is a Fock state.'®
One knows that A = 0 determines the unique tracial state ¢ ,
on & (7 .q).

Let 7, be such a complexification of (7 ,¢) and
MCJ7 . Then the symplectic complement M’ of M is de-
fined to be

M’ ={fe¥ ,|Im( fg) =0, all geM}. (4.6)
Let T'(J7",) be the Fock space associated to the complexifi-
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cation J . If MC %, is a real, closed subspace of %", and
Y(h) satisfies (4.5) and
QP NHYE@)Q) =i(f8), (4.7)

where ( is the Fock vacuum vector corresponding to the
given Fock state ¢, then define

F (M) ={y( )| feM}" .
If NCiM’, then

[¢(f)’¢(g)]+ =0» all fGM, gGN, (4-8)

by (4.5). We now define a Klein transformation in order to
express this anticommutation as commutation.

The map ¢(f)— — ¥(f) determines a unique auto-
morphism ¥ on F (M) that leaves the Fock state invariant.
Thus, there exists a unitary involution U implementing y,

Up(HYU*= —y(f). (4.9)

Let V= (1/y2)(I — iU) and F (M)'=V.% (M)V *. Then it
is easy to verify that

FMCF M. (4.10)

In fact, it has been proven in Refs. 6 and 20 that equality
holds in (4.10) (abstract twisted duality ). The definition of
standard subspaces, canonical involutions s, and the polar
decomposition s = j5'/2, along with the identities

AY(LIA™ " =9(8F),

and

JU(f) =

teR, feM, (4.11)

V*urv (4.12)
are given (resp. proven) in Refs. 14 and 20.

This, then, is the abstract setting for free Fermi fields. It
is now necessary to specifiy the concrete test function spaces
such that the following desiderata are obtained: specify .7,
¢, and the Fock state ¢, such that subspaces M(&Z)C.%",
exist where (i) {F(M())} is unitarily equivalent to the
usual set of free Fermi algebras and this unitary equivalence
intertwines the Fock vacua and also the representations of
the Poincaré group in the obvious manner, (ii)
M(W') =iM(W)’, all We¥ . In the Fermi case this is
more involved than for bosons, and unfortunately it has been
carried out in detail only in Ref. 6. We feel therefore obliged
to summarize the main points again here. To minimize nota-
tion we present the construction for spin s =} and mass
m >0, but all other cases are explicitly dealt with in Ref. 6,
which yields the desiderata (i) and (ii) for them, as well.

Let 7, = % (R*)®* and let ¢( f) be the usual two-
component Fermi spin-j field. Double the test function space
To®T o and define ®(f) =@(f) +@(02/fy), f[=h
8,67 ,® .7, where 0,,0,,0; are the Pauli matrices and fis
the complex conjugate of f. One can verify that
D(f)* = P(Jf), where

(5, N re

is an antilinear involution on 7, ® .7 . If Q. is the usual
Fermi Fock vector, then

S. J. Summers and R. Werner 2452



(£8)+=(0,2(f)*P ()0

[ L2, (P 0 )

(4.13)

where

ﬁ+ =p0[_p.o"pa=wp’ . =p01+p'0|po=mp;
o, =V p’+ m>,

and]" + (p) =7 (to, ,p),7 being the Fourier transform of
/[ Moreover,

([{)- = (QF"D(&)‘D(Z)*QF)

- d_31’<] (13+/m 0 )
wap f-(p), 0 Ft/m g_(p)).

(4.14)
One has (Jf,Jg) ., = (g, f)_. Let &, be the Hilbert space
completion of 7, & 7 yunderthenorm || - ||, =(-,") . '3

and let @, : 8.7 (—» %", be the canonical injection.
Then, of course, there exists a unitary operator W:
F -T(X ), where Z is the standard Fermi Fock space
and I'(¥" ) is the Fermi Fock space with J%"__ as its one-
particle subspace, such that (i) WQy = Q, the Fock vacu-
um in D(J%" ), (ii) if f=Jf, then ®( f) is self-adjoint on
F and Yla, (f)) = WP(f)W*, where for each he %",
Y(h) = (1/\2)(4(h)* + A(h)) and A(-)*, A(-) form
the irreducible Fock representation of the CAR in I'(J%7" )
over %", . Thus,

[¥(h), k)], =Re(hk),, allhkeX . (4.15)
The representation U, (a,4) of the Poincaré group on %",
is

Uy (ad)a,(f)=a, (A04* Nfiaun)
where

Lfrancy (X) =f(A(4 ") (x —a)).

Here, I'(U, (a,4)) gives the representation on I' (¥, ) and
W intertwines I'(U , (a,4)) and the usual representation on
F.

Unfortunately, in order to describe the local structure of
algebras via support properties of the test functions in the
manner we need, it is necessary to double the test function
space again. To this end, let ¥ =% o % _ and let a:
T o® T o— K, be defined by

a(fl=a, ([H+a_(f), fc£T,07,.
A unique antilinear involution I" on %", is induced by J via
Fa(f)=a(Jf). LetRe ¥ o={he¥ |Th = h}, and let P:
K o— %, be the projection onto & .. Since
'P= (I — P)T,themapRe ﬂ”oak—*\/_ZPke‘%"d, is an iso-
morphism between (real) Hilbert spaces.’’ A complex
structure is thus induced on Re %", via this isomorphism

thk=i(2P — Dk, keRe ¥,

where the right-hand side is understood in .%”,. The complex
scalar product on Re %, is then given by

(kk'y = (V2Pkn2Pk') 5, kk'eRe FH,. (4.16)
(This is equivalent to picking a particular Fock state; see
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Ref. 21.) The unitary representation U(a,4) of the (cover-
ing group of the) Poincaré group is induced on %", by

Uad)a(fr=a((Ade4* Va )

and then induced on Re %", by restriction [note U(a,4)
commutes with I" and P].

The net of local field algebras {.# (£ )} for the free Fer-
mi field>” is unitarily equivalent to the net of local algebras
defined by
FO) ={a()NfeT 0 T [=Jf, supp(f)CO}",
where a(f))=dla (f))oYla_(f)) on I(F,)
=¥ o _)=I(¥_,)oT (¥ _). Because of the
norm continuity of the CAR, F(O)
={la ()| fecM(2)}", where M(F)CRe ¥, is the
closure of {a(f)|fe7 00 T o f=Jf, supp (f)C &} in
Re %" From Satz II. 2.2 and Lemma II. 3.6 in Ref. 6 it
follows that for any wedge region We %",

iIM(W’') =M(W). (4.17)

The unitary that intertwines the field algebras as mentioned
above also maps the usual Fock vacuum of the free Fermi
field onto the vector 0 =Q o Qel' (¥, ) @ ' (¥ _) and in-
tertwines the representations of the Poincaré group in the
proper manner. These claims are straightforward conse-
quences of the construction above and the existence of the
unitary intertwiner W previously discussed.

In order to reduce the notational complexity, we shall
for each fe.7 , ® 7, identify a vector A = a( f) in ¥ We
have, then, for each A,keRe ',

[¥(h),¥(k)] . =Re(hk)

and

oY (W)Y (k) = (QY(A)P(K)Q) = §(hk ),

(4.18)

(4.19)

where {-,-) is the (complex) scalar product induced on
Re ¥, in (4.16). Note that for each heRe %",
Y(h) = ¢¥(h)*. Now, with 7 = Re ¥, ¢(*,") =Re(-,*),
é, () the state (2, - ), and the subspace M(& ) CRe %',
as given above, we have the desiderata (i), and (ii) in the
abstract context presented at the outset of this section. We
can now, using much the same tactics as in Sec. III, make an
explicit calculation to prove Theorem 2.2.

Proof of Theorem 2.2: (1) From (4.18) it follows that
2¢(h)? = ||k ||’L, so that for heRe ¥, such that || || = V2,
¥(h) is a self-adjoint unitary. From Theorem 2.1 of Paper I
only such operators are candidates for maximal violators. By
using the mentioned unitary equivalence of the usual formu-
lation of free Fermi theories with the one shown above, it
follows that

B ($0:F (W), F (W")')
+ (DY (h) Vip(k) V*Q)

— (Y (h) Vii(k) V *Q)), (4.20)
for any heM(W) and keM(W') satisfying
1A |1> = 2 = ||k;||% i=1,2. Using (4.9) and the fact that
UQ = Q, the right-hand side of (4.20) is seen to be equal to
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- %(Im<h1sk|> + Im(hvkz)

+ Im(hyk,) — Imdhyk,)) ,
where we  have employed the fact that
Re(h, k; Yy =0, i,j, = 1,2. It remains to choose the test func-
tions appropriately. To that end let s be the canonical involu-
tion for the (standard®) subspace M( W) and let s = j5'/> be
its polar decomposition. Then, of course, =1,
Y2 =812 {M(W)) = M(W)', and s* = §'/% is the ca-
nonical involution for M(W)’. This is all the same as in the
Bose calculation in Sec. III. The / in (4.17) is the only basic
difference at this stage.

(2) Let g, u, , and p _ be as in the proof of Corollary 3.2
for some fixed € > 0 and define

h=1+501-p,)""",

h=0+5)(1—p, )" g,

k=il +s%)@u_—1)""%,

ky=i(l +s*)(u_ —1)""%g.
Then h,eM(W) and k,eM(W'), i = 1,2, by (4.17) and the
argument given in Corollary 3.2. The same calculations as in
Corollary 3.2. yield

(i‘vih) =i= (kvkﬁ ,

s = (14, ) /(1 — gy,

k2= (A +p_ )/ (u_—1), 1=12,

(i'v”%2> = (ﬁz»kﬁ =0,
and
(hokyy = — (hoky) =2i(1 —p )™V 2(u_ ~ )72,
Then define

h=[V2(1—p )7 +p )2k, 1=12,

ki= — [ — DY +p )21k~ k),
and

ky=— [(ue — DY+ u_ )21k + ky) -

One sees that ||h,||>=2=|k||° that heM(W),
k,eM(W'), and that

Im{h,k,) = — 2V2/[(1 + p )Y3(1 4+ u_)"?)
= Im(h2;k1> = Im<h1;k2) = - Im<h2»k2) .
Thus, one has from (4.20)

BborF (W)F (W )>202/[(1 +p )21 +p )]
(4.21)
(3) Since the spectrum of §is R, by the results of Bisog-
nano and Wichmann® and by the unitary equivalence estab-
lished above, for any € > 0 as in Corollary 3.2 there exists a
unit vector ¢ with the stated properties. Letting €10 again as
in Corollary 3.2, 4 and u_ tend to 1, and the right-hand
side of (4.21) tends to v2. Therefore, Theorem 2.2. is prov-
en. O

V. MAXIMAL VIOLATION FOR FREE FERMI QUANTUM
FIELDS: OBSERVABLE ALGEBRA CASE

In this section we can make use of the formalism already
established in Sec. IV. The only new element to enter here is
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the group of gauge transformations generated by the free
Fermi charge operator Q, but the additional requirement
that the observables be invariant under this group causes
some complications.

First of all, if @ ( /) is that part of the Fermi field on the
usual Fock space that has charge + , then

ep(fre "C=p(ef).
Similarly, that part of the Fermi field that has charge
— transforms to @ (e ~“f). In other words, the gauge trans-
formations can also be expressed as unitary maps on the one-
particle spaces, and tracing the connection of the usual field
with that we constructed in Sec. IV, one sees that the gauge

transformations can be expressed on the one-particle space
Re %, as

f —Uu, .f;
where v is an orthogonal operator satisfying v* = — 1. The
gauge transformations commute with representation of the
Poincaré group on Re %¥",. Moreover, v and ¥, commute
with the complex structure Re %, defined in Sec. IV (since
the vacuum state is gauge invariant), thus #, and v are uni-

tary

u,=cost+vsint,

Proof of Theorem 2.3: Let M(W), M(W'), s, j, and 6 be
asin Sec.IV,and let #, = cos ¢ + v sin ¢ be the gauge trans-
formation on the one-particle space. v commutes with s, j, 8.
Since v* = — 1, v has the eigenvalues + i. Here », and v
commute with the representation of the Poincaré group on
the one-particle space; thus in each of the eigenspaces for v
there is a nontrivial representation of the Poincaré group.
Since the boosts leaving Wand W’ invariant are represented
by &%, this implies that the spectrum of § equals R | for both
subspaces.

(1) Fix NeN and €>0. Then pick N test functions
@y,--Py Of norm one with @, in the spectral subspace of &
for the interval [1 4+ (v/N)€,1 + ((v+ 1)/N)e] and be-
longing to one of the spectral subspaces of v, each v = 1,...,N.
Thus g, is in the domain of definition of §'/2 and §~'/2 and
one can set

L= U +j8")e,, 8=+, .
Then f,eM(W) since }(1 +s) projects onto M(W) and
g.€iM(W) =M(W') since i(1+s*) projects onto
M(W)'. The inner products between the elements of
{f1rer Swsg1s-gx ) are sums of expressions of the form
(gvv,qu“ ), where C is some product of the operators j,
5% ', and v. Because v commutes with S andj §j = 6, @,
and Cgp,, always belong to orthogonal subspaces if v#p; and
if C contains an odd number of factorsj, ¢, and Cg, are also
orthogonal. Using

vF, = + (i/\2) (1 —j§")p,,
vg, = + (i) —j5" e, ,

one calculates

(fv’fv)=%(1+c‘;'+)’ (gv’gv = %(1+Cv_) ’

(5.1)
<fv’gv>=i) (fv’vgv) =03 (5'2)
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(fuf,)=+ /) (1-C}H),
g.v8,)=+(/2)(1-C,), (5.3)

with C ¥ =(p,,6* '@, ). Since C," and (C )~ !are con-
tained in [1,1 + ((v + 1)/N)e], one sees that for small €
they are very close to one.

(2) Pick Nin step (1) such that N = 2% and let

fV+NEUf; andgv+NEvgv’ 1<V<N-

Consider the real linear subspace M, CM(W) [resp.
N_CM(W')] spanned by f,,..., /1 (1€5D. g4,..-.8:n ). Here,
M_ and N, are real Hilbert spaces of dimension 2N with
respect toRe(-,*) and on M, N, v is an orthogonal transfor-
mation with v> = — 1. By step 1, if € is small enough there
must exist an orthonormal basis {f,}?¥ ,CM. with
| £, —F. | =0(e) and vf, =f, , » for v<N (similarly for
{8, 13", CN.). As €l0 the algebras .# (M, ) and F (N,)
movearoundin.¥ (W) and ¥ (W'). Since what one is inter-
ested in here are expectations of certain operators in
F(M)H)VF (N,)=F (M, ®N,) in the quasifree state ¢,
for the sake of technical convenience it is preferable to identi-
fy these algebras for different € and to consider different
states ¢, on this one (identified) algebra. In particular, by
identifying for different € but the same v, 1<v<2N, the basis
vectors f, (similarly for g, ), the algebras % (M, @ N.) are
all isomorphic for different €. Thus, ¢, | F (M, aN,) is
given by some state ¢ I F (M &N,)
[537' (M_)VF (N, )] for some fixed, sufficiently small
€,>0and all 0 < €<¢&,. The value of ¢, on any monomial in
¥( £, #(&, ) isapolynomial in the inner products ( £ f )

(gv 8., £ £,). Hence, as €l0 the states ¢, o

F (M, @ N,)) converge to a quasifree state é, and

B(do, & (M(W)), o/ (M(W")))
> sup B(d..& (N,

€re>0
>8P0t (M), (N.)),

)@ (N,))
(5.4)

where <7 (M) is the fixed-point subalgebra of % (M) under
the gauge automorphism group induced on .% (M(R*)) by
the action of the group {cos z + v sin ¢}, on Re %";. [Re-
call that & (M) CF (M)NF (M)"]

(3) In the above limiting process none of the subspaces
M_e N, is in general invariant under multiplication by /.
Thus, in the limit state :}0 one no longer has the complex
structure associated to the state ¢,. Rather, one has a real
Hilbert space J, =M, @ N, with inner product q(,")
and the orthogonal operator v, and a quasifree state g, deter-
mined by a real bilinear form o (-, ). Define now an operator
fon ¥_ byl f =§,, ig,= —f,. Then one verifies that
a(hl,hz) = q(zh,,hz) and that? = — 1 (thelatter by defini-
tion, the former by considering ¢, and taklng the limit €10).
It follows that the quasifree state &, is pure'® on the algebra
F(T. 0 ) Moreover, iv = vi, $0 that v is unitary in the com-
plexlﬁcatlon of T, given by i [see (4.3)].

(4) Since ¢0 1s pure and & (T,) is irreducible in the
corresponding Gel’ fand—Nalmark—Segal (GNS) represen-
tation on a Hilbert space &, one has F (T =% (#)
and g, (F) = (§,FQ) for some unit vector Q¥ . The gauge
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group {@},x induced on F(J_) by the group
{cos t + v sin t} . is implementable in FZ as

a, (F) — e"@'Fe' iOr ,
with é = @ *c B () determined up to a constant. Here, Q
has a spectral resolution Q = 2% _ (qo + k)P, with g,€R,
d= dlmR T ¢, =2N, and tr P, = (3M). Since @, is gauge
invariant, © must be an eigenvector of Q. The corresponding
value of k is determined by studying the unitary operator ui,
which satisfies (v7)> = 1 and hence has eigenvalues + 1. In
the case at hand, one verifies that the two eigenspaces have
equal dimension, so there is a symmetry leaving ) invariant
but taking @, to a_,. Hence Q0 =(g,+ d/2)0
= (g, + N)Q, and following the standard convention, one
can choose g, = — N.

(5) One notes that .o/ (MEO) can be alternatively de-
scribed as the subalgebra of # (M, ) that is fixed under the
automorphism e, of # (T, ) induced by

@, (Y( fog))=e®Y( fogle
=y([(cos t + v sin Hf1 ©g)

for feM,, and geN, . Thus, o (M, ) =232, o/ (M, ),
where &  labels the eigenspaces of @, and
o (M) = B (C™), d, = (¥). Note that since
Im(-,-) =o(-,") vanisheson M, &, is the unique normal-
ized tracial state on . (M.,,). In particular, (Q, -Q) is the
trace on each summand &/, (M, ), normalized tod, - 2~ ".
Ifa,” and Q, are defined analogously for (N, ), thereisa
similar decomposition here, as well. Moreover, a,

a,? = a,, so that @, + @, = 0 up to some constant. Con-
sequently, the algebra .o/ (M, &) " (N, ) which is strictly
contained in &/ (M, @ N, ), is decomposed as

Nea
2 Tl

k=0

M), (N,).

The state @, vanishes on every summand with k, + k,#N), is
pure on each summand &, (M, )« y_,(N,), and re-
stricts to the trace in each factor.

(6) An operator Aes/(M,) decomposed as
A=3,4% with 4 e/, (M,) is a self-adjoint contrac-
tion if and only if each of the summands 4 ¥’ is a self-adjoint
contraction. Hence maximizing the expression

} @old, (B, + By) + 4,(B, — By))
= 3 > Bl P B P + BP)
k
+ AZ(N—— k) (Bl(k) _ Bz(k))
over all self-adjoint contractions 4, (M, ), B.eo/ (N, o)
is equivalent to maximizing each summand Smce b, is nor-

malizedon .y, (M, ) (N, ) t02~"(3), one can con-
clude that

Bidof (M), (N,,))

N -~
= 3 2% (V)BGe,t w_(M ), (V)
k=0
(5.5)
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with
B0 =2V 710 N A nse (M) - L (N,,) -

Recall that ¢, is a pure state on o y_ (M, ), (N,,)
and that ¢, restricted to each factor is the normalized
trace. Since o y_,(M, )=/ (N, )=%(C* with
d, = (), it is possible to determine B from facts already
established in this paper. Namely, for k=0 or k=N,
dim &, (M, ) = 1, so that the corresponding B in (5.5) is
equalto 1. For the other terms, note that since Vis a power of
2, (¥) is even for 1<k<N — 1. Using matched decomposi-

tions of the factors C** in C** ® C** into two-dimensional sub-
spaces, and picking self-adjoint contractions in each of these
subspaces in much the same way as in step 2 of the proof of
Proposition 3.1, one sees that

Bldo™ ot y_ (M), (N, ))=+2, for I<k<N—1.
Hence, by (5.5)
B (bt (M), (N))=2"2"N+2(1-2-27").

(5.6)
From (5.6) and (5.4), Theorem 2.3 follows by taking
N- w. O
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Generalization of the N=7 supersymmetric effective Lagrangian
to arbitrary N in the absence of central charges
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Using nonlinear realization, extended supersymmetry breaking is studied. The N-extended
Volkov—-Akulov and standard superfields are constructed and the NV generalized Wess
constraints in the presence of central charges are given. The extended Volkov-Akulov
Lagrangian and the N-extended effective Lagrangian are constructed for arbitrary N in the

absence of central charges.

|. INTRODUCTION

Nonlinear realizations and construction of an effective
Lagrangian play an important role in understanding symme-
try breaking.! They were first introduced in the context of
chiral dynamics? and in the strong interaction phenomeno-
logy.® These nonlinear realizations can be regarded as a lin-
ear theory at energies much lower than the breaking mass
scale.

Recently, nonlinear realizations have been used to in-
vestigate supersymmetry breaking.* The Lagrangian is in-
variant under nonlinear transformations of the supersym-
metry group SP} and under linear transformations of the
Poincaré subgroup. When the SPY group is broken down to
its subgroup P,, a set of N fermionic Goldstone fields—gold-
stinos—emerges. These N goldstinos transform nonlinearly
under the coset group SPY/P,.”

Wess showed—in the case of one supersymmetry—that
using the transformation laws and one goldstino, one can
construct from any Poincaré- (eventually gauge-) invariant
Lagrangian an effective supersymmetric (gauge) one invar-
iant under SP, modulo some constraints. The part of the new
theory that does not depend on the goldstino field is exactly
the original theory, a fact that allows us to take into account
the supersymmetric effects at low energy.

The aim of this paper is to generalize for an arbitrary N
the preceding results. We give the corresponding Wess con-
straints on the superfields with central charges with ¥N>2.
On the other hand, we establish an N extended supersymme-
tric Lagrangian when the central charges are set to zero. The
presentation is as follows.

In Sec. II the superspace and the superalgebra are re-
called together with Wess constraints and the effective
N = 1 supersymmetric Lagrangian using the superspace for-
malism is given. In Sec. IIT we start by giving the notation for
the N superspace and superalgebra, and then we give the N-
extended superfields with the generalized constraints in the
presence of central charges.

Section IV is devoted to the construction of the N-ex-
tended supersymmetric Lagrangian. We start by discussing
the N = 1 case. We note that, making use of the generalized
derivative A,,>° the Lagrangian L(4,A,¢) satisfies the
standard transformation law, hence it allows the construc-
tion of a super-Lagrangian. This yields, through the Wess
procedure, an N = 1 effective supersymmetric Lagrangian.
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This method contains both the Wess Lagrangian based on
the superspace technique and the other one’ based on the
ordinary fields. In addition, we show that they are equivalent
up to the fourth order in terms of the goldstino fields. The
construction of the N-effective theory goes through a natural
extension of the above idea of the N = 1 case. However, in
the presence of central charges we came across some difficul-
ties when constructing the transformation laws giving a real-
ization of the SP} algebra for N>2. We have therefore limit-
ed ourselves to the case where the central charges (Z) are set
to zero, which implies that the symmetry group of the SPY
generators Q reduces down to SU(N)/Z,.

Il. N=17 SUPERSYMMETRIC ALGEBRA—
REALIZATIONS AND THE N=1 WESS LAGRANGIAN

Itis well known that the superalgebra SP, = {P,, M,,,,
Q.. 0} (see Refs. 8-10) is given—using the constant Weyl
Grassman variables £ and 7—by the following relations of

the Lie algebra:
(a) [£QEQ]) = — 2£0*EP,,
(b) [£@mQ]1=1[£QnQ]=0.
In the following we shall use Weyl spinors and our nota-
tions are identical to those of Bagger and Wess.®
Two realizations of the algebra (2.1) have been con-

structed.** They are given by (i) the Volkov—Akulov non-
linear realization

8edy (X) =fE, +£# 3,4, (%),

(2.1)

8y (x) =fE, + £+ 3,2, (%); 22
and (ii) the standard realization

Oed(x) = +£43,4(x), (2.3)
where

3,6, =0, C*= — (i/f)(£0"A — Ad"E). (2.4)

Here f is a real two-dimensional mass unknown constant
that characterizes the supersymmetry breaking, 4, (x) and
A, (x) are two Weyl fields (goldstino),® and #(x) is a gen-
eric field, which can be a matter, Higgs, or gauge field. These
transformation laws give a realization of the algebra:

[8¢.6, 1f(x) = 2i(£o*n — no*E)d, f(x),

flx) =24,(x), 2,(x), or $(x). (25)
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On the other hand, given a realization of (2.1) one can usual-
ly construct an N = 1 superfield as a function defined on the
superspace (x,6,8) and which can be expressed by its finite
expansion in terms of @ and 6.8 Thus (2.2) and (2.3) give the
(i) N = 1 Volkov—Akulov superfield,

A, (x,0,0) =>4, (x),

- sr (2.6)
A, (x,6,0) = e A, (x);
and (ii) NV = 1 standard superfield,
D(x,0,0) = €74 (x), 2.7)

where _
8, =6°Q, +0,0°

These superfields can also be defined as the unique solu-
tions of the following Wess constraints™>®:

D A, =€, +i0* ;s A3, Ay,
D,A, = —iA°0*,, 3, Ay,
D,A; = €, —iA0*,, 3, A,
DA, = io*,,;A*3, A,

D,® =io*,,A"d,,

D,® = —iA0*,, 3,9,

aa Yu

(2.8)

where D, and D, are the usual N = 1 spinor covariant de-
rivatives.®® Now let us focus on the construction of the
N =1 effective Lagrangian. Wess showed that using (2.6)
and (2.7) one can generalize any Lorentz (eventually
gauge) invariant Lagrangian L(¢$,d¢) to an effective super-
symmetric one compatible with low energy phenomeno-
logy.® This compatibility is due to the fact that the part of the
new Lagrangian that does not depend on the Goldstone field
is identical to the original Lagrangian:

Lyz! = [a0aB7 MR - 2 + L@, 0]
(2.9)

Here A?A? is the Wess weight and A, is the generalized
covariant derivative defined in Refs. 5 and 6 as

A= 3,®) o= 2 =(0,("$)) | o— _s-

6=
G=—4 6= —A

The integration of this weight with respect to 8 and 8 gives,
upto & (1 %),
*[a0 a7 AR

=1— (i/f*)(A0*3,A — 3,Aoud) + O (A A% f4).
(2.10)
The constant value (1) is crucial in this study since it carries
the supersymmetry breaking factor and reproduces the
original theory:
f“‘fd 204 AZXZ[ - -;-fz + L(<I>,A#<I>)]
= — 12+ (i/2)(A0* 3,4 — 3,A0"A)
+L($A, ) + T A% f72). (2.9")
We stress the fact that (2.9) is manifestly supersymme-
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tric since it is expressed in superspace; on the other hand it
contains the original Lagrangian.

Theterm — } /7 exhibits the fact that the theory is spon-
taneously broken from N=1to N =0,

(- LJ3) =1/>0, (2.11)
and finally all supersymmetric effects at low energy are car-
ried by the term & (4242, f~2).

Prior to the generalization of Wess’s N = 1 supersym-

metric Lagrangian to an arbitrary N, we shall construct the
N-extended Volkov—Akulov and standard superfields.

1l. M-EXTENDED VOLKOV~AKULOV AND STANDARD
SUPERFIELDS

Let us start by fixing our notation. The N-extended su-
perspace is parametrized by Z = (X,6,0), where © and ©
are a set of N variables belonging to the vector representation
N and its conjugate N of the SU(N) group. A contravariant
SU(N) index will be used to refer to the vector representa-
tion and a covariant one to its conjugate N. Therefore the
odd part of the superspace Z can be written as

61\

o, ={ : |~N; 2 1), ©6f=(8¢--05)~N.(2D),
2,
_ (3.1)
A

o:=| : |~N:(1,2)), 8 =@.-FV)~(N,(1,2)),
6%/

where (V;(2,1)), etc., give the corresponding representations
of the direct product group SU(N) X SL(2,C).
A supertranslation in this superspace has the form

§l
0=0+¢ £.=|: (3.2)
N
The infinitesimal variation 8¢ can be written as
——— N . — —
8o =00 +0Q0= Y (670, +0.0D), (3.3)

i=1
where the Qs are the usual supersymmetric generators and
satisfy the following algebra:

[£0..£507] = —2,0"'P,,
[giQi!anj] = _ginjzij'

In the differential representation the Q’s have the form

(3.4)

Qa,i = aai - ia#adé? au - ';—ea‘jzji’
96 ; 1 (3.5)
0.'= +———1i0%0",, 3, — —0,,Z%,
0= + 5 s =<8,
where Z7= — Z’ constitute the set of complex central
charges of the algebra (3.4).
The corresponding covariant derivatives are'”
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Da,,.=£—+za“aa9 3, + eajz{,
5 (3.6)
D= ———i0%0",3, +—efz*'

They satisfy the following algebra:
D, D)} = —2i0".6/3,,
el “ (3.7)
{Da,,-,D,,J} = —€xZ;.
The N Volkov-Akulov spinorsA?,, and 4}, correspond-
ing to the breaking of the N fermionic generators Q,’and Q,*
are written as SU(N) isovectors [see (3.1)]:

24 ¥H
Y= =|: | #=AH= (3.82)
Ad A%
Their Hermitian conjugates are
PY=(A%) =A% A%), EaE(Z,.,f):(Za‘--ﬁ‘,N).

(3.8b)

From (3.8a) and (3.8b) we can form an SU(N) and Weyl
scalar

Vb, + BT = S (A4 + T, T4).

i=1
Now let us focus on the N-extended superfields. They
are given, for the Volkov—Akulov and standard superfields,
respectively, by

() ¥, (x,0,6)=(A, (x,6,8)) ="y, (x),
¥, (x,0,6)=(A% (x,0,0)) = e*°¥*(x);

(3.9)

(3.10)

(ii) P(x,0,0) = ¢ (x); (3.11)

e’°, where 8, = Z)_ | 8, given by (3.3), cannot be reduced
to a simple product of (exp &, ), unless the central charges
are set to zero, which implies that 5, and 5% commute. As an
example, let us write down N = 2 Volkov—-Akulov fields:

v, (x,0,0) = H{exp[ — 16,6,Z"* + H.c.]

X e*%€® + exp[ +10,0,Z > + H.c.]
x e’ Yy, (x), (3.10")
where
8o, =65Q1 + 6,01,
8o, =603 +0Q2 46304, (3.12)

[591 ,592 ] - 01022 12.
If we switch off the central charges (Z !> = 0), we get
¥, (x,0,0) = {e*, e}y, (x) = ey, (x).  (3.107)

As in the case N=1, the Volkov-Akulov superfields
¥, (x,6,0) and the standard superfield $(x,0,0) can also
be defined as unique solutions of a set of generalized con-
straints. Using the form of the covariant derivatives (3.6) we
have established these constraints for the case of arbitrary N:

DN, =€,8" +io* A%, N, +IALZ LA,

DA, = — iA%o%, 3, A, +1A"z"‘ N,  (3.13)
DiN, =¢,,6" —iA“o¥, 3, N, + 1A Z* N
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DiN, = +i0%, A% 3, N, + AL Z LA,
D,® = i0h,A"9,4+INZD, (3.14)
Di® = ~ iA%g¥, 3,6 + A, *Z * D,

If we set Z¥ = 0, we note that (a) the standard superfield
constraints (3.14) become similar to those of the N = 1 case
(2.8), and (b) the diagonal terms (i =) are also similar to
the N = 1 case. However, the remaining terms (/#j) can be
seen as the standard constraints (3.14) and (2.8).

Now we go back to the study of Wess’s N = 1 supersym-
metric Lagrangian to an arbitrary N.

IV. N-EFFECTIVE THEORY

For this purpose we start giving a generalized express-
sion of an effective N =1 supersymmetric Lagrangian
whose expansion in terms of the Volkov-Akulov field con-
tains Wess’s Lagrangian (2.9) and the one based on ordi-
nary fields.

We know that the derivative of the standard field does
not transform as a standard field:

6(0,4)=¢670,[0,4] +3,£73,¢.
Therefore using the generalized covariant derivative intro-
duced before (Sec. IT), one obtains a standard realization

8(A,8)=870,(A,4). (4.1)
The relation between the two derivatives is

Ap=E; "4, (4.2)

E X =m,+T,, 4.3)

T,”= — (i/f*)(do, 3" — 8,A0"A). (4.4)

Generally, one can easily check, using (2.3) and (4.3), that
any function depending on ¢ and A, ¢, say a Lagrangian
L(¢,Au¢), satisfies the standard transformation (2.3):

8:[L(¢A,8)] =(73,L(,A,8). (4.5)
Therefore
[8¢.8, 1 L($,A,8) = 2i[é0"n — n0*E 13, [L(4,4,8)].
(4.6)

Similarly to (2.3), Eq. (4.5) carries a realization of the
N = 1 supersymmetric algebra (4.6). Consequently, as for
(2.7) one can usually construct a super-Lagrangian:

L(®,A,®) =e”L(4,4,4)

=L($A,8) + (4.7)

Following (2.9), we write down our effective N = 1 super-
symmetric Lagrangian:
=fd29d29 AA’[ —4f*+ L(P,A,D)] (4.8a)

= — 3/ + (i/2)(Ao* 3,4 — 3,A0*2) + L($,A,4)

+ A7), (4.8b)
where the weight AZA? is still the one of Wess.
Making use of the inverse of E;,,
v, _ _y v
E~h=m; ~T; +0o(T?, (4.9)
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we easily see that L contains as a first term the original La-
grangian.

Furthermore, one can easily verify that the integration
over 8’s of the Wess weight contains, up to & (4 *), the mod-
ule of the “vierbein” |E | = det(£ ) introduced in Ref. 7,
ie,

f 42047 A R2=|E .

This implies that the two approaches based on superfields
and on ordinary fields are equivalent up to the fourth order
in the goldstino field. It is this form (4.8) that we shall use
for the construction of the effective N-extended supersym-
metric Lagrangian. The latter has to satisfy the two follow-
ing requirements: First, it must be reduced to (or at least
contain) (4.8) when we set N = 1. Second, it must be
SU(N) symmetric to ensure that the N-global supersymme-
tries are going to be spontaneously broken simultaneously.
This last requirement is somehow a strong constraint since
one would like to have a partial supersymmetry breaking in
an effective theory. Nevertheless since we are discussing here
global supersymmetry, breaking must occur simultaneously
and in an SU(X) symmetric way, as is shown by the average
of the Hamiltonian:

a= (i)

Now let us deal with the generalization of the Volkov-
Akulov and standard realizations. In this case where N>2
the extension of relations (2.2) and (2.3) need more elabo-
ration. This is due to the presence of central charges that
affect these realizations. Their extension requires additional
fields associated with the central charges.” We shall restrict
ourselves below to the case where the central charges are set
to zero. Therefore the realizations of the N algebra (3.4)
without Z are given for the Volkov-Akulov and standard
fields, respectively, by

(4.10)

(l) 6§¢a fga - (l/f)[§ ¢ '//0#5 ]a ¢a’ (4113)

8ety =fE, — (/f) [0 — yo*E19,¥,;  (4.11b)
(ii) 8,4(x) = — (/f ) [éo*d — Yo*E19,4(x);  (4.12)
and

[8¢,8, 1f(x) = 2i[éo*n — no*E 13,f(x),
where f(x) =y, (x), ¥, (x), and ¢ (x) and where the SU(N)
indices are understood. Therefore the construction of the N
extended super-Lagrangian can be directly obtained by sub-
stituting in the relations (4.4)—(4.7), A(x), &, and &, re-

spectively, by ¥(x) [(3.8)],£ [(3.2)],and 6¢ [(3.3)]:
}

Ly=i= -1 2fd2eaz26f—8r21‘“2

(2)3

@
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L¥®,A, @) =e°L(¢,A,¢). (4.13)

Let us note at this level that working in the absence of
central charges, the symmetry SU () connecting the N gen-
erators of the N supersymmetries is reduced to the coset
group SU(N)/Z,. Setting Z = 0 leads to subtracting the
SU(N) group center. Furthermore, we note that (4.13) is
invariant under the SU(¥V)/Z,, transformations.

In order to achieve the construction of the N-extended
effective Lagrangian, we have to build the N-extended
weight, which gives, after integration on the © variables, the
N-generalized Volkov-Akulov Lagrangian. The weight,
which must be a SU(N)/Z,, scalar, must reproduce the ki-
netic Volkov—-Akulov terms, and must contain the field inde-
pendent constant, is given by
I'(x,0,0)T%(x,0,8) = [1/(N)*][ (¥°¥,) (¥, ¥4 ]%,

(4.14)
where ¥, and ¥, are given by (3.10):

I?(x,0,8) = — [ 1Y

(N
= ﬂ,-l;ll [Af(x,0,0)AL (x,6,0)].

Since all the powers of the N-extended Weyl spinors A;
(x,0,0) greater than 2 for fixed / vanish, we have
I'*(x,6,6)T*(x,0,8) = (N| . H(A“A’ ) (ALAD).
i=1
(4.15)

Therefore, the N-extended Volkov—-Akulov Lagrangian is
given by
LY_,ALALN = —1f|d*0d*6f~*"T*x,6,6)
‘T%(x,0,8), (4.16)
where
de = H [d6:-d6.].
i=1
To be more explicit, let us discuss the N =2 case. The
weight ' T'2 becomes
LT = [1/(2D?] [(ATA) (AJAD ] [ (A3 AD) (AAD)]
=[1/(2)*1(ATA}) (AJAD). (4.17)
The N = 2 extended Volkov-Akulov Lagrangian up to the
second order of the A ’s is obtained by carrying out the inte-
gration with respect to 6, and 8,. We note that the order of

the integration over the 8°’s is arbitrary as a consequence of
the existing symmetry SU(2)/Z,. We have then

fzj‘dz@2 d?0 f-8Ud29 d?6 (AZAZ)(AZAZ)]

fzfd ’0,d 262f—8[(fd 29,d %0, A Az)(A2 A3) + (Jd 29,d 8, A2 AZ)(A2 A})

+ (JdZe, Ai)((ﬁél A)AIAZ + (jd’f)l Ai) (fdzél K%) 7\37\%] + 0

(4.18)
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Where the ellipses means that we have omitted all the fourth powers of the goldstino fields and terms with higher derivatives
for spinors. The tilde ( ~ ) means that the 6, variable is set to zero and therefore we are dealing with (N — 1) = (2—-1) =1
superfields. Using the 8, expansion of the N = 2 extended Volkov-Akulov superfields, one can establish

1
(2)°

N=2 __
Ly=s=—

1?|d%6,d%8, f~*[{1 — (i/f*)(A,0" 3, A" — 3, K,0*A") + o ( f % A2 A2)}A2A?

+{1 = /) (Ry0* 8, K% — 3,K,0K) + o( f 4 R3A3)}AI A?
+ {1+ 3, K0°A + o (£~ KA HI — (/f) Ry0% 8, A + o( f 4 K2R2)IAZ A2
+{1 = ()K" A + o( T4 RADHL + (13, K0#R? + o (f~*A3A3) A AL .

Now the integration over 8, can be carried out exactly in the same manner and we get
LYZ% = — [V QY2 [2{1 = (/fH (40" 32" = 3,402 ") + O (f A1)}
X{1 = (i/f?) (4,0 8,17 = 3,404 + O (fT* A1)}
+2{(1 + (#f)8,4,:0*2 " + o (f AN — (A0 A% + O (f*A5A3))
X(1 = @/fHA4,0* A" + o(f T ATADNL + (i/f18, 402> + O (f A1)}
= — 1A/ 2?11 = (UfD [ (A0* 3,41 — 8,402 ") + (4,0# 3,42 — 3,402 )]

+ (AT AAA2A2AD)]

. 2 _ _ _
F _£f2+éz[(/l,a'uaul'_auﬂlol‘/‘tl')] +ﬂ(f—2,/l,2/1]2).

i=1

Through this N = 2 example and after integration over d °©
and d ?© in (4.16) the N extended Volkov—Akulov Lagran-
gian expression in the component fields contains as for the
N = 1caseand up to & (4)* the constant term and the kinet-
ic term of the goldstinos:

LY L ALALS)

: N
= —4f? +éz [(Lo# 3,4 —3,A0"0")]
i=1
+ O (f2AATA,). (4.20)
Before giving the full Lagrangian, we note that our construc-
tion differs from the one in Ref. 4(b) in which Bagger and
Wess introduced the breaking of supersymmetry from a giv-
enN( =2)toN — 1( = 1). Asaconsequence they obtained
an (N — 1) extended Volkov—-Akulov superfield. In our case
since we are interested in the breaking of the N-extended
supersymmetry directly and simultaneously down to N =0
(Poincaré subgroup), which is imposed by the N-extended
global supersymmetry (4.10), the weight (4.14) is the most
general one satisfying all the necessary requirements men-
tioned before: it must be SU(N)/Z, symmetric, reproduce
the kinetic Volkov—Akulov terms, and contain the crucial
constant term. This presents a double interest: first, it exhib-
its the spontaneously N-supersymmetry breaking and, sec-
ond, allows one to obtain the original Lagrangian. Further-
more, we note that (4.14) reduces when we set ¥ =1 to
Wess’s weight [(2.6) and (2.10)].
By analogy with (4.8) and using (4.14), the full La-
grangian of an N-extended supersymmetric theory can be
written
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(4.19)

r

L~=fd29d2§f-4”r2'f2[ ——%fz +L”(<I>,A“(I>)]

1, i _ _ (4.21)
- ?f + -2_.-;1 [/{ia” 3#/1 = 3,/1,0‘% ’]

+L($,A.8) + O(RA DS, f72). (4.22)

It describes the phenomenology of low energy physics where
supersymmetry is necessarily broken down to the Poincaré
subgroup; the constant — } £ is a signal of this supersym-
metry breaking. The magnitude of the scale fis model depen-
dent,'"' but may be thought of order of the M, mass, if we
believe that supersymmetry is the proper tool to avoid the
hierarchy problem. The second term on the right-hand side
of (4.22) is nothing but the kinetic terms of the N Volkov—
Akulov t_ields occurring in the breaking, and finally the term
O AA ’}1’/11-, S~ *), which is highly nonrenormalizable, car-
ries all the supersymmetric effects. However, processes in-
volving such terms are negligible due to the magnitude of the
mass scale f.

V. CONCLUSIONS

In this paper we have studied the generalization of the
effective Wess Lagrangian to an arbitrary N. We have con-
structed the N-extended Volkov—Akulov and standard su-
perfields and also the generalized Wess constraints in the
presence of the central charges. We have pointed out that a
standard transformation can be built for the Lagrangian it-
self, if we substitute the normal derivative d, by a “covar-
iant” one A, (4.2). For N = 1, we have proposed an N = 1
effective Lagrangian that contains the Wess one and that of
the approach based on ordinary fields. We have also checked

El Hassouni, Oudrhiri-Safiani, and Saidi 2461



that the two latter approaches are equivalent to the fourth
order in the Volkov-Akulov fields.

For the N-extended case, we have restricted ourselves to
the limit Z = 0. We have imposed two requirements: First it
must be reduced to (or at least contain) (4.8) when we set
N =1, which is obviously satisfied. Second, we have de-
manded SU(N)/Z, symmetry in order to ensure the simul-
taneous breaking of the N-extended global supersymmetries.
We have found that the more general weight consistent with
the generalization and satisfying all the requirements is that
given by (4.14).

The phenomenological Lagrangian part (matter, gauge,
Higgs) turns out to satisfy our requirements also. Therefore,
the full N-extended effective theory is given by (4.21). It has
all the good features, as we remarked before, as long as we
keep the central charges equal to zero. However, it is inter-
esting to study the extension to the central charge case and
examine their effects. This requires taking into account the
contribution part of the central charges in the realization of
the N-extended superalgebra (3.4). This is under study and
will be treated elsewhere.
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Infinite-dimensional Lie algebras of infinitesimal transformations acting on the solution space
of various two-dimensional o models are investigated. The main tools are (i) Takasaki’s
interpretation [ Commun. Math. Phys. 94, 35 (1984) ] of the solutions of the associated linear
system in terms of points in an infinite-dimensional Grassmann manifold and (ii) Mikhailov’s
reduction procedure [Physica D 3, 73 (1981) ] for linear systems. Takasaki’s approach leads,
for the o models with values in a Lie group G, to a set of transformations that has the structure
of the loop algebra g ® R, ~'], where g is the Lie algebra of G. (This algebra has already been
encountered by Dolan [Phys. Rev. Lett. 47, 1371 (1981)] and by Wu [Nucl. Phys. B 211, 160
(1983) ] among others.) The o models with a Wess—Zumino term are also considered; the
algebraic structure is found to be the same. Finally, Mikhailov’s procedure is used to study the
o models with values in a Riemannian symmetric space (RSS) G /H which is not a Lie group.
The algebra in these cases is a subalgebra of the loop algebra found for the principal models but
it does not seem to be graded. However, it contains two graded infinite-dimensional
subalgebras with the following structure: if h and m are the two eigenspaces of the involution o

defining the RSS G /H, these two graded subalgebras are )@ R[¢] and (& . xh® %)

& (O ymer¥th),

I. INTRODUCTION

During the last years, physicists have recognized both
the existence and the importance of many new infinite-di-
mensional Lie algebras in various physical systems. The con-
formal algebra in two dimensions has been shown to be con-
nected to the Virasoro algebra. Loop algebras and affine
(Kac-Moody) algebras have arisen in many other contexts.

The o models with values in different Riemannian sym-
metric spaces (RSS) are among the systems where many
different infinite-dimensional Lie algebras manifest them-
selves. The space time symmetry is the conformal algebra;
the current algebra closes in a loop algebra and there also
exists an infinite-dimensional algebra acting on the solution
space of the model. The present paper deals with the latter
type of symmetry transformations.

Dolan’ was the first to investigate the latter algebra for
the principal o model with values in SU(#). She was able,
first, to give the explicit action of a set of generators and,
second, to identify the structure of the algebra § spanned by
these generators. [ This action is nonlocal in the sense that it
is defined in terms of integrals of the field g(£,7)eSU(#) and
its derivatives.] The structure of the algebra § is
su(n) ® R[7], i.e., the algebra with elements of the form
Uer" with Uesu(n), meN and commutation relations:
[Ustm, Ver']=[UV]et™*" It is common to intro-
duce the notation §, ={U e t*, Uesu(n) } to describe the nat-

® Current address: Laboratoire de Physique Nucléaire, Université de Mon-
tréal, Case Postale 6128, succ. A, Montréal, Canada H3C 3J7.
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ural gradation: § = @ n§; and [§,,3;] C4,, ;. Since then,
many groups tried to extend this algebra to a larger one. Let
us recall that, in an affine algebra, the center manifests itself
only in commutation of elements belonging, respectively, to
d; and §_;. Since Dolan’s algebra contains only elements
with grading ieN, hopes were that this algebra could be a
subalgebra of such an affine algebra whose elements with
i <0, ieZ were still to be found. (The appeal of affine Lie
algebras is due to the fact that both their structure and their
representation theory are intimately related to those of fin-
ite-dimensional simple Lie algebras.)

Some time after, Wu® enlarged the algebra to an
(su(n) ® R[#,¢ ~']) @ su(n) showing then that the structure
was that of a loop algebra with Z gradation (without the
central extension). His work systematically uses generating
functions as a tool to define the action of symmetry transfor-
mations and to compute their commutation rules. (These
generating functions had been introduced earlier by several
people.?) We shall use them when needed and push their
range of applications further. A

Parallel to these developments, Ueno and Nakamura®
(see also Ref. 5) provided the link between Dolan’s algebra
and the so-called infinitesimal Riemann-Hilbert transfor-
mation. Moreover they expressed the action of the genera-
tors in a form very similar to a Riccati action.®” (In fact, they
reported a larger algebra with structure su(n) @ R[r,z '],
the gradation being now in Z. They observed however that
their generators corresponding to i <0, i€Z act trivially on
the solution space.) In this direction, the next major step was
taken by Takasaki® for the self-dual Yang-Mills (SDYM)
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system. His contribution was to interpret the solution of the
linear system associated with SDYM equations as the evolu-
tion of a point in an infinite-dimensional Grassmann mani-
fold. With this picture, he was able, first, to integrate formal-
ly the equations and, second, to give a finite group action
corresponding to the infinitesimal transformations given by
Dolan. Even though the analogy is not complete yet, Takasa-
ki’s work offers the first clear setting of the SDYM system in
a context similar to the one used by the Kyoto school®>'° to
describe other nonlinear systems like the Kadomtsev—Pet-
viashvili equation and the Korteweg—de Vries equation.

The present paper deals with various classical o models
on two-dimensional Minkowski space. More precisely, the
models to be considered are the principal o models (o mod-
els whose fields take their values in a Lie group), the o mod-
els with values in a Riemannian symmetric space [these in-
clude, for example, the well-known nonlinear O(3) model
whose field lives on the sphere S?], and ¢ models with a
Wess~Zumino term (to be referred to as WZo models). The
second section provides a definition of these models together
with the description of their associated linear system. The
goal of this paper is twofold: first, to set these different o
models in the language of infinite-dimensional Grassman-
nian as Takasaki did for the SDYM system (Sec. III) and,
second, to construct an infinite set of symmetry transforma-
tions for each of these models. This latter goal is achieved in
several steps. In Sec. 1V, the starting point is the infinite-
dimensional algebra acting naturally on the infinite-dimen-
sional Grassmannian. We show how this action on the solu-
tion space of the linear system leads to an (almost) uniquely
defined action on the solution space of the S1(n,C) principal
o model. To characterize the subalgebras acting on the solu-
tion space of the other principal models, we take advantage
of the reduction procedure introduced first by Mikhailov."!
(See also Ref. 6.) For nonlinear systems, there exist discrete
symmetries that allow us to define subsystems by imposing
the solutions to be invariant under these symmetries. [A
simple example is  the discrete symmetry
g(&m) —g~"T(&m) of the SI(n,C) principal model. The
fixed points of this symmetry are of course the solutions of
the SU(n) principal model.] The central idea of Mikhailov’s
reduction procedure is to formulate the content of a con-
straint (invariance under a discrete symmetry) at the level
of the linear system. In Sec. V, the o models with a Wess—
Zumino term are studied. The only difference with the case
of principal models lies in the fact that, to identify the alge-
braic structure spanned by the symmetry transformations,
one has to perform a change of basis. (The generating func-
tions @ la Wu are in this context a very useful tool.) Again
the reduction procedure is applied to obtain the subalgebras
for the WZo models with values in G = SU(n), SO(n), and
Sp(n). Section VI is devoted to the analysis of the symmetry
transformations for o models with values in a RSS. Again,
the construction of these infinitesimal transformations relies
heavily upon Mikhailov’s reduction procedure. Finally,
changes of basis lead to the identification of two remarkable
subalgebras for each of the models considered.
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il. THE MODELS

A. The Lagrangian formulation

We start with a Lagrangian description of the models
that we are to consider. Space-time is two-dimensional Min-
kowski space and will be described by the light-cone coordi-
nates

E=(t+x)/2, n=(t—x)/2. 2.1

Let G be any of the simple Lie groups contained in Cartan’s
classical series. The fields of the o models are maps g from
Minkowski space into G.
The dynamics of the principal o model with values in G
is specified by the following action:
Y:-;—fdzx trd,gd g . (2.2)

The Euler-Lagrange equation leads to the equation of mo-
tion

9,((9:8)8™") + ¢((3,8)¢") =0. (2.3)
Defining the right-invariant fields

Ar=(3,8)87", (2.4a)

B,=(d,8)¢7}, (2.4b)
the field equation becomes

3,4x + 3;By =0. (2.5)

Moreover, the new fields satisfy the following identity:
0,Ar — 0By + [Ag,Bg] =0 (2.6)

ensuring that there exists a g related to 4; and By, by rela-
tions (2.4).

Note that Eq. (2.3) is conformally invariant. Let g(&,7)
be a solution (2.3) and define

h(&m) =gla(£).B8(n))

for any strictly monotonous analytic functions @ and 8.
Then A(&,n) is still a solution of (2.3). Parity (interchange
of £ and %) and time reversal [transformation of (£,7) into
(— 7, —£)] are discrete external symmetry transforma-
tions. Equation (2.3) is obviously invariant under both oper-
ations. Moreover, we have the additional symmetries

g(&m) —»g(&m), (2.7a)
g(Em) »g (&), (2.7b)
g(&m) -gT(&m). (2.7¢)

Indeed, for (2.7b),
3,((3:8718) + 3,((3,8~"g)
= —g '{9,((3:8)g™") + ,((3,8)8 " )}g =0

and the same argument applies for (2.7¢c). We shall make
extensive use of (2.7b) in the sequel.

The nonprincipal o models can be obtained from the
principal models by a reduction procedure that will be de-
scribed below. So, we will not dwell any further on their
Lagrangian formulation.

Let us consider the G-valued o model with a Wess—Zu-
mino term. The action is given by!?
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where £ is any extension of g to B, a solid ball whose bound-
ary is the two-sphere, A is the coupling constant, and » is an
integer, so that the second term is well-defined mod 27.
[Strictly speaking, the second term has to be defined on Eu-
clidean space taken to be S 2. We shall use the field equations
obtained from (2.8) on Euclidean space after setting them
back on Minkowski space.] The Euler-Lagrange equation
gives

d,(87'9%g) — (nA*/4m)e* 3,(g7' 9,8) =0.
Setting k =nA 2/41, (2.9) is equivalent to

(1—x)3,((3:2)g~ ") + (1 +x)3,((d,8)8™ ") = 0.
(2.10)

With the definitions (2.4) of A, and By, this means
(1 —x)3,4gr + (1 +K)3:Bg =0. (2.11)

Equation (2.10) is still conformally invariant, but it is no
longer invariant under parity and time reversal. Similarly,
among the symmetries (2.7), only (2.7a) survives. How-
ever, the model remains invariant under special combina-
tions of all the previous symmetries. The generators of the
finite group of discrete symmetries (both internal and exter-
nal) are

(2.9)

g(&m) —g(&m), (2.12a)
gEm —g~ (n.6), (2.12b)
g —g" (&, (2.12¢)
g&m —g( =& —mn). (2.12d)

Again, the discrete symmetry (2.12b) [g(&,9)—-h(&m)
=g~ !(7,£)] will play a central role in what follows.

B. The reduction procedure

As emphasized by Mikhailov,'! some integrable models
can be viewed as subsystems of more general integrable mod-
els. The key point is to impose reduction constraints on the
general model.

For example, in the case of o models, it is sufficient to
start from the S1(#,C) principal model.® Let o be an involu-
tion automorphism of S1(n,C), which can be taken among
the following ones:

o(g) =IgI—1: 0,(8) =I§I_l,
o3@) =Ig" I, o, g)=Igt~17,

where I may be chosen, up to conjugation, as'?

1, 0 o 1,
ba=\o _1,) ™=\_1, o)
q n

(2.13)

__]_q
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Then it is always possible to impose that g be in one of the
classical groups by a condition of the type

o(g) = (2.14)

Turning now to the nonprincipal o models, we consider
models with values in a Riemannian symmetric space. (One
of the reasons for this choice being the so-called dual symme-
try.'#) Let Gbe one of the classical groups and o an automor-
phism of G of the type (2.13). Let H be a subgroup of G such
that

(Ga)OgHgGay

where G, is the subgroup of fixed points of o and (G, ), its
identity component. Denote by g and § the Lie algebras of G
and H, respectively. Then we have the canonical decomposi-
tion

g=hem (2.15)
with the relations
[5:,61€h, [hmlCm, [mm]Ch. (2.16)

The RSS G /H can be embedded in its isometry group G
through the Cartan immersion i: G /H— G defined by

i(gH) =o(g)g™". (2.17)
The points in the image /(G /H) have the property to be such
that o(g)g=1. Let X, be the submanifold of

= {geG |0(g)g = 1} which contains the identity in G.
Then every solution g(&,7) of the G-principal model whose

values for all (£,77) lie on Z, gives rise to a solution of the
G /H model by'*

q(&m) =i"Tog(&m). (2.18)
Of course, the condition
o(g)= (2.19)

does not ensure that g lies on X,,. (See Ref. 15.) However, we
are interested in defining a transformation law between solu-
tions and we are going to treat the infinitesimal form of that
law. Starting with a solution g in X, we build a new solution
g' which is infinitesimally close to g. Since 2, has an empty
intersection with the other submanifolds of 2, it is enough to
require that g’ is on 3, i.e., (2.19).

Thus, in the sequel, we shall restrict ourselves to the case
G = S1(n,C) and impose reduction constraints of the type
(2.14) or (2.19) to proceed to o models with values either in
acompact Lie group (principal models) orin a RSS which is
not a Lie group. The complete list of irreducible RSS’s to be
considered here (essentially all the irreducible RSS’s whose
isometry group is one of the classical simple Lie groups) is to
be found in Table I of Ref. 6 together with the algebraic
constraint(s) necessary to construct them from the Si(»,C)
principal model.

C. The linear systems

The models defined above possess the important proper-
ty of being integrable in the sense that they enjoy a Lax for-
mulation. In this section we specify the linear systems whose
integrability conditions are the nonlinear equations under
study.
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Let A be a complex (spectral) parameter. We first con-
sider the S1(#,C) principal o model. Let R = R(£,1;4) bean
S1(n,C)-valued function satisfying'®'®

d:R=(1 +A) 4L R, (2.20a)

3,R=(1—1)"'BgR. (2.20b)
The integrability condition in the sense of Frobenius of the
linear system (2.20) has to be fulfilled identically in A and
yields precisely (2.5) and (2.6). Taking into account the

symmetry (2.7b) we also consider the same system for g~ ':

A =08 "g= —g 'Azg (2.21a)
B, =(3,8 )= —g 'Bgg, (2.21b)
0 L=(1+4)"'4,L, (2.22a)
d,L=(1—-A)"'B,L, (2.22b)

for some S1(n,C)-valued function L = L(£,7;4). Note that
the systems (2.20) and (2.22) do not uniquely fix the solu-
tions R and L, respectively. Starting with solutions R and L,
we can build new solutions R ' and L' by

R ’(§;7];/1) = R(§,17;/1)C, (/1);
for arbitrary functions C,(4) and C,(4). In order to deter-
mine uniquely the solutions R and L, we have to impose a
normalization condition. Let (£,,7,) be an arbitrary fixed
point in Minkowski space; we fix R(A) and L(A) by requir-
ing that

R(Eompd) = L(§oMoA) =1 (2.23)
hold identically in A. With this normalization, the solutions
R and L of (2.20) and (2.22) are unique. Moreover the
condition (2.23) has important consequences. First of all,
taking (2.20) and (2.22) for A going to infinity, together
with (2.23), gives

REMA= ) =LEMA=w) =1
Second, evaluating (2.20) and (2.22) at A = 0 gives

R(EmA =0) =g(€m)D,y,

L(E,’f],/l = 0) = g*l(é-’n)Dp
for some constants D, and D,, while (2.23) forces D, = g4
and D, = g, where

(2.24)

1

80=8(£0,70)- (2.25)
Thus

R(&mA =0) =g(&mes (2.26)

L&A =0) =g~ (£,1)80 (2.27)

Finally, consider
Y(€mA)=g(EmL(EmA).

A direct calculation shows that
ag Y(EpA) =(1+1/4) _IAR Y(&mA),
3, Y(EmA) = (1 — 1/A) T 'B Y(EqA),

ie, Y(&mA)=R(&m1/A)C(A) while (2.23) yields
C(A) = g, and thus

L(f:ﬂ,/l) = 8_1(5,”7)1{(5,77,1//1)80

As a last comment for this case, note that the normalization

(2.28)

2466 J. Math. Phys., Vol. 28, No. 10, October 1987

condition (2.23) uniquely determines R and L once g is giv-
en. However, the converse statement does not hold. As Egs.
(2.26) and (2.27) clearly show, R and L only determine an
equivalence class of solutions g, modulo their value at
(£0,70). We shall come back to this question later.

Turning now to the S1(#,C) o model with a Wess—Zu-
mino term, the associated linear system is simply’’

9:R = (14+A)"'(1 —K)AgR, (2.29a)

3,R=(1-4)""(1+«)BgR. (2.29b)
The symmetry (2.12b) now suggests defining (h(£,7)
Eg—l(ﬂ,g)):

A (EM=(0hEMN T (EM) = — (€7 'Br®) |ty

(2.30a)
B (£ =@0,h(EM T (€M) = — (87 '4r8) | (ney -
(2.30b)

We introduce the analog of (2.22):
L=01+1)""(1-x)A4.L, (2.31a)
8,L=(1—-A)""(1+«)B,L. (2.31b)

Again, to fix completely R and L, we impose the condition

R(£pmoA) = L(§pmaid) = 1. (2.32)

In order to find simple analogs of (2.26)—(2.28), we choose
&o = 1. The consequences of (2.32) are derived in the same
way as above and we simply list them here:

RENMA=0)=LU¢nA=w)=1, (2.33)
R(EmA = —x) =g(&mgs s (2.34)
LEpA= —Kk) =g ' (1.£)80 (2.35)
L(&mA)

=g 'ER (& — (1 +Ak)/(A +K))go.  (2.36)

The last step of this section is to implement constraints
of the types (2.14) and (2.19) on the field g into constraints
on the solutions R and L of the linear systems listed above.
The subgroup reduction (2.14) for the o models with or
without a Wess—~Zumino term is obtained by the constraint®

o(R(A))=R(4), (2.37)

where A = A foro,oro,and A = A foro,oro, [see (2.13)].
Indeed, evaluating (2.37) and A =0 or at A = —« (de-
pending on the model), we get

g7 'o(g) = g5 'o(g)
implying that, if g, is such that o(g,) = g,, o(g) = g holds
for all (£,7). The quotient reduction (2.19) is implemented
by the constraint®

o{R(A)) =L(A).
Once more, evaluating (2.38) at A = 0 gives

8o(g) = 840 (&)
ensuring that, if g, lies on X, so does g for all values of (£,7).

(2.38)

lil. FORMULATION OF o MODELS IN TAKASAKI'S
APPROACH

A. Preliminaries

In the case of the self-dual Yang-Mills equations in four
(complex) dimensions, Takasaki® proposed to encode the
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information contained in the associated linear system into an
infinite-dimensional matrix, the latter defining affine coordi-
nates in an infinite-dimensional Grassmann manifold. Using
the geometry of this manifold, he was able to linearize the
equations and formally solve them. Moreover, this interpre-
tation allowed him to give a nice description of a group ac-
tion on the space of solutions of the self-dual equations.

Our aim in this section is to transpose this interpretation
to the models described in Sec. I1. First of all, notice that the
linear systems (2.20), (2.22), (2.29), and (2.31) all have
the same structure, namely,

d:R=(1+4)"'4R, (3.1a)

d,R=(1—A)"'BR, (3.1b)
with the normalization condition

R(&pmoid) =1 (3.2)
implying

R(E{MA = ) = 1. (3.3)

In the present section we consider the generic system (3.1)
with conditions (3.2) and (3.3). It is understood that all the
results to be derived equally apply to the four linear systems
(2.20), (2.22), (2.29), and (2.31). We will come back to
these four specific forms in the next sections.

The inverse R ~! of R satisfies

AR '= —(14+A4)"'R74, (3.4a)

d,R'=—-(1-A)"'R7'B, (3.4b)
with the conditions

R Y (omoh) =1, (3.5)

R'émA=w)=1 (3.6)

The conditions (3.3) and (3.6) allow us to perform an ex-
pansion of R and R ~!in terms of inverse powers of 4 around
A= oo:

REMA)=Y A /R (&), (3.72)
j=o
R7YEmA=T A ~R}MEM, (3.7b)
j=0
R,=R%=1, (3.7¢)
Rj (go;"]o) =R7(§o,770) =0, for j}l. (3.7d)
Inserting (3.7) into (3.1) and (3.4) gives
d,R; —3,R;,, —BR; =0, (3.8b)
IR}Y+IRY +R}4=0, (3.9a)
d,R})—3J,R* ,+R}!B=0, (3.9b)

for j>0. The relations (3.8) for j = 0, together with (3.7¢)
give

A4 =3J,R,, (3.102)

B= —J,R,. (3.10b)
Substituting this back into (3.8) and (3.9) gives

O¢R; + IR, — (3:R))R; =0, (3.11a)

3,R; —d,R,; + (3,R)R,; =0, (3.11b)
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O;R*+3R¥ , + R IR, =0,
3,R*—3,R* , —R*@3,R,) =0.

(3.12a)
(3.12b)

B. interpretation in terms of Grassmann manifold

Equations (3.11) and (3.12) can no longer be solved
recursively. In order to avoid this difficulty, Takasaki intro-
duced an infinite-dimensional matrix M whose (nXn)
blocks M;; ( — o0 <i< o, — 0 <j< — 1) are defined by

-1
M= 3 RELRe, (3.13)

where it is understood that R, =R * =0 for i< — 1. We
refer the reader to Ref. 8 for the proof of the following prop-
erties:

M, =46,1, for i,j<O, (3.14)
My = —R_;, forj<0, (3.15)
M, ,=M,,_,+M,_,M,, foricZ j<0. (3.16)

The last equation shows that the positive rows of M are en-
tirely determined by the zeroth row, i.e., the infinite matrix
M contains exactly the same information as the solution R of
the linear system (3.1). Note that (3.16) may be rewritten in
matrix form. Let A be the infinite shift matrix whose (n X n)

blocks Aij (i, jeZ) are
Ay=06,,,1 (3.17)

and C be the M-dependent matrix whose (nXn) blocks C;
(i,j < 0) are defined as

Cy=6,,,,;1, foric<—1,j<0, (3.18a)

C; =My, fori= —1. (3.18b)
With these notations, (3.16) is simply

AM = MC. (3.16")

We can now interpret M as defining affine coordinates for a
point in an infinite-dimensional Grassmann manifold.® (See
also Ref. 19.) Let ¥ be an infinite-dimensional vector space
with a decomposition,

V=V_aV,, (3.19)

where V_ is the (formal) linear span of the basis vectors
numbered from — o to — 1 and ¥V is the (formal) linear
span of the basis vectors numbered from 0 to + 0. Points
[P] in the Grassmannian are equivalence classes of maps
from V_ to ¥, modulo changes of frame in ¥_. Homogen-
eous coordinates can be given in terms of infinite rectangular

n={[y. ]

3K: V_-V_ invertible
P
such that [ ] = [P_K ]
P’ P.K
(3.20)
The affine part of the Grassmannian is the subset of points
such that P_ is invertible and we identify
M=P, P~ (3.21)

Equation (3.16') then means that the point in the Grass-
mannian associated to M is invariant under the map de-
scribed by A, C representing the change of frame. Note that
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under an arbitrary change of frame

M' = MK, (3.22)
the matrix C transforms according to
C'=K~'CK. (3.23)

C. The dynamics of M

We are now ready to state the main result of this section,
namely reformulate Eqs. (3.11) and (3.12) in terms of the

matrix M.
!

+ o -1
{(1+A)M},~j= z z (6ik+5i+l,k)a§(R:—nR"—j) by

k=

|
-

Equations (3.11) are equivalent to

(1+A)9:M +MS=0, (3.24a)
(1—A)3,M+MT =0, (3.24b)
where the matrices S and T are defined by
Sy=—96,_,d:My, for i j<0, (3.25a)
T;=6,_,9,M,, forij<O. (3.25b)

Proof: We give the proof for (3.24a) only. First, (3.11a)
implies (3.24a). Indeed, for i€Z, j <0:

= {(agR r—n +a§R :'.+l—n)Rn—j + (R:'k—n +R:"‘+l—n)a§Rn——j}

il
|

n o«

-1 -2
= — z RY ,(GR)R,_; + Z RY ,(3R)R,_;+R¥ 6,R_,_; by

n= — oo

=R;“+l{-—(a§R1)R_1_j +a§R—l—]}

(3.13)
—1 —1 =2
= — _E R} ,(G:R)R,_; + z RY ,0.R, ; + 2 RY ,0:R, ,_; by (3.12a)
(3.11a)
(3.11a)

Conversely, (3.24a) implies (3.11a): for j <0,
0={(1+A)d.M+ MS};
= aEMOJ’ + angj - Mo. —1 (agMOj)
=My +I:M,; |+ (9:M, _,)My by (3.16)

which is (3.11a). [ ]

Note that, under a general change of frame (3.22), solu-
tions M of (3.24) are preserved provided S and 7 transform
according to

S’=K"SK—K“3§K—K“C85K, (3.26a)
T’=K"TK—K“‘8,,K+K“C8,,K. (3.26b)
Of course, under (3.22), M ' no longer satisfies (3.14) which
means that C’, §', and T’ are no longer related to M’ by

relations like (3.18) and (3.25). However, assume that we
have a solution M’ of (3.24) of the form

M 2_>]
M =
M.
with M{_, invertible and satisfying the constraint

AM’' = M'C’foracertain C'. Inother words, thepoint [M ']
in the infinite Grassmannian is a fixed point of the map A.
Define M by

M=M'WM;_,)!
and C, S, and T correspondingly by using (3.23) and (3.26)
with K = (M {_,) ™. Then one easily gets that, because M
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|
still satisfies (3.16’) and (3.24), the new matrices C,S,and T

are now defined in terms of M by (3.18) and (3.25). This
remark will be most important for the next section.

Note also that the normalization condition (3.2) or
(3.7d), expressed in terms of the matrix M, is

M(5om0) = [(1)]

Finally, we want to mention that we have not been able
to solve the evolution problem from Cauchy data for (3.24),
contrarily to what happens for the self-dual Yang—Mills case
itself ® or for the supersymmetric (¥ = 3) Yang-Mills equa-
tions in four dimensions.'®

(3.27)

D. Group action on the space of solutions of (3.24)

Assume we know a solution M, of (3.24) (with S, and
T,) satisfying the constraint (3.16") (with C,). We want to
generate a new solution M, from M,. This will be achieved
through multiplication of M, on the left by a matrix D with
blocks D; (i, jeZ). The product DM, has still to satisfy
(3.16’) and (3.24) and this forces D to fulfill

[A,D] =0, (3.28a)
[(L+A)3,D])=[(1-A)3,D]=0. (3.28b)
The first equation (3.28a) means that the blocks D, lying on
the same diagonal of D (i.e., forj — i fixed) are equal. Hence
(3.28b) means that the blocks D; have to be constant in
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(£&,m). This allows us to introduce an (nX#7) matrix func-
tion of a formal parameter A which we also denote by D:
+
Dy= Y 4 -'D,,
j= — o

where D; is the common value of the blocks on the jth diag-
onal of D.

The quantity DM, does not satisfy (3.14). We denote by
(DM,) _, the upper block of DM, and assume it to be in-
vertible. Then M, is defined by

M,=(DM,)(DM,) _,~ (3.30)

This being a change of frame, M, still satisfies (3.16") and
(3.24) with matrices C,, S,, and T, obtained from C,, S,,
and T, by transformations of the type (3.23) and (3.26).
Moreover, M, fulfills (3.14) and C,, S,, and 7, are given in
terms of M, by relations (3.18) and (3.25), as argued at the
end of the previous subsection.

Decomposing D into four infinite blocks according to
(3.19),

(3.29)

_(4 dz)
D—(d3 ) (3.31)
M, is explicitly given by
1
M ‘=‘( _ ) 3.32
\@s+d M, )d +dM )7 ( )

Assume now M, satisfies the normalization condition
(3.27), ie, M, ,(£xno) =0. Solution M, will satisfy
(3.27), too, provided that

0=M, ) (Eon0)
= (d; +dM, ., (EeMINds + oM, (o, (E070)) !
= d3d 1 !
i.e.,d; = 0. Due to the structure of D imposed by (3.28), this
forces d, and d, to be (block) upper triangular matrices and
thus D has to be (block) upper triangular. ( We use block

upper triangular to characterize a matrix whose blocks un-
der the main diagonal are zero.) This transforms (3.29) into

D)= S 4D, (3.33)
j=0

Note that (3.30) provides us with an obvious group law un-
der multiplication of infinite matrices (when this product
makes sense). However, this group law is expressed at the
level of the infinite matrix M and it does not seem possible to
give an explicit form of the group action on the finite matrix
R (and thus at the level of the solutions of the nonlinear field
equations under study). On the other hand, what is possible
is to express for R the infinitesimal action corresponding to
this group law, and this is what we are going to describe now.

We assume that D is close to the identity, which means

d=1+¢;, fori=14,
d =¢ fori=2,

and all ¢; infinitesimal. The lower block of M, in (3.32) is
then given by (at first order in the €’s)

L+ €My, (1+€+6M, )"
E(M1(+) +€4M1(+))(1"_61_€2M1(+))
=M, ., +eM ., —M ,6e—M,,6EM L,
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which is a Riccati-type transformation law, already well
known to play a crucial role in two-dimensional integrable
models.*” Looking at the zeroth row of the previous expres-
sion, we can define an infinitesimal transformation law for
the coefficients R, of R (k>0):

—OR, = (eMy( ), —M 6, —M &M ()«

+ o
= z (€4)on (Ml(+))n.—k

—1

>

n= — oo

(M) )on (€)n &

— + o
_E Z (M 43)0n(€2)pm (M43 ) m, —k
+ o o0 + o
z J+ anD —k
n=0 j=l n=1

+ o 0
+Z zRDn+m sz+j —J°

n=1m=0

Assume now D(A) tobe D(A) = A ~‘T, where />0 is fixed
and T is a generator of sl(n,C). Then

—6TOR, = RH,T+T2R,+1R,c —;
ji=1
i 4o
+ 3 3 RIRY, R,
n=1j=1
i k
=R.,. T+ Y Y R,IR? , Ri_,
n=0j=1
(3.34)

In order to make expressions more compact, we introduce a
formal parameter A ' and a generating function §7(1 ') de-
fined as

+ oo
8TA= Y 4’870, (3.35)
i=0

The following result links the infinitesimal action (3.34) ob-
tained in the context of infinite Grassmann manifolds to
Wu’s generating function®: In terms of the generating func-
tion, the transformation law (3.34) is given by
{6T(AHR(A)IR 71(A)

=[A/(A' —A)HRANTR ~Y(A")

—R(A)TR ~'(A)}.
Proof: Introducing the notation

(3.36)

T™= S R,TR3_,,
i=0
one has
{67(AHRDIR ~'(4)

—1 4+
=[1——-] )

m—l

X —my (1= (A/A)"]
— A—-mLA AR I m
2;’1( ) [l—ﬂ/i']
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Then

+ o +

—8TANRA) = — 3 T A TUA T kEwTrHR,
Lk=0n=1
+ oo + o k—1 L. .

= — S A KLTiTkriooR

k=1i=0n=0

which gives

__SNDR j;lTk+'_”Rn

k—1k+i—n
z: RmTRz+i—n—mRn

n=0 m=0

i+k—m

gD

m=0n=0 m=i
XRmTRz+i—m—mRn
i k
=3 YR, TRY; .R._,
m=0j=1
i+ k
+ Y R,T8o;ik—m

m=i+1

ik
=R, T+ z z RnTR}"—nﬂ'Rk—js

n=0j=1
which is relation (3.34). |
We are now going to apply relation (3.36) to the differ-
ent linear systems we introduced in Sec. II.

IV. THE PRINCIPAL ¢ MODELS
A. The transformation laws for the Sl(n,C) model

The aim of this subsection is to give the explicit transfor-
mation laws corresponding to (3.36) for the case of the
Sl(n,C) principal o model. Taking the symmetry (2.7b) into
account, we apply (3.36) to the solutions R(4) and L(A) of
the linear systems (2.20) and (2.22) associated togand g,
respectively. We thus get two different types of transforma-

tions 8 and &, , defined by
{8RAHRMMIR ~1(A)
=[A"/(A" = A)H{R(A TR ~1(A")

—R(A)TR '(A)}, (4.1)
{8T(ANHLA)YIL ~'(A)
=[A/7(A" —HLANTL~'(A")
—LA)TL ~'(A)}, (4.2)

for Tesl(n,C).

We now want to derive the action of §; and §, on the
field g itself. Evaluating (4.1) and (4.2) at A = 0 and using
(2.26) and (2.27), we get

{6% (A7) (g8 N }Hgg™
=R(ANTR YA") — (g8 N T(8s8™ ),

SR(A")

854

g = 8§+06r(A")g = (g+ 65 (A7)g) + 8K (A)g+ Bk (A")g)

{87(A") (87 "0 (857 '8)

=L@ANTL~'(A") — (g7 '8 T(gs '®),
which gives
g '8k (A"g—g 'RANTR (A ")g

=85 '6x (A )8 — 8 T80
BT (A")g)g™ " +gL(A"YTL ~"(A")g™!

= (6L (A")8olgs ' + 8oTEs '
The rhs’s of these equations being independent of (£,7), the
1hs’s have to be arbitrary functions of 4 ’ only. The problem is
now to fix these functions. Clearly, relations (4.1) and (4.2)
do not fix them. This is linked to a fact already underlined in
Sec. II: the correspondance between g and R(A) [or L(4)]
is not one-to-one. With normalization (2.23), R(A) and
L(A) are uniquely fixed by g, but the converse is not true.
Here R(A) [resp. L(A)] only fixes an equivalence class of
solutions g, the equivalence relation being given by right
(resp. left) multiplication of the solution by a constant ma-
trix, as (2.26) [resp. (2.27)] easily shows. We thus now
have to choose a class representative in order to determine
8% (A")g and 87 (A')g. Note that the way we make this
choice is irrelevant. Indeed, a different choice would corre-
spond to taking linear combinations of the 6%’ (resp. 55”)
and 8\ (resp. 8¢’) and thus this would be a change of basis
in the algebra spanned by them. We take the simplest choice,
namely set the aforementioned arbitrary functions of 4’
equal to zero and get the transformation laws for g:

8r(A"g=R(1")TR ~'(4")g, (4.3)

8T(A")g= —gL(A")TL ~'(1"). (4.4)
We ultimately want to compute the commutators between
all these &’s. As (4.3) and (4.4) show, we also need to know
&g L and 6, R in order to proceed further. Using (2.28) and
(4.1)-(4.4), we immediately get
{6 (AHIR(AIR ~1(A)

=[1/(A2" = D H{gL@AHTL ~"(A)g™!

— R(A)goTgy 'R "1}, (4.5)
{8F (AL ~1(A)
=[1/A1" = DHI{g7'RA TR ~1(A")g
—L(A)gy 'Tgol ~"(A)}. (4.6)

B. The commutation rules

We are now ready to compute the commutation rules
between all the different 6’s. For example, we treat explicitly
the case of two 8 ’s. Using (4.3) and (4.1), we getfor U, Vin
sl(n,C),

=g+RAMWRT'ANE+{R(A) + [A /(A= AIRA VR I (A IRA) =R V)IIU

X{R HA) = [A/(A"=A)IR "HARMAIVR H(A") — VR ~'(A))Hg + R(A)VR ~ (A ")g}
=g+R(A VR A")g+R(A)UR "' (A)g+ R(A)UR "' (A)R(A")VR ~1(A")g

— A7 =DIRA)UR ~HA)RMANVR 7' (AN]g+ [A /(A= DIRMIUVIR “'(A)g
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up to second order in U, ¥ and thus
[68(1),85(A")]g=[A"/(A' =) IRA)[U, VIR ' (A)g+ [A/(A—A)IRAHIUVIR "' (A')g

= [1/(A" = ) HA'8ZI(A) — A8 (A )]s (4.7)

Similary, using (4.4), (4.2) and (4.5), (4.6) we can derive
[6Y(A).8F(A)]g=[1/(A' =AY HA'SEYIA) — 87V (A N]g, (4.8)
[62(4).8%(A ") g = [1/(A1" — I{8L7*"% 1 (4) 4 8l "1 (2 1))g. (4.9)

Inserting expansion (3.35) in both sides of (4.7)—(4.9) and collecting identical powers of 4, 4 ' gives, after some manipulation,

[5g(i>,5g(j)]g= 6}{”"](”’:)& for 1,jeN (4.10)

[5g(i>’5{(j)]g = §lVIU+Dg, ¢ ’ (4.11)
0, if i or j=0,
{sl[zl/,gnl’go‘l](o) + 51[‘35‘030.1’](0)}& if i =j#0,

[659,87P g = 8Lu,goygo—l]u—ng’ if i>j>1, (4.12)
6£8J'Ung](j—i)g’ if j>i>1.

Equations (4.10) and (4.11) indicateé that the 85 ’s and 8, ’s separately span two loop algebras graded over N. The relationship
between these two algebras is described by (4.12). The global structure generated by both sets of transformations is identified
by performing the following two steps. First define

3g(i)gzai€'USo(i)g_ (4.13)
Then, relations (4.11) and (4.12) are transformed into
[Sg(i)’SZ(j)]gzSLU,V](i+j)g’ (4.11)
0, if i or j=0,
{55{1,1’1(0) + 3}_”’”‘°’}g, if i =j5#0,
[6R.61”]g= SLUVIU-Dg if i>j>1, (4.12%
BLUvIG-ig, if j>ix1.
A ' ~
Second, introduce generators 6" for icZ by olg + 6% (1)g) =g + 6% (A)g, (4.18)
F10) =5YD, for i>1, olg + 8T (1)g) =g+ 67 (A)g, .
BUO =§U@ 4 FUO)  for =0, (4.14)  thel inthe rhs being there so that the constraint be holomor-
Suw 55‘{’( - for i< — 1. phic in 4. For example, we treat the R case. Let o, be the

differential of the automorphism ¢ at the identity in S1(»n,C).
Due to (2.14), (2.37), and (4.3), we have

olg + 85 (A)g) = o(1 + 6% (A)gg~ o(g)

Note that there remains one independent combination,
namely

V=8O _ §UO, (4.15)
— T ea—1
The above commutation relations then become =g+0,06r(1)gg7 N8
SUGY SVN) SIUVIG+) where
H J = A i +j LI} :
[? ;‘? ]g é ) for l,]GZ, (4.16) o (6£(A)gg—l)=a- (adR(/I)T') =ada(R(/1.))a ()
[6Y",61g =0, for ieZ, (4.17) * ; o *
. =a o, .

which shows that the algebra spanned by the symmetry ) ' R e _
transformations has the structure of the direct sum of a fin- Usmg _( 2.37), relation (4.18) is seen to be equivalent to the
ite-dimensional Lie algebra with a loop algebra graded over ~ condition
Z:sl(n,C) @ (s1(n,C) ® C[2,t ~']). o (1) =T, (4.19)

which means that T lies in g, the Lie algebra of the group G.
The main result of this section is then the following: For
the principal o model with values in the Lie group G, with Lie
The last step of this section is to consider the principal 0 algebra g, the generators of the symmetry transformations
models with values in a subgroup Gof S1(n,C). Wethusstart  defined by (4.14) and (4.15) span an infinite-dimensional
with a solution g satisfying the constraint (2.14) and the Lie algebra with structure geo (g@Clt,t7']) or

C. The subgroup reductions

associated solution of the linear system R(A) subject to
(2.37). In order that the new solution generated by the sym-
metry transformation also lies in G, we have to impose
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g® (g®R[t,2 ~']) according to whether g is a complex or a
real algebra. [Strictly speaking, the only groups which are
irreducible RSS are SU(#n), SO(#n), and Sp(») and thus we
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should only consider the second structure. ]

We would like to close this section by showing how the
subgroup reduction can fit nicely in the setting of Sec. III.
We shall give the example of the reduction from the
S1(n,C)o model to the SU(n)o model. For this reduction,
the constraint (2.37) on the solution of the linear system
reads

RY=1(A) =R(), (4.20)
which is simply
R*' =R, for i>0. (4.21)

This implies on the n X n blocks of the matrix M representing
the point [ P] in affine coordinates (i>0, j <0):

—1
My=Y RI_R_,
K=

= —M_,_, _,_,, fori»0,j<0. (4.22)

This constraint is equivalent to the following (infinite-di-
mensional) matrix equation:

0=(M"* 1)(}1;),

where M ' is defined by (4.22): (M "), =M _,_, _,_ )"
This definition of the ' consists of taking the usual matrix ' of
each nXn block and then transposing by blocks the result
with respect to the diagonal blocks M, _ |, i>0. In terms of
the geometry of the infinite Grassmann manifold, the condi-
tion (4.23) is really eloquent. It means that the points
[P] = (},) representing solutions of the SU(n) o models
are totally isotropic planes with respect to the bilinear form
defined in (4.23). [ This is analogous to what happens in the
construction of soliton solutions with the soliton correlation
matrix®2% in that context, the soliton correlation matrix (re-
lated to the dressing matrix'®) represents a point in a finite-
dimensional Grassmannian. The subgroup reduction im-
plies also that this point is a totally isotropic plane with
respect to a given bilinear form. ]

Let & be the group of infinite matrices D with blocks
Dy, i, je solving Eqs. (3.28). The group ¥, preserving the
constraint (4.20) through the action (3.30) is the subgroup
of & leaving the bilinear form (4.23) constant, i.e., such that

D'D=1_,_. (4.24)

[Again ' should be understood as in (4.23).] At the infini-
tesimal level, D = 1 4+ €2 (€<1), this condition reads

(4.23)

9"+ 2 =0 (4.25)
or, equivalently,

g9t _+9 ., =0,

9 _+2,_=0, (4.26)

9" . +9_, =0,

if we write & as
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[A — or + sign means that the index at that position be-
longs to ( — «, — 1] or [0, + o0 ) CZ, respectively.] The
above equations (4.26) mean that each block & i» b JEZ
should be an anti-Hermitian matrix

D, = — T}, (4.27)

which is Eq. (4.19). Hence the geometric condition (4.23) is
equivalent to the reduction equation (4.20).

V. THE o MODELS WITH A WESS~-ZUMINO TERM

In this section, the o models with a Wess—Zumino term
(WZo models) will be studied. Only the models with values
in G = SU(n), SO(n), and Sp(n) will be considered. (These
groups are the only irreducible RSS’s that are Lie groups.
See the remark in Sec. IV C.) To our knowledge, a Wess—
Zumino term for o models with values in a RSS which is not
a Lie group has not yet been devised. (See, however, Ref.
21.) The goal of this section is to define an infinite set of
symmetry transformations for these models and to identify
the algebraic structure they span. As by-products, another
example of the reduction procedure will be presented and a
useful tool will be introduced: the changes of basis preserv-
ing a gradation over N,

A. The infinitesimal transformations 5,49 and §, g and
the reduction problem

As for the principal models, the starting point of the
discussion is the infinitesimal variations 8% (4 ')R(A) and
8T (A ")L(A) of the solutions of the associated linear systems

{85 (AHRA)IR ~1(A)
=[A"/(A" =) H{RANTR ~"(A")

—R(A)TR ~'(}, (5.1)
{87 (A")LA)IL ~1(4)
=[A/7A" - HLANTL (4"
— LAYTL ')}, (5.2)

together with Eqgs. (2.34) and (2.35) which show how
g(&,m) and g~ (9,£) are retrieved from R(A) and L(A),
respectively:

REm A= —k)=g(&mgs ',

L& A= —k) =g (9,€)8.
Setting A = — xin (5.1) and (5.2), one gets
g (EMLSE (A )g(Em)

—[A7A"+ ) IREBADTR ~H(EmA g€}

(2.34)
(2.35)

=g; R (A")go— [A'/(A' +K)]Tgo} (5.3)
and
{67 (A& + [A /(A" + k) 1g(EIL(EMA")

XTL (&A™ (n.)

={67(A")g + [A'/(A" + k)18, T}gs . (5.4)

As in Sec. IV, we note that the right-hand sides of (5.3) and
(5.4) depend only on A ' and so should the left-hand sides. A
similar argument leads then to the following generating
functions for the infinitesimal transformations 6, and 5, on
g in the WZo models
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Sx (1")g(&m)

=[17(A" + ) IR(EMANTR ~H(EmA Ng(Em),
(5.5)

8T (A"g(n,€)

= —[A7(A + ) ]1gELENAYTL ~H(EmA ).

(5.6)

These relations are the analog of Eqs. (4.3) and (4.4) for the

principal models. Note that the (&,7) dependency is

explicitly written because L at (£,7) is related to g~ at the
parity-transformed point (7,£).

The reduction constraints are all of the type group—sub-
group and are identical to those of the principal models
(without the Wess—Zumino term). [ The fact that the solu-
tions g(§,m) and g~ ! (n,£) are obtained, respectively, from
R(A) and L(A) evaluated at A = — « (instead of at A = 0)
does not alter the algebraic constraint on R(4) or L(A1) be-
cause x€R. For example, R '(1) =R ~!(A) is indeed the
unitarity condition for the solution g(£,7) of the WZo mod-
el. Setting A = — &, one gets g'g = gl go, i.e., g(£,7) is uni-
tary at all (§,7) if it is at any point, for example, at (£,,77,).]
Hence the reduction conditions

olg + 6% (A)g) =g + 6z (g,

olg + 6L (1)g) =g + 8L (A)g,
lead to the same constraint on 7 as discussed in Sec. IV C,

0, (1) =T, (5.8)

where o, is the differential map associated to the automor-
phism o. Note, finally, that the realization of the reduction
conditions as geometric constraints on the point [P] in the
Grassmann manifold (presented in Sec. IV C) applies to the
present case without any change.

(5.7)

B. The commutation rules [55(A),5Y(1)]g

Even though the symmetry transformations for
ST (AHR(A) and 8T (A ')L(A) are identical to those of the
principal ¢ models, the infinitesimal 8] (1’)R(4) and
6T (A")L(A) are different. The reason for that is twofold:
first, the induced transformations on g are different and, sec-
ond, the relationship between R(A) and L(A) is more com-
plex than in the case of the principal models.

A calculation similar to the one performed in Sec. IV
using Eqgs. (5.1), (5.2), (5.5), (5.6), and (2.36) leads to the
following infinitesimal transformations:
{8RANLERAIL ~(EmA)

_ AE=1)
A4+x)A" +10)A"+K(A))
X{g 7 (mEIR(EA TR ~H(.EA Vg (1,€)
— L(&mA)80 'Teol ~ ' (&mA) ),

{87 (ANHRERAIR ~H(EmA)

_ A —1)
A+K)A +1)A +KQA))
X {g(E&ML(EAYTL ~ (.64 ) g~ (Em)
— R(&mA)8T85 'R~ (€A},

(5.9)

(5.10)
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where
K(A) =1 4+Ak)/(A +x). (5.1

The set of relations (5.1), (5.5), and (5.9) can be trans-
formed in the set (5.2), (5.6), and (5.10) by the following
identification:

subindex R<>subindex L,
R(Ep)yoL(EmpA),
gEm—g~ (1),
8080 L
With these expressions, the commutator [85(4),6% (47)]g
can be obtained directly,

[8Y(A).8% (A" g
_ (2 — 1)
I+ A+AN+AL")

R
A'+«k

(5.12)

A e ] (,{’)]g. (5.13)

A+x
Again the value of g, appears explicitly in the right-hand side
and can be taken care of as previously by a redefinition of

8T 8T =6% "T%_The main problem here is the appearance
of this complicated function of A and 4 ’ in front of the curly
brackets which makes the structure of the algebra spanned
by 8z and §, unreadable. A change of basis will be necessary
to shed light on the structure of this algebra. This is the
subject to be discussed in the next paragraph.

As a closing observation, it should be noted that, as
x—0, the commutator does not give back the commutator
for the principal model but

[6R (2,87 (A")]8le=0
= [ —1/(A1" + ) {sLU="% T (1)

48l 'veVT (11} (5.14)

The discrepancy comes from the fact that, in the precedent
case, L was the solution associated to g~ ' (&,7) contrarily to
the present case where L is the solution associated to
g7 (1,€). (Recall that the WZo model is invariant neither
under the parity transformation nor under the inversion op-
eration but only when both discrete symmetries are per-
formed simultaneously.) On the solution of the linear sys-
tem, the parity transformation reads

LEpA)>L(né; — A). (5.15)

Hence the transformations &, for the principal models and
those for the WZo models are related by changing the formal
parameter A into — A. Changing A '—» — A’ in (5.14), one
recovers (4.9).

C. The changes of basis preserving a gradation over N

Let§ = g® R[] bea Lie algebra graded over N with g a
finite-dimensional semisimple algebra with dim g =d. As
before, the elements of the ith graded subspace are denoted
8Y where Ueg. Hence

[6YD,6YP] =8IVVIG+D for U, Ve, i,jeN.  (5.16)
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If {e,,e,,...,6; } is a basis of g, then {§*P=e¢, ®t',a = 1,....d
and ieN} is a basis of § = g ® R[#]. Let A be a change of basis
acting only on the gradation index, i.e., preserving the d sub-
spaces g, :

8 = DN ®ti, a= 11-"’d' (5.17)
The following lemma will be helpful in disentangling the
algebra generated by the 5, and 8, for the WZo model.

Lemma: Let 5* be the elements defined by the follow-
ing generating function:

(A)=TA ~ e
ieN
=8((A—B)/a)/(1—B/A), aBeR, a#0.

(5.18)

Then {6""’} - {5“"’} are the only changes of basis shar-
ing the two following properties: (i) each element 5°¢” (resp.
5%?) is a finite linear combination of 8*” (resp. of 5°”),
and (ii) the elements 8°*” verify the same graded commuta-
tion rules

[5a(i)’5b(j) 1= Slabld +N,

where [a,b] is set for [e,.e, ]

The proof is straightforward. First notice that for any
change of basis A satisfying (ii) 89 — 59O For if
890 =¥ A%*D with N#0 and A%30, then
(87,87 ] will contain a term (A% )251*212M (different
from zero for a certain choice of @ and b since g is semisim-
ple). This would violate (ii). The condition (ii) also implies
that if 5 = 3,A16°?” is given, the whole set {57} is
uniquely defined. Indeed the A; are defined recursively on
the index 7 by noting that

[Sa(i)’sb(l)] =S[a,b](i+l)’ i>1,
and hence
A= z ALy (5.19)

It is then sufficient to study 8°"’. The condition (i) forces
5°™M to be of the form

~ N

6a(1) — z A}aa(i)’

for a given 1<N < « such that A}, #0. The elements da»
will then contain a nonvanishing contribution of §°*. The
condition (i) also requires that 5*” be a finite linear combi-
nation of the 5°”. Suppose then that

5"“) Z (A 1)15a(1)

fora certam finite M. Since 5*™ is the only term in the sum
to contain §*™*’, condition (i) implies that both N and M
have to be 1. Hence

59D = a8"M 4 B54O, (5.20)

As observed befare, the °”, i>2 are then totally deter-
mined. They are found to be

59 — }': (J’ )aiﬂi—jaa(j).

j=o

(5.21)
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Hence the generating function 3“(/1) is

6a(l) — z l —i 2 (;)ajﬁi—jaa(j)

ji=0

© —J a(j) oo ]
_ z a.-JcS Z B~ (n+j) _
Since
( d )’ 1 _ i (n+j)! (_/3_)
dB/AY 1 —-B/A “~o J! A

the generating function is
2 2 A ~la§* ) d Y 1
.
,Z’o J! diB/A)) 1—-B/4

=844 =B/ a)/(1 —B/A).

The fact that A is indeed a change of basis—that is, invert-
ible—is obvious. One can convince oneself of the invertibi-
lity of A either by noticing that, in matrix notation, A is an
upper triangular matrix with powers of a on the diagonal or
by inverting the generating function

5(A) =8l +B)/(1 +B/ad), (5.22)

which also shows that the group of changes of basis of the
form (5.18),
A(aB)
5 - &) (5.23)

is isomorphic to the upper triangular subgroup of S1(2,R)
imbedded as

1 -
A(aB) ( ~ aﬁ ) (5.24)
This ends the proof of the lemma. |

[ Note that if condition (i) is relaxed, there are still more
changes of basis possible. For these new A’s, the elements of
the new basis might be expressed in terms of finite linear
combinations of the initial basis but for the inverse A ™', this
property will not hold.]

The usefulness of this lemma is that we can change the
commutation rule (5.13) without altering the gradation of
the subalgebras generated by {6%°} and by {67}, respec-
tively. Indeed, let us change the basis in the following way:

8T (A1) =68L((k + DA — k)1 —&/(k + DDA)™Y,
(5.25a)

8T(A) =687 ((k — DA —K)(1 —x/(k — DDA~
(5.25b)

According to the lemma, the following commutation rules
remain the same:

[8Y(4)8%(A") e

=[1/(A" =D HABLYIA) — A8 (A )],
(5.26)
[82(4),87(A")]g
=[1/(A = D) HABEYI(A) — ABLPY (A ))g.

(5.27)
However, the commutator [82(4),87(1')]gis
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[BR()3E (A" ]e
(x+ 1A (k—1)A
[+ DA —«k] [(k—1))A —«]
X [SR((k + DA —x),87((x — DA —x)]g
and, using (5.13), one gets directly
=[1/(AA' = 1)]

x {8LUe s 11y 4 Bl UV gy (5.28)

Hence the commutation rules (5.26)—(5.28) are the same as
in the case of the principal models. From this point on, the
discussion is identical to the one of Sec. IV. Hence the final
result of this section is that the infinite-dimensional algebra
of infinitesimal transformations for the WZo models with
values in G=SU(n), 8SO(n), and Sp(n) is
ge (geR[t,t ~']), where g = su(n), so(n), and sp(n), re-
spectively.

VI. THE o MODELS WITH VALUES IN A RIEMANNIAN
SYMMETRIC SPACE G/H

This final section deals with symmetries for o models
with values in Riemannian symmetric spaces G /H that are
not Lie groups. Again, we shall restrict our study to the
irreducible RSS’s of the classical series. (See Table I of Ref.
6.)

To our knowledge, the problem of finding infinitesimal
symmetries for these models has been addressed in two dif-
ferent ways. Ueno® considered the SO(3) nonlinear o mod-
el, i.e., the o model with values in S % Modifying the linear
system for the SU(2) principal model, he was able to find a
genuine linear system for the reduced system—genuine in
the sense that it is not an algebraically reduced linear system
as we shall use. The problem with his contruction is that is
does not seem to be generalizable for other RSS’s. (It relies
heavily on properties that hold only for 2X2 matrices.)
Moreover, the solutions of the linear system are not uniquely
determined (even though the linear system is supplemented
with normalization conditions) and the correspondence
between solutions of the linear system and of the nonlinear
model is thus more complicated. It is not clear (to us)
whether the algebraic structure carried by the infinitesimal
transformations acting on the solution space of the linear
system remains the same when “projected” on the solution
space of the o model under consideration.

The second approach has been proposed by Uhlen-
beck?? and the present authors.?® In Ref. 22, Uhlenbeck uses
the constraint g> = 1 to characterize the solution space of
the o models with values in complex Grassmannians as a
subset of the solution space of the SU(#n) principal model
and proceeds to find the subalgebra leaving this constraint
satisfied. In Ref. 23, we give an example of a similar con-
struction for the CP" ~ ! o models, making explicit the use of
the Cartan immersion and hence paving the way towards
models with values in other RSS’s.

The content of this approach can be outlined as follows.
As it was shown before, the solution space of the model with
values in G /H appears to be a subset of that of the principal
model with values in G. The Cartan immersion provides an
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algebraic constraint defining this subset. The substance of
Mikhailov’s reduction procedure is to translate this algebra-
icconstraint on the solution space of the linear system. Using
the latter, the algebra of infinitesimal transformations for the
model with values in G /H appears to be a subalgebra of the
algebra found in Sec. IV for the G-valued principal model.
As this section will show, this algebra is, however, no longer
graded with respect to the original gradation. The commuta-
tion rules will be computed and two remarkable graded sub-
algebras identified.

A. The generators satisfying Mikhailov's reduction
condition

Any RSS is defined through an involutive automor-
phism o of the isometry group G. [ The involution o is one of
the four described in (2.13). See Sec. I1 B.] The (necessary)
condition for a field g (£,7) tolieon theimage £, C G of G /H
by the Cartan immersion is

o(g) =g~', for all (&7). (6.1)
On the solutions of the linear systems, this equation reads

o{R(A)) = L(4), (6.2)
where A = A if o does not involve a complex conjugation [o,
ando;inEq. (2.13) ] and A = A ifitdoes (o,and o,). Thisis
Mikhailov’s reduction constraint. [See Eq. (5.8) of Ref. 6
where reductions of the type (6.1) are denoted by o_.] Note
that the reduction (6.2) relates R(A) and L(A) contrarily to
the reductions encountered in Sec. IV which were of the type
group—subgroup.

The infinitesimal transformations 8g in the algebra for
the G /H-valued o models have to preserve the algebraic con-
straint (6.1), i.e., they are such that

o(g+og) =g "'+8",
or, since o is an automorphism,

o(1 + (8g)g™ ") =1+ (8™,
since the original solution is taken to solve the G /H-valued
model. Using o, the differential of the involution o at the
identity, the reduction condition for g finally reads

o, ((58)g7") = (8™ Ng. (6.4)
We shall now calculate the action of o, on the generators
(65Pg)g~ ! and (87°g)g~! of the algebra for the G-valued
principal model,

o, (B (A)glg™") =0 (R(A)TR ~'(A)),

o, (67 (A)g7 ") = o, (L(A)TL ~'(1)).
If the isometry group is a real group G, R (4) does not belong
to G but to G €, the associated complexified group. All the
objects in g or G can be understood to be in g€ or G € by the

inclusion map and the automorphisms o, and o can be ex-
tended in a trivial way. Hence

7, (65 (A)glg™") = 7, (adgey T)

= ada(R(M)O'* (T)

(6.3)

(6.5)

= adL(;l)a* (T)

= (67" (A)g ). (6.6)5
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A similar calculation leads to

o, (167 (A)glg™") = (6 " (g™ g. (6.6),
Hence for solutions whose values are on X, the variations
Or and §, arerelated by the involution o through Egs. (6.6).

The solution of (6.4) is simplified if we define on the
algebra generated by {65”, 67°, Teg, icN} the following
automorphism which will also be denoted by o, for obvious
reasons:

g, (SRM =87, 0, (BT =67, (67)

where 8z and §; are to be understood as infinitesimal trans-
formations globally defined on the whole solution space.
This automorphism is involutive,

oL (BR?) =8x” and ol (677) = &L,

thanks to the involutiveness of o, : g— g. Hence, its eigenval-
vesare + land — 1 and

(ék”“’iﬁ?m“’) (6.8)

are the eigenvectors with eigenvalues + 1, respectively.
Equation (6.4) simply picks out the eigenvectors associated
to + 1. Hence a basis for the algebra f preserving condition
(6.1), i.e., acting on the solution space of the o model with
values in G /H, is

{A"“Et‘)‘,{”’-&-ﬁi“mn, Teg, ieN}. (6.9)
@)

Since the 55” and 87? are, respectively, identified with sub-
spaces ( +1i) and ( —i), respectively, the subalgebra
spanned by (6.9) does not inherit the gradation of the alge-
bra spanned by the §3” and 67” together. In the next sub-
section, we compute the commutation rules.

B. The commutation rules [AY(A),AY(A)]1g

The generating functions turn out to be the most useful
tool to obtain the commutation rules between the AT, Us-
ing the generating function A7(4),

AT(y= S ATOR
i=0

=8T(A) + 67" (1), (6.10)

UVI(i+j Uoo(MN)GE-))
Al ](t+1)+A[ o(¥)] ,

LwyIG+p [20(D). V(- D

A[U,V](zi)+A[l/,ao(V)](0)+A[oo(u),y](o)

UV]1(i+]
A[ ](z+1)’

C. Two remarkable graded subalgebras of f

In order to identify the structure of the algebra f
spanned by the set (6.9), it is natural to look for a gradation
on £. We have not been able to find such gradations over N or
Z. (Gradations over Z, are easy to find but not very informa-
tive.) However, we have found two remarkable infinite-di-
mensional graded subalgebras in f. In neither case is the gra-
dation extendable to the whole algebra f or, at least, not
through a change of basis whose elements are finite linear
combinations of the elements of the other.
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the commutation rules are
[AY(),AY(A")]g
=[1/(A' =) H{A'AIY Q) — AV 1A ) )g

+ [1/(/1/11_ 1)]{5}[10»800.(")80*'](/{)
+6£80_IU&»0,,(V)](/1 "

+5l[igoa.w)go—‘,V](/l " +8,[_"*(U)"“°_]Vg°](/l)}g.
Clearly, for g,e2,,
[0k (V)85 W&o} = 0, [Uigor, (Vg5 '],
(800, (U)g5 V] =0, [85 'Ugno, (N].
Now define the automorphism

oo(X) =goo, (X)g5 !, (6.11)

which depends on the point in the solution space. Observe
moreover that o, is itself an involution:

0'(21 X) = a'o(goo'* (X)go l)
= 800',.. (goa'* (X)go_ ! 0— !
= 800(80)0% (X)o (g5 ")gs !
=X.

The commutation rules can be finally rewritten as

[AY(),A%(A")]g
= [1/(A’' = ) {A APV I(A) — AAYI(A ) )}g

+ [17(A4 " — D {AP 1)

+ Al YT g ). (6.12)

Recall that, in Sec. IV, the 57 had been redefined to absorb
the explicit dependency of the commutation rules on g,,. This
trick is not possible in the present context because the con-
straint (6.4) forces us to mix the generators §; and &, in
precisely the linear combination (6.9).

The commutation rules (6.12) can be spelled out by
expanding around A =4 ' = oo

i>j>l,
j>i>l,
I=j>1,
i=0orj=0.

(6.13)

Let §, and m,, be the eigenspaces of o, associated with
+ 1 and — 1, respectively. The first graded subalgebra
4,C1 is spanned by the generators {AY?, Ue},, ieN}. For
this case, the involution o, can be simply dropped out of the
generating functions in the commutation rules (6.12). Let
us look for a change of basis defined by a generating function

8Y() =LA g(A)= 3 4 ~ BV, (6.14)
i=0

where f(A1) and g(4) are expandable around A = «» and
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such that the subalgebra s, will be graded over N,
[8U® VD] = IUVIG+D  for U,Veb,, i,jeN.  (6.15)

Such commutation rules are summarized in the following
relation [see Eq. (4.7)]:

[8Y(1),8"(4"]
=[1/(A" = D) {80 (A4) — 4819714 ")}. (6.16)
This relation leads to functional eqilations for f(A) and
g(A). Indeed,
[67(2).8"(A "]
=f"[AY(8),A%(g)]
= Vi
(g —g8)gg—1)
x{g(g? - DAY (g) —g'(g® — DA (g}
1 n
= {f'g(g? — NS'YY1(A)
-8 -1
—gflg — DH"I(AN}, (6.17)
where the following shorthand notation has been used:

S=AA), f'=f(A"), g=g(A), and g'=g(1’). Comparing
(6.16) and (6.17), one gets

1 __ fee?-1) _  REe-H
A=A Ag—-g)gg—1) A —g(gg —1)
(g —g)(gg (6.18)

The most general solutions /(1) and g(4) depend on two
constants o and 5 and read

fo ()= £aad (@i + B —3,
g. (1) =(ad +B)/2 + (@l + /A —1.

Since the generating function 8Y(4) is to be expanded
around A = « [see Eq. (6.14)], this requires that the be-
havior of g(4) as A —» « should be linear in A. However,

(6.19)

gi (/{)l_’ (a/l)tl, (6.20)

which forces the set of solutions ( f_(1),g_ (1)) to be dis-
carded. Hence, the solutions (A1) and g(4) are

fid)=ai/(al +B) -4,

6.21
g(A) =(al +B)/2+(ad + B /4 —1. (62D
The first 5Y? are, for@ = 1 and 8 =0,
U0 — AU©®
UM — AV,
YD = AUD 4 AVO) (6.22)

SUG) — AU + 3AVD,
UM . AU@ + 4AUD 4 JAVO
SU(S) = AU®  5AUG) | 1AV,

The inverse of this change of basis can also be written in
terms of a generating function

AY(A) = F(A)8Y(G(A)) (6.23)
again to be expanded around A = «. The functions F(A1)
and G(A) are
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FA)=@A*—1)/(A*—BA+ 1),
G(A) = (A2 —PA + 1)/aAl.
The generating functions (6.14)Aand (6.23) havg a simple
interpretation. Indeed replacing Y” simply by x’ in (6.23)
allows us to identify which polynomials have as coefficients
those of the change of basis,

(6.24)

X(Lx) =FA) 3 (6G()~ %
i=0

_ 1—1/42
1/A2—B/A+1
ax -1
X|1—
A(V/AZ—B/A+1)
1—1/4%

(6.25)

1/A2—B/A —ax/A+1
Setting z=1/4, @ = 1, and B =0, this is nothing but the
generating function for the Chebyshev polynominals of the
first kind C, (x) (Ref. 24):

= 1-22
"C =41,
n;o n (%) l——xz+zz+

for —1<x<1 and |2z] < 1. (6.26)

[Only the zeroth polynomial Cy(x) = 2 is different (by a
factor 2) from the zeroth polynomials defined by (6.25).]
The reason why the Chebyshev polynomials arise in this
context is that their recurrence relations have precisely the
structure of the commutation rules (6.13) restricted to s,.
Indeed

CxX)CGXx)=C,;(x)+C,_;(x), i3 (6.27)
Hence the coefficients in (6.22) are the coefficients in the
expression of the powers x’ of x in terms of Chebyshev poly-
nomials C,. (A similar graded subalgebra has been identi-
fied for the self-dual Yang-Mills system by Chau and Wu.?
However, its existence has been proved recursively and,
hence, the relationship with the Chebyshev polynomials
missed.) Attempts to find a change of basis for the elements
of the form AY®, Uem,, consistent with the gradation
(6.15) have failed. It does not seem possible to find a grada-
tion on f whose restriction to s, is (6.15).

The second graded algebra s, C ¥ is spanned by {AY?,
Uely,, ieveneN and A, Uem,, jodd eN}. Itis also graded
over N:

(840,37 0] = o160+, (628)

for i, jeN and Uand ¥ in h, or m, according to whether i andj
are even or odd, respectively. Since the two subspaces §, or
my, of g alternate in the graded structure, it is harder here to
take advantage of the compactness of the formalism of gen-
erating functions. However it is straightfoward to transform
the results obtained above for s,. Indeed, let us first intro-
duce tilded Chebyshev polynomials C,, (x) by

C,(x) =i""C, (ix). (6.29)

Since the C, (x) are of the same parity as the integer », the
C, (x)’s have real coefficients. Their generating function is

A+22/A—xz—22)+1 (6.30)
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and their recurrence formula is
C.:x)C;(x)=C,p;(x) + (= 1YC,_,;(x), i3,
(6.31)
which has exactly the form of the commutation rules (6.13)
restricted to 4,:
[AVD AVD] = ALUVIG+D

+ ( _ l)jA[U,V](i—j), i>j>1. (6.32)

Again, the coefficients @] in the change of basis

80 =Y ajAvY (6.33)
ji=0
will be the coefficients in the expression of x' in terms of the
tilded polynomials Z'j (x). As before, we did not succeed in
defining a change of basis on a complementary subspace of 5,
compatible with the gradation (6.28) on s,.
Let us recapitulate the results obtained in this section.
A Lie algebra t of infinitesimal transformations for the o
model with values in a RSS G /H has been constructed. Even
though t does not seem to bear any N or Z gradation, two
graded subalgebras s, Ctand 5, Ct have been identified. The
first has structure s,=H®R[t] and the second is s,
= (@ nh)®t*) @ (@ xmet¥ "), where V) and m are the
eigenspaces of the involution o defining the Riemannian sym-
metric space G /H with eigenvalues + 1and — 1, respective-

Iy.
VIl. CONCLUSION

One of the hopes triggered by the introduction of infi-
nitely many symmetry transformations by Dolan was that
they might give rise to an infinite set of conserved quantities
through the Noether theorem and hence be used to solve
both the classical and (if there is no anomaly) the quantum
theories. A closer analysis shows, however, that this is not
quite so. Davies, Houston, Leinaas, and Macfarlane®® ob-
served indeed that the Noether theorem cannot be naively
used because the symmetries are nonlocal. Using a general-
ized Noether theorem, they concluded that the infinitesimal
transformations of g, (the subspace i = 1 in the gradation)
are not canonical transformations. Setting these transforma-
tions of g, in Hamiltonian formalism changes the structure
of the loop algebra. We refer the reader to de Vega, Eichen-
herr, and Maillet”’ for a discussion of the algebraic structure
spanned by these transformations.

These infinite-dimensional Lie algebras are more prom-
ising when viewed as in Takasaki’s approach. There, they
might lead to a better understanding of the structure of the
solution space of nonlinear o models. There exist remarkable
similarities between this formulation of the SDYM system
and the o models (Sec. II1) on the first hand and that of the
Kadomtsev-Petviashvili and Korteweg—de Vries equations
in the framework of the Kyoto school on the other hand. If
these similarities are more than formal, the techniques devel-
oped by the Kyoto school could become available and new
types of solutions for the o models be uncovered. But there
are many unresolved problems.

First, there is the problem of the formal integration of
the o models. Takasaki® had succeeded in giving all formal
power series solutions of the SDYM equations. Harnad and
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one of the authors'® have extended this result to the super-
symmetric (N =3) Yang-Mills equations. However, for
the o models, we have not been able to give such a construc-
tion.

Second, there is no explicit form of the action for the
group associated to these infinitesimal symmetries. Accord-
ing to the work of Ueno and Nakamura* (see also Ref. 8), it
is natural to think that the action of an element in this group
is equivalent to solving a (£,%)-dependent Riemann—Hilbert
problem. But this is a notoriously difficult problem. To our
knowledge, there is no example of solution of a (regular)
Riemann-Hilbert problem for either the SDYM equations
or for the o models.

As a third and last point, we would like to underline the
possibility of the existence of finite dimensional orbits under
the action of this infinite-dimensional group. In the case of
the Kadomtsev—Petviashvili equation, these finite-dimen-
sional orbits are known to exist and can be characterized, at
least formally. It is fair to think that, for the SDYM equa-
tions and/or the o models on Euclidean space, such orbits
exist. On these orbits, only the few first infinitesimal trans-
formations would be linearly independent. Further investi-
gations are necessary to clarify these questions.
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Baker—Campbell-Hausdorff relations are obtained for the connected supergroup associated

with the super-Poincaré algebra iosp(1|4).

I. INTRODUCTION

The super-Poincaré algebra in its simplest form is an
extension of the Poincaré algebra that includes four anti-
commuting generators, called supersymmetry generators, in
addition to the four translation, three rotation, and three
boost generators. This superalgebra has been the basis for
much research in the past 15 years, especially in high-energy
physics, where its representations are involved in the con-
struction of globally supersymmetric field theories, super-
gravities, and superstring theories. A description of many of
these applications may be found in Ref. 1.

Although the basic properties of superalgebras are well
established, the mathematically rigorous definition of super-
groups as abstract groups and as superanalytic supermani-
folds? is relatively recent.® Since the original papers of Rog-
ers, much progress has been made in elucidating the
properties of these supermanifolds*® and supergroups.®’
Explicit results for practical calculations exist, however,
only for a few of the simpler supergroups. Thus, for example,
the supergroup based on the super-Poincaré algebra with
four anticommuting generators, called the super-Poincaré
group, was first presented within Rogers’ formalism in Ref.
3. In this formulation, the supergroup has not been studied
extensively, although there are applications to physics mak-
ing use of Rogers’ formalism.®

The importance of Roger’s supermanifolds stems from
their generality, in that they incorporate various earlier su-
permanifold theories.® Working with Rogers’ supergroups is
advantageous because group elements may be assigned co-
ordinates in ways similar to Lie groups. In Refs. 6 and 7, we
have defined and explored three canonical coordinate
schemes and related them to matrix supergroups. Although
matrix techniques for the super-Poincaré group have also
been used, '° these typically do not take into account Rogers’
supermanifold structure.

In Ref. 7, we examined Baker-Campbell-Hausdorff
(BCH) relations for simple supergroups.”!"'? These formu-
las link different coordinate schemes for a given Lie group or
supergroup. In applications of Lie groups, as, for example, in
the theory of coherent states, it is often convenient, for phys-
ical reasons, to define the group action in one coordinate
scheme but to carry out the group action in a different sys-
tem that is more accessible computationally. Significant ap-
plications of BCH relations to supergroups remain to be
made in the study of supercoherent states.

In this paper, we present BCH relations for the super-
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Poincaré group. The basic forms of the relations are derived
as solutions of a set of differential equations obtained by an
appropriate method.”'* The method was applied previous-
ly” to two other supergroups, CSQM(2) and CIOSP(1]2);
however, the super-Poincaré group has significantly more
generators (14) than either of these cases (3 and 5, respec-
tively). Thus, in addition to their intrinsic interest and prac-
tical application, the calculations presented here provide
further evidence of the viability of the differential equation
approach'? to BCH relations. The differential equation tech-
nique lends itself quite naturally to treating infinite-dimen-
sional unitary representations of noncompact supergroups.
In principle, finite-dimensional matrix methods could en-
counter difficulties in correctly defining BCH formulas for
such cases.

In Sec. II, we present our notation and conventions both
for the super-Poincaré algebra and for the various canonical
and noncanonical forms of the supergroup elements that we
use. The BCH relations for canonical coordinates in normal
sequence are obtained in Sec. I1I, which also contains a de-
scription of the various techniques involved in their deriva-
tion. In Sec. IV, we extend these results to BCH relations for
canonical coordinates in non-normal sequence. The results
are further extended to noncanonical coordinates in Sec. V.

Note that our conventions are those of Refs. 6 and 7,
which were based on those of Rogers.?* We remark, in par-
ticular, that we do not use the summation convention. Also,
we do not repeat here basic results for supergroups devel-
oped elsewhere. To follow the calculations in detail, the
reader will need some familiarity with Ref. 7. However, the
BCH relations presented should be readily accessible for
practical use.

i. THE SU?ER-POINCARE ALGEBRA AND THE SUPER-
POINCARE GROUP

A. The super-Poincaré algebra

The super-Poincaré algebra with four supersymmetry
generators may be derived from the simple superalgebra
osp(1]4) by an Inénii-Wigner contraction'* that leaves the
usual Poincaré algebra as a subalgebra. The procedure is
analogous to that presented in Ref. 7 for obtaining iosp(1|2)
from osp(1|2). There exist also other inhomogeneous super-
algebras, generically referred to as N-extended super-Poin-
caré algebras, that may be obtained by contraction from the
simple superalgebra osp(V |4). In the remainder of this pa-
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per, “super-Poincaré algebra” is taken to mean exclusively
the case N = 1.

In our notation, the nonvanishing graded commutation
relations of the super-Poincaré algebra are

{Q1:Q3} =P, {Qz,Qs} =P,

(2.1)
{QI’Q4} =P, {Qz»Q:t} =Py
[Jsz] = — Qv [JZ’Ql] = %Ql: (2.2)
[Jz’Qz] = - %Qz’ [Jsan] = Qz;
V@] = 05, [J505] = — %er (2.3)
[Jer4] = %Qm [J6!Q3] = - Q4;
[V,P5] = =P, UnP]l=—P,
[J29P1] = %Pv [Jz,P3] = - %P3’ (2.4)
[J2,P,] =%P2’ [V2,P] = _'%P‘t,
[P5,P\] =P;, [P3,P,] =P,
[J4,P2] = Pn [J4:P4] = P3,
[Pl = = 4P, [JsPr] =14P,, 2.5)
[JS:P3] = “%Ps» [JS!P4] =5P4,
[J6!Pl] = —P2, [J67P3]= — Py
Vil = —Jy, [Jeds] =T,
[Jifz]l = =20, [J,Js] =275, (2.6)
[odsl = =5 [Iss]l = s

The Q,,, m = 1,...,4, generate supersymmetry transfor-
mations, the P;, | = 1,...,4, generate translations, and the J,,,
n = 1,...,6, generate rotations and boosts. These generators
satisfy the following adjoint relations':

Q}‘=—Q3, QI=-Q4’ Q§=—Q1,
Pl =P, P§=P3, Pl =P, P}=P,
JJ{=J4’ J;=J5’ J§=J5’
Ji=J, Ji=J, Ji=J,

which are essential for computing unitary supergroup opera-
tors.

Several different conventions and notations for the su-
per-Poincaré algebra exist in the literature. In Egs. (2.1)-
(2.7), we have adopted the conventions of Ref. 1, Chap. 3. To
make formulas and calculations less cumbersome, however,
our notation is different. The notation of Ref. 1 may be recov-
ered by effectuating the following replacements:

QI = - Qz’
2.7)

0-Q,, PP, L, JoJy,, JoJ L,
0,0 _, PP b2 Seod s 1, (2.8)
00 ., ProP_ ., JioJ__, JeooJ o 2,

Q4‘—’Q =, P4‘—>P _

The conventions of Ref. 1 are especially convenient for
calculational purposes. Note, however, that the operators P,
andJ, arenot the usual momentum and angular-momentum
physical observables. The P, are light-cone-type variables
defined’ as linear combinations of the standard four-mo-
menta. Furthermore, as is usual practice, the Hermitian gen-
erators of the Lorentz algebra so(3,1) have been linearly
combined to form the J,. We remark that any BCH relation
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presented in this paper may readily be converted to an
expression in terms of the standard four-momenta, using
Lemma 2 of Ref. 7. This is possible because the P, form an
Abelian subalgebra of iosp(1[4).

B. The super-Poincaré group

Associated with the super-Poincaré algebra is a con-
nected supergroup whose elements may be obtained (see
Theorem 2 of Ref. 6) by exponentiation of the superalgebra
generators with Grassmann-valued variables. We refer to
this supergroup as the super-Poincaré group.

The precise form of the supergroup elements depends
upon the parametrization scheme adopted for the exponen-
tiation. For supergroups, there exist three kinds of canonical
coordinates.®’ For elements g of the super-Poincaré group,
canonical coordinates of the first kind take the form

4 4 6
w=cwp( S PP+ 3 0t SPL) )
I=1 m=1 n=1

where the p’ and j" are variables taking values in the even part
°B, of a Grassmann algebra B, over C*, and where the g™
are variables taking values in the odd part 'B, . For a com-
plete description of this construction and the discussion that
follows for the case of a general supergroup, the reader
should consult Refs. 6 and 7. Note that a Hermitian basis for
the Grassmann algebra is established in Kostelecky and Ra-
bin.®

Canonical coordinates of the second kind for a super-
group are constructed® in terms of exponentials of the indi-
vidual basis elements of the Lie algebra that is associated
with the superalgebra in question. However, because each
Q,, anticommutes with itself, it turns out that these canoni-
cal coordinates are identical to the canonical coordinates of
the third kind (corollary to Theorem 1 of Ref. 7). Therefore,
in this paper we proceed directly to consideration of canoni-
cal coordinates of the third kind, which for elements g of the
super-Poincaré group take the form

4 4 6
gm = [] exp(@’P)) [] exp(B"Q,.) [] exp(¥'.).
I=1 m=1 n=1
(2.10)

Here, @', "€"B, and f™€'B, . Note that the order of appear-
ance of the 14 exponentials in Eq. (2.10) is important; by
definition, we say that this sequence is “normal.”” Other
non-normal sequences are possible and, indeed, will appear
in the subsequent sections.

In addition to the canonical coordinate schemes, var-
ious noncanonical parametrizations may also be defined. In
Sec. V, we shall consider extensions of the BCH relations to
certain noncanonical coordinate schemes. For elements g of
the super-Poincaré group, these noncanonical coordinates
take the form

4 4 6
ge = exp( ¥ a’P,) exp ( Sb "'Qm) exp ( A ),
I=1 m=1 n=1
(2.11)
where a',c"e®B,; and b ™e!B, . Again, this is defined as the
normal sequence; several non-normal sequences may also be
introduced.
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To obtain unitary supergroup operators in terms of ca-
nonical coordinates of the first kind, Eq. (2.9), we require
the condition

gl =g " (2.12)
Computing the adjoint and the inverse of (2.9) and using the

properties (2.7) of the generators, we obtain the conditions
on the Grassmann parameters,

C=—@"H* ¢=—(H"
pP'=—HY" PP=—0EH*% p=—0H (2.13)
=—Uh% P=—(P% F=—-("

Note that p' and p* are pure imaginary as a consequence of
the fact that P, and P, are self-adjoint.

Thus requiring that the parameters p’, ¢™, j* of Eq.
(2.9) satisfy Eq. (2.13) ensures that the supergroup ele-
ments are unitary. In the remainder of the paper, the con-
straints (2.13) are not assumed. However, they may be im-

posed if desired.

lil. BCH RELATIONS FOR CANONICAL COORDINATES
IN NORMAL SEQUENCE

Here, we construct explicitly the BCH relations
between canonical coordinates of the first and third kinds
using the differential equation method expounded in Ref. 7.
Only canonical coordinates of the third kind in normal se-
quence are considered in this section.

Applying the general method of Ref. 7, we introduce a
real parameter ¢ and write

exv[ (2 PP+ Z "0, + Z )]

n=1
4

H exp(a'’P;.)

4
I1 exp(6Q,)
m=1

X H exp(y"J,), 3.1

n =1
where a'’, B™, ¥" are taken as unknown functions of p’, g™,
jfand &:
al’ — al'(pl’qm’jn’t)eoBL .
ﬁ m _ am’(pl’qm’jn’t)elBL ,
7’"‘ = ?/" (Pl,qm)j"’t)GOBL s
p.j"e°B,, q"¢'B,, teR.
For t = 1, Eq. (3.1) and knowledge of the functions in Eq.
(3.2) together form the desired BCH relation.
We can obtain the explicit form of Egs. (3.2) by solving
a set of 14 coupled linear first-order differential equations in
the real parameter . These equations are obtained by differ-
entiating Eq. (3.1), simplifying, and equating coefficients of
the superalgebra generators. The appropriate boundary con-
ditions’ are a'(0) = 8™(0) = 9"(0) = 0. The details of the
process for obtaining the differential equations have been
discussed in Ref. 7; the present case is a straightforward ap-
plication of those techniques.

The methods yield the following 14 differential equa-
tions, where a dot above a symbol means differentiation with

3.2)
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respect to ¢:

Yeer =J5, (3.3)
Y+ 2% =, (3.4)
Y 7Y+ (e =5, (3.5)
Ye " =p, (3.6)
Y —2y'Pe " =7, (3.7)
Y =rP+ e T =1, (3.8)
B =BV + 1" (B>~ VB =¢", (3.9)
B3+ (B%—vB*Y)

+1 eV B~ VB —BY =7, (3.10)
B> 4B —ye " (y'B* + B =¢", (3.11)
B'+ VB>~V (B +1B)

+Pe YN B+7'B) =4, (3.12)
ot _5264 + 57',2(14

— Ve 7(@’ +7'a") + * (B84 —a¥)

+ ¥ a® — BB + ¥ (B*B* —a®)] =p*, (3.13)
a3 _B2B3 + 5}"2(13

—Pe~" (@' +7'@) + BB —a*) + i

X[a® — BB+ 2/ (BB —a")] +1ey

X[a®—B?B* + ¥ (B*B* —a*)] =p°, (3.14)

_'3134_*_(147',1

—Ua* +7'a®) + ¥Yle " (a® + y'ah)

+1P (BB —a®) + %

X[a'-B'B>+ (BB —aD] =p, (3.15)

_BlBs +a37',1 _ 7',2(£a1 + 7,las)

+PYe (@ +v'a’) + BB~ a?) + 17

X[a'—B'B° +2/'(B'B* —a®)] + e’y

X[a' -8B+ (B'B*—a*)] =p' (3.16)
The remainder of this section is concerned with solving these
equations.

In fact, each of the ordered sets of Egs. {(3.3)-(3.5)},
{(3.6)-(3.8)}, {(3.9)-(3.10)}, and {(3.11)-(3.12)} is
self-coupled and can be solved using only the solutions to the
sets occurring earlier in the ordered sequence, as we show
below. This occurs because the J,, form a direct-product Lie
subalgebra, because the Q,, commute with the P,, and be-
cause @,,0, anticommute with Q,,0,, respectively.

The differential equations thus admit a natural sequence
for solution. We outline first the solution of Egs. (3.3)-
(3.5). Substitution of (3.3) and (3.4) into (3.5) yields a
Riccati equation’® for y*:

Y+ =AY =5

The solution may be shown by standard methods'® to be

(3.17)

v* =j* sinh(K,#)/[K, cosh(K,t) + } /° sinh(K,1)],
(3.18)
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where

A = 1) =7,
o, =sgn[}()? =41, 6, = + o, (3.19)
K, =5,A,,

and where we used the initial condition *(0) = 0. Then, the
solutions for 7 and ° can be obtained by straightforward
integration of Eq. (3.4) followed by (3.3), again using the
initial conditions:

¥’ =2In[cosh(Ky) + 1K ; 'sinh(K,1)], (3.20)

¥® =j®sinh(K,1)/[K, cosh(K,t) + L sinh(K,¢) 1.

(3.21)

By inspection, the corresponding solutions 7', 3%, ¥ to
Egs. (3.6)-(3.8) are obtained by substituting j°<;°,
P =72 o, Yoy, e — ¥, Yoy, Explicitly, this
yields

y' =" sinh(K2)/[K, cosh(Kt) — }/*sinh(K )], (3.22)
= —2In[cosh(K,) — 3K [ 'sinh(Ky1)],  (323)
y® =% sinh(K,2)/[K, cosh(K 1) — }*sinh(K,1)], (3.24)

where

A% = 40D =17

oy =sgn(}()?—jF), &= +o,

K, =464,

The results (3.18) and (3.20)-(3.24) are the same as
those yielded for a BCH relation of the direct-product Lie
algebra su(1,1) @ su(1,1) (see, for example, Ref. 13). This
occurs because the J,, generate this Lie subalgebra of the
super-Poincaré algebra.

Next, we turn to th_e sc_)lution of Egs. (3.9) and (3.10).
By substitution for 9, 7°, ¥° from Egs. (3.3)-(3.5), we ob-
tain

B*—AFB*+1B=¢", (3.26)

BB+%1'SB3_]4B4=q3' (3.27)
Solving Eq. (3.26) for 8> and using the result together with
its # derivative in Eq. (3.27) yields a second-order equation
for B*. The solution is straightforward, as is the subsequent
solution of (3.26). Fixing the four integration constants by

using the initial conditions and by requiring consistency of
the solutions with Egs. (3.26) and (3.27), we find

B* = ¢*°K ; 'sinh(K,t)

(3.25)

+ K ;723 ¢* —j°¢ )cosh(K,t) — 1), (3.28)
B® = ¢°K ;' sinh(K,?)
— K748 — /g (eosh(Kon) — 1) (3.29)

In a similar manner, Eqs. (3.11) and (3.12) may be
J

jlj4e/1,t jlj4e/12t jlj4e/131
Jl¢5+ e].,t __j1¢5_ e/l,z —j1¢5_ ezl,r
\I’(t) = _ -4¢2_ e/l,t j4¢2+ elzt __j4¢2_ e/'l;t
—F P g P
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reexpressed as

B*+1/B*-/B' =4, (3.30)

B' =3/ B +iB*=q". (3.31)
Making the substitutions *<>%, < — /%, j*oj', B4B7,
B3o — B',q"q% ¢* — ¢’ enablesustowrite the solutions
by inspection:

B2 =q*K [ !sinh(K,?)

— K242 — g )(cosh(K ) — 1),  (3.32)
B' =q'K [ 'sinh(K,?)
+K 72U — g cosh(Kyr) — 1), (3.33)

We are left with the four coupled differential Eqgs.
(3.13)—(3.16) for &', &3, &>, @*. As for the other variables,
these equations may be simplified by substitution of Egs.
(3.3)-(3.12) for 1/‘ and B ™. Introducing the four-compo-
nent column vector

(3.34)

these four equations may be written in abbreviated form as

a = Pa + r(2). (3.35)
Here, P is the constant 4 X 4 matrix
T S
_j6 j+ 0 _jl
= s .36
i s 0 =y p (3.36)
o ;7 —=r£ —j
where
JE =47 (3.37)

and where r(?) is the four-component vector given by
rl=qu3+pl’ r2=qu4+P2,

(3.38)
r’a=ﬁ2q3+p3’ r4=,32q4+174-
Equation (3.35) has as general solution'®
t
a=‘l/(t)c+\l’(t)f W 1(s)r(s)ds. (3.39)
0

The constant vector ¢ is to be determined by the initial condi-
tions. Also, W(¢) is a fundamental 4 X 4 matrix solution, '
i.e., ¥(¢) is a 4 X4 matrix whose columns are four linearly
independent solutions to the homogeneous equations
& = Pa. Since ¥ (0) #0, as we argue below, the initial condi-
tion a(0) = 0 implies ¢ = 0.

A fundamental matrix solution to the homogeneous
equation & = Pa may be constructed by applying the trial
solution a = Ae* and diagonalizing the resulting matrix of
coeflicients for A. The method is described in detail in Ref.
16. We obtain

Jtes
JE,
T K (340)
+
¢ #7 &
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where

A«1=—2«2=K1+K2, A3=_A4=K1—K2,
and

¢ =K, +47 ¢, =K, +1/.
The inverse fundamental matrix may be calculated as

¢2+ ¢5_ e—l,t j4¢2+ e—/l,t
¢2_ ¢5+ e—,lzt — 4¢2_ e—,izt
V1) = (4K K, j5*) !
( ) ( W2 JJ ) ¢2+ ¢5+e—,131 _ -4¢2+e—/{,t
¢2_ ¢S_ e—,i.t j4¢2_ e—l‘t

(3.41)
(3.42)
_jl¢5— e—/l.! _jljde—,{,
145 — At 14— At
JoLe ™ —jje "
~1+5 — Aat 14 — Ayt (343)
—j e jren
j1¢5 e—-A‘r j]jtte—/ht

With expressions (3.38), (3.40), and (3.43), the general solution for & may now be obtained from Eq. (3.39). The
integrations are straightforward. After some algebra, the expression for &' takes the form

a' =2K k ~%¢'C?*sinh(K,t) + k “*C'C? cosh(K ) + k ~%K '[K, cosh(K,t) + K,1[q'¢’k — }C'C?]
+ k2K 2K, cosh(K_t) + K,][ — ¢'¢*k — 4C'C?] + k ~2K,K 7 'sinh(K 1) [K,C'¢® — K14'C?]
— k~K,K ~'sinh(K_0) [K,C '¢* + K,g'C?] + 1k ~'K 7'[1 — cosh(K .01 [K,D' — K,D?)
— 1k 'K Z'[1 —cosh(K_t)] (K, D' + K,D?] + 3k ~'K 7 'sinh(K 1) [p'k — (D3}’ — 2D%*)]

+ 3k ~'K ~'sinh(K_1) [p'k + }(D 3 — 2D4*)].

In this expression, we have defined

k=2K K, K, =K, +K, (3.45)
and

C'=g¢'*-2¢%', C*’=¢q% —24%",

D'=p'f —2p%', D*=p* -2, (3.46)

D3 =p' —2p%', D*=p% — 2"

The reader should note that C ! and C?, like the g™, are odd
Grassmann variables.

Similarly, the solutions for @ a? and a* may be ob-
tained. Due to the structure of the differential equations
(3.35), these solutions can be expressed in the form of Eq.
(3.44) with simple parameter substitutions. If we write ex-
plicitly the functional dependence of &' in Eq. (3.44) as

a' =o' '\ P p e %’ 1 A P PP, (34T)
then the solutions a2, @, a* may be written
a2 — al (p2,Pl’p4,p3;ql’q2’q4,q3;
INESP =10 =P =1, (3.48)
@’ =o' @P’p'r'pieta e
— 7P =7 =707, (3.49)
a4 —_ a](p4’p3’p2’}’1;q2,ql’q4,q3;
- == =5 =F =7, (3.50)

Note in particular that under any of these parameter changes
K, and K, remain unaffected.

In summary, we have obtained in this section the BCH
relation between canonical coordinates of the first and third
kinds, in normal sequence. The relation is of the form of Egs.
(3.1) and (3.2) with t = 1, where the 14 equations in (3.2)
are given explicitly by Egs. (3.18), (3.20)-(3.24), (3.28),
(3.29), (3.32), (3.33), (3.44), and (3.48)-(3.50). We re-
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(3.44)

mark that the results may also be applied in the limit in
which any of the parameters p’, g™, /" are taken to zero.

1V. BCH RELATIONS FOR CANONICAL COORDINATES
IN NON-NORMAL SEQUENCE

In this section, we construct BCH relations between ca-
nonical coordinates of the first and third kinds for certain
non-normal sequences. Although we could proceed as in
Sec. III, obtaining and solving sets of 14 differential equa-
tions for each BCH relation, it is simpler to proceed by relat-
ing the various non-normal sequences for canonical coordi-
nates of the third kind to the normal sequence. Combined
with the BCH relation aiready obtained, these results will
yield BCH relations of the desired type.

We begin by recalling that the P, commute among them-
selves and with the Q,,. Furthermore, Q,, @, anticommute
with Q,,Q,, respectively. Therefore, by Lemma 2 of Ref. 7,
the explicit solutions of the form (3.2) that we have obtained
in Sec. III will be valid for a BCH relation of the form (3.1)
but with the exponentials involving P,. and Q,, taken in any
order, provided all exponentials with P,. and @, are to the
left of those with J,. and provided the exponentials with Q,,
Q, appear to the left of those with Q; and Q,. In particular,
this means that the BCH relation

4 4 6
exp (IZ PP+ Y 470, + Y J'"J,.)
=1 m=1

n=1

4 4 6
= ] w8 ") [T expta’P;) ] exp(rJ,)
m=1 =1 n =
4.1)

is obtained with the same explicit solutions of the form (3.2)
as we found in Sec. III.
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Next, we establish a link of the following kind:

Hexp(aP,) H exp(B "Q..) H exp(¥'J,)

I=1 n=1

4
=[] exp(a'P;.) H exp(y"J,) H exp(0™ Q. ),
I'=1 m =1
(4.2)

where the quantities o™ are functions of 8™ and y". We
proceed by inserting the identity 7, in the form

6 1
I= [l exp (¥Vo) I exp (—¥* i),
k=1 k'=6

between the P; and Q,, exponentiations on the left-hand side
of Eq. (4.2). Then, the piece

H exp (—*J:.) H exp(B "Q,,) H exp(y"J,)
n=1
4.4)

of the resulting expression can be simplified by repeated use
of Theorem 2, Theorem 3, and Lemma 7 of Ref. 7, in a fash-
ion analogous to their use in obtaining the differential equa-
tions (3.3)-(3.16).

Thus, for example, we find

4
— 7)) [[ exp(B "Q.)exp(y'Vy)

m=1
=e” Yllleﬂlgle?'ljl e ’V'Jleﬂzgze‘yl-’l e ',

X eB’QJey'J, e~ y'Jleﬂ'Qey'Jl
=(1+8'Q)[1+B8%Q,+7'Q)]

X (1+8°Q2,)(1+8Q,)
— e(ﬂl +5271)Q|e82QzeazgzeB‘Qo.

(4.3)

exp(

(4.5)

Proceeding in this manner ultimately yields expressions for
the o™ of Eq. (4.2) in terms of 8 ™ and ™

— (Bl +Bz7’l) e—(x/z)r"
P =Bze(1/zw2 _ (31 +52?’4)1’3€_(V2m:

— (BS _347/) e(l/2)y‘”
0_4 :_B4e--—(l/2)7fs + (53 _

(4.6)
3474)7%(1/2)1»’_

Substitution of the solutions for 8™, 9" obtained in Sec.
III and using the resulting form of Eq. (4.2) yields the BCH
relation of the form

exv(Z PP+ Z q"Qn + Z J"J)

n=1

4 4
- Hexp(a"P,,) H exp(y"J,) [[ exp(a™ Q).
I'=1 m =1
4.7)

By an analogous method, we can establish the BCH re-
lation of the type

exv( Zp’Pz + 2 970, + 2 JY )

m=1 n=1

n =1

4

4
= [I exp(B™Q..) Z exp(v"J,) [[ expo’Pp).
m=1 n=1 1'"=1
(4.8)
In this case, the p'" are functions of the a’ and ¥” of Sec. III,

2485 J. Math. Phys., Vol. 28, No. 10, October 1987

given by
p' = (@' — a¥t — &Y' — a*ylpe— WO,
P2 = (@' — a + @) — a*ylyP)yfe— VT
+ (@* + a*y')e— T,
Y + ¥ — atp e VAT “9)
+ (@® — a*pt)e VT, )
pt= — (a! — & + &Py — ay ) pPyfe— (/DT
— (&% + @)~ T
4 (@® — @) P VI | gt VDY

In these equations, ¥ * = y + 7°. Again, substitution of the
solutions of Sec. III for o’ and 3" yields the desired BCH
relation.

Finally, consider the BCH relations of the type

exo 3 PP+ S 0+ 3 1)

m=1

p=—(a'—

6

4 4
= Hlexp(y"'J,,/) Il exee"Pr) I exp(o™Q.).
'l'= I'=1 m'sl
(4.10)

This is, in fact, a class of relations of the same size as that of
the coordinates in normal sequence, for the same reasons
[see Eq. (4.1) and the associated discussion]. Furthermore,
the solution is already known, since Eq. (4.10) can be ob-
tained from Eq. (4.7) by applying a similar derivation to
that of Eq. (4.8). Thus, the solutions for p'" and o™ in Eq.
(4.10) are just those of Eqs. (4.6) and (4.9). As before,
substitution of the solutions for &', 8 ™, and " from Sec. III
then yields the desired BCH relation.

In summary, this section contains BCH relations for
canonical coordinates in non-normal sequence. Schemati-
cally, the expressions obtained relate e*F+2+% to
Me9leTle’ and certain permutations [Eq. (4.1)], to
IlefTle’Me? [Eqs. (4.6) and (4.7)], to Ie9lle’Tle” [Eqs.
(4.8) and (4.9) ], and to ITe’Ile’T1e? and certain permuta-
tions [ Eq. (4.10) ]. Note that all expressions remain valid in
the limit in which any of the parameters p’, g™, j* are taken to
zZero.

V. BCH RELATIONS FOR NONCANONICAL
COORDINATES

It is also possible to obtain BCH relations between ca-
nonical coordinates of the first kind and certain noncanoni-
cal coordinate schemes. We present in this section some of
the methods for obtaining such relations.

First, consider noncanonical coordinates as defined in
Eq. (2.11). A relationship is readily found between canoni-
cal coordinates of the third kind in normal sequence, Eq.
(2.10), and the noncanonical coordinates of Eq. (2.11).
From this, BCH relation between Eqs. (2.9) and (2.11) can
be established.

To begin, we note that since the J, form a subalgebra of
the Poincaré subalgebra, there exists a BCH relation of the
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form

6 6
I—[l exp("J,) = exp( le"J,, ),

where the ¥ are given as functions of the j* by Egs. (3.18)
and (3.20)-(3.24). Next, recalling that the P, commute
among themselves, we have

H exp(a'P)) = exp( S a"'py. )

I"=1

(5.1)

(5.2)

Finally, using the anticommutators for the Q,, in Eq. (2.1)
and also Lemma 2 of Ref. 7, we have

4
I1 exp(B"Q.)
m=1
=exp(B'Q; +B>Q)exp(B8°Qs + B*Q,)
4
=exp( 5 670,

m=1

+118'0, +8°0,8°0: +5°2.])

4
= exp( 3 A0, Jexp(—118'6°P,
m=1
+B'8*P,+ B°B°P; + B’BP,)). (5.3)
Combining Eqgs. (5.1)—(5.3) and the results of Sec. ITI
yields the desired BCH relation as

- exp(z‘, PP+ 2 9"Cm + Z Y. )

n=1

= exp( z a'p, )exp( S B"Qw )CXP( z Y )»

m =1

(54)
where
1 4l 181133 2 _ 2 _ 181834
a=a —4BB° a=a" —iB " (5.5)
a3=a3_iﬂ233’ a4=a4_£ﬂ234‘

Since the P, commute with the Q,,, we can interchange
the order of the P,. and Q,,. exponentials on the right-hand
side of Eq. (5.4) without changing the solutions (5.5). This
immediately gives another BCH relation with the noncanon-
ical coordinates in non-normal sequence:

eXP(Z PP+ Z q"Qn + 2 Y )

n=1

= CXP(,,,Z 1 a0, )exp( 24—:1 a 'P,.)exp(ni=1 j’"J,,.).

(5.6)

Other non-normal sequences are possible for this type of
noncanonical coordinates. For instance, a BCH relation of
the form

exp(z PP, + z "Qu+ 3 79,

n=1
4
e $ 0o £, 7. Jou £ #1.)
m = n =1 =1

(5.7)
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may be obtained by insertion of the identity 7,
6 6
I= exp( S j"Jk)exp( -3 j"'Jk-)
k=1 k'=1

6 1
=] exp(Y7,) II exp( — Ve ),
k=1 k'=6

between the O, and P,. exponentials on the right-hand side
of Eq. (5.6). From the similarity to the analysis leading to
Eq. (4.8), we find immediately

x=P(a1,7’"), (5-9)

where p(a',y") are given by Egs. (4.9). This establishes the
explicit form of the BCH relation (5.7).
Next, consider the BCH relation of the type

exp( > PP+ ,,.2_1 q"Qm + "2_211”1 )
=exp(lila P, )exp( z 7Y, )CXP(MZI b™ Qm)
(5.10)

We obtain this form by inserting the identity 7 of Eq. (5.8)
between the P;. and Q,,. exponentials of Eq. (5.4) and using

(5.8)

6

1 4
I e —;/"Jk,)exp( Elq”"Qm') I exp7,)
k'=6 m = ‘

= CXPLEGCKP( — 7 )( ﬁ q""Q.,.')

m =1

6
x 10 exp(Y"J,) |, (5.11)

n=1
which follows from Theorem 3 of Ref. 7. Thus the ™ of Eq.
(5.10) must be functions of g™ and y”. By comparison with
the calculation leading to Eq. (4.7), we find

b=o0o(q"v"), (5.12)

where o(B ",7") are the solutions (4.6). Thus the BCH rela-
tion (5.10) is also explicitly obtained.
Finally, we may readily determine the BCH relations

exv[Zp’Pz + 2 q"Qn + 2 ]

n=1

= exp( z F T )exp( z x''P,. )exp(mz_l b" Q,,,)
—exp( z FT )exp(mz_1 b™Q,. )exp( ilx"P,y).
(5.13)

The identity (5.8) is inserted in front of the P,. exponential
of Eq. (5.10), and the steps leading to Eq. (5.9) are repeat-
ed. Thus the expressions for ™ and x'" in Eq. (5.13) are
precisely those of Egs. (5.9) and (5.12).

In this section, we have obtained BCH relations for cer-
tain noncanonical coordinates. In schematic form, the re-
sults may be summarized as relating e>*+ 2+ to ¢*fe>%*’
[Egs. (5.4) and (5.5)], to e*%*fe* [Eq. (5.6)], to

e*%>e** [Eqs. (5.7) and (5.9) ], to e*¥e*/e*2 [ Eqgs. (5.10)
and (5.12)], and to e¥e*fe*Q or e>e*%>F [Eq.(5.13)]. As
for other BCH relations in this paper, the results remain
valid in the limit in which any of the parameters p/, g™, /" are
taken to zero.
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Chiral symmetry breakdown. |. Gauge dependence in constant vertex

approximation
D. Atkinson and P. W. Johnson®
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(Received 7 March 1987; accepted for publication 13 May 1987)

An approximate quark propagator equation in a Landau-like gauge is analyzed and it is shown
that there is a critical value of the coupling constant, corresponding to the onset of dynamical
chiral symmetry breakdown, provided that (a) there is an infrared cutoff, which can be
supplied by an effective gluon mass, and (b) there is an ultraviolet cutoff, which may be
engendered by a running coupling constant. Dynamical chiral symmetry breakdown is shown
not to occur in other gauges under the same circumstances, thus casting doubt upon the

approximations commonly used.

I. INTRODUCTION

The idea that quarks obtain effective (constituent)
masses as a result of a dynamical breakdown of chiral sym-
metry has received a great deal of attention in recent
years.'~'° We propose to examine this attractive hypothesis
by a detailed analysis of truncated Dyson~Schwinger equa-
tions for the quark propagator. In this paper, we will restrict
attention to the approximation in which the gluon—quark
vertex is replaced by the bare value, whereas the gluon ac-
quires an effective mass, while its propagator retains the ten-
sor structure of the bare propagator. This resembles the first
Johnson-Baker-Willey (JBW) approximation for the elec-
tron propagator of QED.'-1?

In pioneering work over a decade ago, Maskawa and
Nakajima? studied the truncated Dyson-Schwinger equa-
tion in a JBW-like approximation. Their analysis in a “Lan-
dau-like” gauge showed that spontaneous chiral symmetry
breakdown occurs when a Pauli-Villars ultraviolet cutoff
parameter A is introduced, and that spontaneous break-
down survives in the continuum limit A — o . We obtain sim-
ilar conclusions in that gauge, but using a smooth ultraviolet
cutoff function, the choice being motivated by QCD. Like
Maskawa and Nakajima in Ref. 2, and unlike several recent
authors,?>® we have gone to some care in analyzing coupled
Dyson-Schwinger equations for the two functions appear-
ing in the quark propagator. The formalism is described in
Sec. II, and the Landau-like gauge is analyzed in Sec. III.

The Landau-like gauge of Ref. 2 leads to Dyson-
Schwinger equations which are relatively well behaved in the
ultraviolet, whereas in other covariant gauges they become
more singular. The case of Feynman gauge with finite mo-
mentum cutoff parameter A has also been analyzed in Ref. 2.
We show in Sec. IV that, because of ultraviolet singularities
in the continuum limit, A - o, in Feynman gauge the regu-
larized quark propagator corresponds to massless, free
quarks. The Dyson—~Schwinger equations exhibit spontane-
ous chiral symmetry breaking at finite cutoff A, because the

*) Permanent address: Physics Department, Iilinois Institute of Technolo-
gy, Chicago, Illinois 60616.
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quark mass operator satisfies a homogeneous Fredholm in-
tegral equation in that case, but the solution becomes “‘trivi-
alized” upon renormalization in the continuum limit. Our
logarithmic ultraviolet cutoff function reduces the degree of
the divergence in the continuum limit, before renormaliza-
tion, from log A (Ref. 2) to log log A; but it does not elimi-
nate the need for regularization.

We have established that, in the JBW-like approxima-
tion, the quark propagator exhibits a sensitivity to the choice
of gauge. This apparent “gauge dependence” of spontaneous
chiral symmetry breaking is a consequence of the fact that
truncated Dyson-Schwinger equations in the JBW-like
scheme have ultraviolet singularities in most gauges. It is our
conclusion that such a truncation is inadequate for studying
spontaneous chiral symmetry breaking, and we intend in the
future to study the problem for truncation schemes in which
our choice of vertex function is motivated by the Slavnov-
Taylor identities. In addition, asymptotic freedom imposes
constraints upon the ultraviolet behavior of the propagator
and vertex function.

1I. DYSON-SCHWINGER EQUATION
The quark propagator satisfies the integral equation
il
(2m)*

S 'p)=p— fd“p’ YuSE@)Y,DE (P —p),

(2.1)

where we have approximated the full by the bare vertex.
Here A is the square of the QCD coupling constant, times a
color factor, and the bare quark mass is zero. We suppose
that the gluon has an effective mass, generated by self-inter-
action. The correct form for a massive vector propagator in a
gauge theory is

1

S S _k“kv_]
k?—m?+ie )

— g 4 (1 —
{ & (1-a) kX —am?+ie
(2.2)

We multiply this by a factore( — & 2) that satisfies 0 (0) = 1
and o( — k?) ~[log( —k?)] 'as — k%— 0, in order to
allow for the decrease of the running coupling constant in a
non-Abelian gauge theory. Thus
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_g}tv kpkv
2 _m?+ie m?

D (k) =w( — k2)[ p

(2'3)

where we have rearranged the tensor for calculational con-
venience and where a is the gauge parameter. A suitable

form for w is
kz 1 1 kz . —1
—_——e— -t logl | —— — i€ R
k2—m2+i6[ g( m? )}
(2.4)

although the results do not depend on the detailed expres-
sion.
The inverse quark propagator has the form

o(—k?) =

S ') =a(—p») +8(—p%), (2.5)
where a and B are scalar functions, so that
Si(p) =—2(=2) —pB(—p") (2.6)

a(—p*) —pB2(—-pY)

Upon insertion of these formulas into (2.1), two coupled
equations for @ and B can be obtained; and, after Wick rota-
tion, one gets (with x = p?, y = p'?),

A J‘” ya(y)
== dy K(x,p) ————t—, 2.7)
a(x) v (x.p) 20) +98°0)
N yBQ)
=1 —_ d e e 2_8
Ax) 172J(; v L) a*(y) +yB*(») (2:8)

where

. 3 a
K(x’y):’:J‘; dgslnze'w(kz)[ k2+m2 + k2+am2 ]

(2.9)
and
2
L{xy) =J:d6—;—%’f—’—’)1; [Z(y/x)"2 cos & + (1 —a)
2 1/2
x (y—x)k>*[(p/x)""*cos 6 — 1] ]sin2 6,
k?+ am?
(2.10)
with
k2= (p' —p)2=x+y—2(xp)"*cos 6. (2.11)

We require that @(x) be a monotonically decreasing
function of x for Euclidean momenta. With the Euclidean
version of (2.4), namely,

x X -1
ogi-+2)]
x+m2[0g +m2

it is not possible to evaluate the kernels K and L in terms of
elementary functions.

A simplification is to replace @ (k ?) by unity, i.e., the
coupling does not run. This has a profound (and nonphysi-
cal) effect on the behavior of the equation. The kernels can
now be evaluated,

K(xy) =3 k(x,y,m*) + } ak(x,p,am?),

w(x) = (2.12)

(2.13)
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L(xp) =}yk*(xy,m*) — (1/16m*x)
X[ —x)? + m* + x) Jk(x,y,m*)
— [y —%)* + am*(y + x) Jk(x,y,am?)]
(2.14)
with
k(x,y,m?)

=[x+y+m’+ [(x+y+m’)? —dxy]7]7"
(2.15)
This was essentially the case considered by Maskawa and

Nakajima,? together with the Pauli-Villars cutoff version.
In the limit that the gluon mass m tends to zero, we find

f(x—y) , 8(y—x)
k(xy,0) = . 2.16
(x3,0) + 3 (2.16)
For m#0, the approximation
(x —y) 8y —x)
k(xy,m*) =~ 2.17
Cepm’) 2x+m*) 20y +m?) (210

is exact in the limits x>0 and x - w0, y—~0and y— o, and it
is a strict upper bound for all positive x and y. In this paper,
we shall use the form (2.17) exclusively, although we pro-
pose to consider the exact expression in a future publication.

The above approximation is improved by reinstating the
running coupling constant. Unfortunately, the dependence
of k 2 on the angle @ in (2.9) and (2.10) makes it impossible
to evaluate the integrals in closed form when the @ of (2.12)
is present. However, if one sets

o (k) =0 @) 0(p* —p*) + 0 (P?)0(p* —p?),
(2.18)

one obtains, instead of the kernels X and L of Egs. (2.13)
and (2.14), respectively,

[@(x)0(x —y) + 0(P)O( — x) 1K (xp), (2.19)

[@(x)8(x —p) + @ (P)O(y — x) 1L(x,p). (2.20)
The approximation (2.18) for the smooth, monotonic func-
tion w(k ?) is good when p?$ p'? or p*> £p'%, but not when p*
and p? are comparable in magnitude. However, the approxi-
mation is not expected to affect either the infrared or the
ultraviolet behaviors of the solution.

With the approximations (2.17) and (2.18), the kernels
read

K(x,y) = klox)u(x)0(x —y) + ou()0(y —x)],

2.21)
L(xy) = (3/32) [o(x)v(x,y)0(x — y)
+o()v(.x)8(y —x)1, (2.22)
where
w(x) =3/(x+m*) +a/(x +am?), (2.23)
2 1 Juo=x+my+x)
vxy) x+m»H* m*x [ x+m?
2
_ U——x)2+am2(y+x)]‘ (2.24)
x+4am

The Feynman gauge (@ = 1) is especially simple,
Dp(ky=[—g*/(k?—m* +ie)Jo(~k?), (2.25)
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p(x) =4/(x +m?), (2.26)
v(xy) = 2/(x +m?)? (2.27)

It turns out that in this gauge (and others), an ultraviolet
cutoff is necessary (see Sec. IV). On the other hand, no such
cutoff is required in the Landau gauge (@ = 0),

—g® £ k" ¥/ (k2 + ie)

1734 k — ___k2 R
D (k) kz—-m2+ie w( )
(2.28)
u(x) =3/(x+m?), (2.29)
2 y—3x
= . 2.30
Vo) (x+m*?  X(x+m?) (239)

As can be seen from the denominator in (2.30), an infrared
singularity has been introduced, a gauge artifact, and this
turns out to be a nuisance. To avoid this difficulty, Maskawa
and Nakajima? introduce what they called the Landau-like
gauge, with the gluon propagator

D (k)

-
Tl kr—m?tie

k*k”
(k? — m? + ie)?

]&)( - kZ),
(2.31)

for which the kernels K and L, with the approximations
(2.17) and (2.18), have the form (2.21) and (2.22), with

p(x) =3/(x+m?) + m*/(x + m?)?, (2.32)
v(x,p) = 2m?/(x + m*)3. (2.33)

Here the good ultraviolet properties have been retained,
while the artificial infrared divergence has been removed.

In Sec. I11, we consider this Landau-like gauge, without
ultraviolet cutoff; while the Feynman gauge is treated in Sec.
IV. In the latter case, a Pauli-Villars cutoff has to be intro-
duced.

The major purpose is to find out conditions under which
there is a critical A, > 0, such that, for 0 <A <A, Egs. (2.7)
and (2.8) only have the chiral solution =0, while for
A>A,, there is also a nontrivial solution, @ #0. To investi-
gate such a bifurcation point A, we differentiate the equa-
tions functionally w.r.t. o, and set @ =0,

A" Sa(y)
= K , 2.34
Sa(x) L dy K(x,p) e ) (2.34)
i <«
=1+—-f dy L(x,y) ———. 2.35)
B(x) z ), y L(x,y) B(y) (

lit. LANDAU-LIKE GAUGE

In the case (2.31)~(2.33), we can write the bifurcation
equations (2.34) and (2.35) in the form

A * © da(y)
6a(x)=igﬂ—2[Ldyp(x)+£ dyp(y)} PR

By
(3.1)
=14+ 2. d —
B(x) + 16”2[} ya(x)-i—f dya(y)] 26
(3.2)
where
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p(x) = [3/(x +m*) + m*/(x + m*)?)w(x), (3.3)

o(x) = [m¥/(x + m*)*] w(x). (3.4)

We study first Eq. (3.2). To this end, consider the map-
ping

B(x) = P(Bx), (3.5)

where P(S;x) is just the right-hand side of (3.2). Let B be
the Banach space of real, continuous functions f(x) with
supremum norm, for which the following inequalities hold:

0<B,,<f(x)<Py < . (3.6)

We shall specify £,, and £ ,, in a moment.
Next, define the function

P (3.7)
(x) = 1672{fydy0'(x)+J ydycr(y)]

It is easy to see that P(x) is non-negative and monotonically
decreasing in 0 <x < «. Thus

O<P(x)KP(0) < 0. (3.8)

A computer estimate gives
PO)=—1 [ do o’ ~0.001 82,
167 Jo (1 +w)*log(l + ) (39)

Because of the positivity of o(x), we see from (3.2) and
(3.5) that

B(x)>1 (3.10)
and
B(x)<1 + AP(0), (3.11)
so that, if we define
B, =1 (3.12)
and
=1+ AP(0), (3.13)

we see that the space B is mapped into itself by the nonlinear
operator, P. Indeed, the image of B is actually compact in
norm, since

Tydy

_A[d
—ﬁ() 1672[ a(x)]oﬁ(y)'

Now do/dx is negative, so dﬁ /dx is also negative, and

A d
—"'—-ﬁ( )Q—gﬁx [-——a(x)]gconst (3.15)

ie., |dB /dxl has a bound that is independent of 5.

Since Pis a completely continuous operator that maps B
into itself, we can use the Schauder theorem to assert that
there is at least one fixed point, B = B, in B, i.e., at least one
solution of (3.2). To show that the solution is unique in B,
we subtract (0},

(3.14)

B(x) =p(0) +—"—J. dylo(x) —o(y)] ";’T)*‘
(3.16)

Any solution of {3.2) is also a solution of (3.16), on the
condition that 8(0) has the correct value. We first show that
no two different solutions in B can have the same 5(0). For
suppose that B, and S, both satisfy (3.16), and that
B,(0) = B,(0). Then
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Bi(x) — B (x) = A [ ydylo(y) —o(x)]

1672 Jo
B = B0 (3.17)
BB (»)
Hence
A
1B1(x) — B, (x)|< T=rE Z(x)oitylgxlﬂ.(y) —-B(»),
(3.18)
where
Y (%) =f ydylo(y) —o(x)]. (3.19)
0

Let us take X > 0 to be so small that, for any xe[0,X],
16112/9 2

z( x)< (3.20)
w1thK<l.Then

sup |B,(x) —B,(x)|<K sup |B,(x) —B,(x)|,

O<x<X O<x<X (3 21)

which is only possible if B,(x) = B,(x) for 0<x<X. Since
B(x) satisfies the differential equation

B _ A _x
o' (x) 167 B(x)’
it is easy to extend this identity to all x values.

Next consider the case that 8,(0) #28,(0). For definite-
ness, we set 3, (0) > 5,(0). Instead of (3.17) we have

(3.22)

31(") —Bz(x)
A
=£,(0) —B,(0) + — =4\ ydylo(y)—a(x)]
XBI(J’) —B,(y) . (3.23)
B:1()B(y)

This has the structure of a linear Volterra equation for

— B,, given B,5,; and the Neumann series is guaranteed
to have an infinite radius of convergence. Since ¢(y) »o(x)
for y<x, each term in the series is non-negative, and so, for all
x

Bi(x) — B2(x)>B,(0) — B,(0). (3.24)
Now it follows from (3.2) that f( ) =1, so by taking
x = oo in (3.24) we find 3,(0)>85,(0), which contradicts
£:(0) >5,(0). Hence 8,(0) = £,(0) and, as we have seen
this implies 8, (x) =85,(x).

Having shown that (3.2) has a unique solution in B, we
turn to (3.1). Let us write it in the form

da(x) =——f dy H(x,y)oa(y), (3.25)
where
H(xy) = [p(x)0(x —y) + p(»)O(y — x)]8 ~2(»).

(3.26)

Thanks to the fact that 8(y) is bounded from below, we can
show that H is a positive L ? kernel,
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on fw dx dy H?(x,p)
0 0
- N A0
=| dx 2(x)f +f d dx
L X B Th Yo
o 3
5% Jo To@lta) (t+a)

1 2
X(3+ )<oo.
l+w

Hence (3.25) is a classic Fredholm equation, and thus, if we
require Sa(x) to belong to L %, the spectrum is discrete; in
particular, there is a smallest value 4, > O such that (3.25)
has only the trivial solution, Sa(x) =0, if 0 <A <A, while it
has a nontrivial solution if A = 4.

The existence of a critical point A, is crucially depen-
dent on limiting 5 to L 2. Equation (3.1) is equivalent to the
differential equation

(3.27)

A 8a(x)

[(d/dx)&a(x) (3.28)
(d /dx)p(x) 167% B2(x)’
with the boundary condition
2 sa(x) —0. (3.29)
dx %0
The asymptotic behavior of (3.28) for large x is
d [x log ————5a(x)] + r‘?éa(x) ~0, (3.30)

where we have used the fact that B( o0 ) = 1. This admits
two solutions, which have the asymptotic behaviors

So(x) ~(1/x) [log(x/m?)] — 1+ 347167, (3.31)

J; (x) ~ [log(x/m?)] ~ 347167 (3.32)
The general solution of (3.28) is

Sa(x) = Afg (x) + Bf; (x), (3.33)

but in order for this to solve the integral equation (3.1), the
boundary condition (3.29) needs to be imposed. This fixes
the ratio B /A, the remaining constant being a trivial norma-
lization. It should be noted that a solution of the form (3.33)
exists for any A, but that it is not in L ? in general. The small-
est value of A for which B = Ois precisely A, and da is then
the regular solution f, which is in L%

In conclusion, we have seen that the bifurcation equa-
tions, in the Landau-like gauge, yield a critical point A, only
if some information external to the Dyson-Schwinger sys-
tem is used, in order to exclude the irregular solution

f'I(x)'S,BS

IV. FEYNMAN GAUGE

In Feynman gauge the bifurcation equation (2.35) for 8
has the specific form

ﬂ(x)—1+—fd ae) 4.1
ly o(x, B() (4.1)

where x,,,,, = max(x,y), and where by hypothesis the func-
tion

o(x) =@ (x)/(x + m?)? (4.2)

D. Atkinson and P. W. Johnson 2491



is positive and monotonically decreasing. Notice that the
function o has one inverse power of (x + m?) less than that
of Sec. III. We shall in fact show that (4.1) has no solutions.

Equation (4.1) is equivalent to the integrodifferential
equation

') =t [ ay2 (43)
"BOY
along with the boundary condition
Blo)=1. (4.4)

Let us consider the case in which £(0) >0, and define the
domain D on which B remains positive,
D = {x|B(y) >0 for ye[0,x]}. (4.5)

It follows from (4.3) that 8 is monotonically decreasing on
D. As a consequence

B'(x)<[A /32B(0) 1x%’ (x) (4.6)
for xe®. Integrating, we obtain
A, X
0) — — | 4 . 4.7
B(0) —B(x)> 16723(0)_[) ly yo(») (4.7)

It follows from (4.2) and the definition (2.4) of w that, at
large y,

a(y)~1/y*log y, (4.8)

so that the integral in (4.7) approaches log log x asymptoti-
cally at large x. Because of this divergence, the function
[S(x) must approach zero at a finite point x, on the positive
real x axis. In the vicinity of such a point, the solution to the
differential equation (4.3) has the behavior

B(x) ~ (x — x) [ (Ax/877)0 (xo)l0g (x — x) ] /2.
(4.9)

The solution to Eq. (4.3) consequently has a branch point at
X = X, With the real-analytic continuation having a branch
cut for x > x,. Furthermore, this solution of (4.3) has the
asymptotic form

B(x)~ + [( — A /87%)log log x]'/> (4.10)

as x becomes large within the cut plane. Such solutions are
not consistent with the boundary condition (4.4), so that
they do not satisfy the integral equation (4.1), even if x is
allowed to be complex.

We have shown that there are no solutions of (4.1) for
B(x) positive. Since — B(x) satisfies Eq. (4.3) if B(x) isa
solution, there are also no solutions of (4.1) for 5(0) nega-
tive. For B(0) = 0, the solution to (4.3) has the following
asymptotic behavior at small x:

B(x)~ + [(A/127%)0’ (0)x*]'/2, (4.11)

where o' (0) <O. In this case the real-analytic solution has a
branch cut for x>0, and it also has asymptotic behavior
(4.10) at large x. Therefore there are no solutions to the
integral equation for this case either.

The integral equation (4.1), considered for any positive,
strictly decreasing weight functions @ (x), has no solutions
whenever

lim dyya(y) = c0. (4.12)

X = co
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If the weight function @ (x) were chosen to decrease slightly
faster—say, O [ (log x) ~! ~¢] fore > 0—theintegral (4.12)
would converge and the integral equation would have a solu-
tion. This might well be affected by modifying the approxi-
mation for the quark—gluon vertex function—a matter we
propose to take up in the future—but for the present we shall
discuss the more standard Pauli-Villars cutoff procedure.

In the Pauli-Villars approach, we replace the function
(X, ) in the nonlinear integral equation (4.1) by the func-
tion 7(X ., )

(x) =w(x) [1/(x +m*)* = 1/(x + AD?]; (4.13)

with A> m. Equivalently, the function #(x) will satisfy the
nonlinear Volterra equation

l X

B(x) =p(0) +ﬁn—5 B(y) [r(x) —7(M],
(4.14)
along with the boundary condition
Blo) =1 (4.15)

Let us consider the solution of Eq. (4.14), starting from a
given initial value 8(0) > 0. We define D as the domain over
which S remains positive; vide Eq. (4.5). For x in 9, the
Volterra equation has a unique monotonically decreasing
solution B(x). Furthermore, the value of 8 at fixed x is mo-
notonically increasing as a function of the initial value 8(0).
On the domain D, B(x) satisfies the bound

B(x)>B(0) —1/B(x), (4.16)
where

I_R?f dy yr(y). (4.17)
If we choose

B(0) > [41]'?, (4.18)

it follows from (4.16) that 8(x) is positive for all x>0.

We have shown that, for 3(0) chosen sufficiently large,
the nonlinear integral equation (4.14) has a unique positive
solution for x > 0. For a particular choice of 8(0), one satis-
fies condition (4.15). One can show directly from the inte-
gral equation that, to meet (4.15), the initial value 8(0) lies
somewhere between the limits

I+ [I*4+4)Y%/2<B0)<I + 1. (4.19)

Consequently, there is a unique solution to the integral equa-
tion corresponding to (4.1), with a Pauli-Villars cutoff in-
serted.

We have shown the existence of a unique positive solu-
tion of the cutoff integral equation, but the question remains
as to the limit in which the cutoff parameter A becomes
large. For our case the integral 7(A), defined in (4.17), has
the form

I(A) = ——f dyyw(y)[

1 1 ]
G+mH?  +AY*]°
(4.20)
Because of (4.12), the integral 7(A) must diverge in the
limit A — . In fact, one can show that

I(A) ~ (4 /167%)log log A 4.21)
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at large A. Because of this asymptotic behavior, along with
the bounds (4.19), it follows that

B(O,A) ~ (A /167%)log log A (4.22)

as A — . In fact, one may show that, for fixed x, the renor-
malized function

B(x)= lim [B(x,A)/B(0,A)] = 1.

The integral equation (2.34) for da(x), with S(x,A) insert-
ed, exhibits chiral symmetry breaking, in that for A less than
some critical value 4, > 0, the only solution is da = 0. The
analysis in Feynman gauge is similar to that of Sec. III in
Landau gauge. The critical coupling A, depends upon A, and
in fact

A.~[BO,A)]% (4.24)
In other words, the only consistent solution of (2.34) for
fixed coupling A in the limit as the cutoff A becomes large is

Sa(x,A) =0. (4.25)
The renormalized function 6é&(x) is also zero,

sa(x) = lim 225A) _ o

A-w B ( O’A)
We therefore find that in Feynman gauge, the normal-

ized inverse quark propagator S ~'(p) corresponds to a
massless, free quark,

(4.23)

§-'(p)=lim a(x,A) + pB(x,A) —
Ao B(O,A)

In summary, we have shown that there is no solution of
the bifurcation equation (4.1) in Feynman gauge, because of
problems in the ultraviolet. There is a solution to the Dyson—
Schwinger equations when a Pauli—Villars cutoff parameter
A is introduced, but the renormalized propagator corre-
sponds to free, massless quarks in the limits as A— . One

(4.26)
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would expect the phenomenon of chiral symmetry breaking
to gauge invariant, but our algorithm for truncation of the
Dyson-Schwinger equation is explicitly gauge dependent.
The difficulty can be plausibly traced to the naive JBW treat-
ment of the full vertex function.
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An earlier analysis of the Dyson-Schwinger equation for the quark propagator is improved by
taking the Slavnov-Taylor identity into account in the ultraviolet. It is found that chiral
symmetry breaking occurs above a critical coupling in the Landau gauge; but that this result

does not hold in other gauges.

. INTRODUCTION

Much study has been devoted to the tantalizing possibil-
ity that the (constituent) masses of quarks arise from the
nonperturbative breakdown of chiral symmetry.’” More
specifically, it is supposed that the bare quark mass vanishes;
and the Dyson-Schwinger equation for the quark propaga-
tor is then analyzed for signs of chiral symmetry breaking.
The most popular scenario is that in which this breakdown
occurs only if the QCD coupling A is greater than a certain
critical value A : this point constitutes then a bifurcation of
the mass function from the trivial to a nontrivial solution of
the equation.

Some authors confine themseleves to the Landau gauge
and assume that the trace of p times the inverse quark propa-
gator is p*. This is only correct if the gluon remains massless.
If the gluon acquires an effective mass, as a result of self-
interaction, this trace is p°’8(p?), where 3 is a function that
has to be obtained from the Dyson—Schwinger equation. In
Refs. 6 and 7, we showed that, in the approximation
B(p*) =1, a positive bifurcation point A, exists only if both
infrared and ultraviolet cutoffs are introduced. In Ref. 8 we
elaborated the analysis by treating /3 properly: in the pres-
ence of an infrared cutoff, in the form of an effective gluon
mass, and an ultraviolet cutoff, provided naturally by the
logarithmic decrease of the running coupling constant, we

found again that A, >0 in the Landau gauge. However, in.

the Feynman gauge (and in other gauges), it turned out that
there is no solution of the equation for 8(p?), unless a Pauli—
Villars cutoff A is introduced. As A— «, so A.—0, thus
indicating an extreme gauge dependence that casts doubt on
the credibility of the approach.

The most questionable approximation made in Ref. 8 is
the replacement of the full quark—gluon vertex T, (p’,p) by
its bare value y,,. Since the difficulties in the Feynman gauge
are associated with ultraviolet divergences, and since the in-
verse quark propagator behaves like p3(p?) as p” - «, a bet-
ter approximation for I', should be y,, multiplied by 5,
since this is consistent with the Ward-Takahashi identity in
the ultraviolet regime. It is true that the correct Slavnov-
Taylor identity of a non-Abelian theory contains matrix ele-
ments of ghost fields, as Miransky has pointed out’; but it
might reasonably be hoped that these do not alter the ultra-
violet behavior of the quark propagator.

In this paper we undertake a treatment of the quark
propagator, with the above-mentioned improvement in the
approximation for I',. We find that the analysis is much
easier than that of Ref. 8; but the fundamental conclusions
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remain unchanged: A, is positive in the Landau gauge, and
A,—0as A— o in the Feynman gauge.

Ten years ago, Weinberg'® suggested that a positive bi-
furcation point A, is not to be expected, since, if it were to
exist, it would surely be gauge dependent; and the onset of a
phenomenon such as chiral symmetry breaking presumably
ought not to depend on the gauge that one chooses. Our
conclusions support this conjecture; and, in this connection,
a parallel analysis that employs Delbourgo’s gauge tech-
nique,'! in which the Ward-Takahashi identity is respected
at all momenta, similarly yields a gauge dependence of 1.

In Sec. II, we briefly recall the formalism, while the
analysis is carried out in Sec. III. An Appendix is devoted to
the bifurcation theory that is required in the body of the
paper.

In conclusion, although the general result of this work
suggests that the existence of a gauge-independent bifurca-
tion point A, > 0 is untenable, the hope might reasonably be
entertained that our general methods will yield more posi-
tive results in other situations. In particular, in finite-tem-
perature field theory, one expects a phase transition to the
plasma state above a critical temperature 7, and bifurcation
theory should prove a useful tool.

Il. DYSON-SCHWINGER EQUATION AND SLAVNOV-
TAYLOR IDENTITY

The Dyson-Schwinger equation for the quark propaga-
tor may be written in Euclidean space in the form

A
S;—l — J-d4 ' ’ NI "
@)=+ 2m)° y4 YMSF(P) L (P'\p)
XD g, (p' —p), (2.1)

where A is the square of the QCD coupling constant, times a
color factor. Here D ;. is the gluon propagator, and we shall
equip it with a mass and a running coupling,

D}",uv(k) =a)(k2)-DF‘uy(k)‘ (2.2)
Here D, is the bare propagator for a massive vector field,
and @ (x) is a given function with the following properties:
do(x)

dx

w(0) =1, w(x)~(logx)™! <0.
(2.3)
The Slavnov-Taylor identity, with ghosts neglected, is
@ —-p.0.0—p) =S -S:' ), 24
and this relates the longitudinal part of the quark—gluon ver-
tex to the inverse of the quark propagator. If we set

as X — oo,
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S p) =a@®) — g8, (2.5)
then we expect that, as p— o at fixed p’, (2.4) will read
asymptotically

2T, (2'\p)~BB(p*) (2.6)
and similarly for p’ — « at fixed p. This motivates the ansatz

L, @'p)=v.B(p%), 2.7)

wherep? = max(p?,p'?), which should respect the ultravio-
let behavior of the theory better than does the constant ver-
tex approximation of Ref. 8.

AsinRef. 8, we approximate the running coupling func-
tion » by

w(k?) =o' —p))=0@), (2.8)

and we evaluate the angular integralsin (2.1). This results in
the coupled integral equations

A" ya(y)B(x. )
=2 | ayk _— 2.9
@) Tf’fo YROD) ) ) 29
A YBOIB(x, )
=1+_f dy L(xy) ———""">"_  (2.10)
B(x) =) ly L(x,y) Z0) +58°0) (

The kernels K and L were given explicitly in Ref. 8, and we
do not reproduce them here, nor shall we repeat the discus-
sion of their further approximation.

lil. BIFURCATION EQUATIONS

As in I, we shall consider the Feynman gauge, and a
modification of the Landau gauge, the so-called Landau-like
gauge of Maskawa and Nakajima,' for technical conven-
ience. Upon differentiating (2.9) functionally with respect
to a, and setting a = 0, we obtain the following equations:

Sa(y)

Sa(x) —-—f dyp(x,)B(x, )Bz(y)’ (3.1)
and

Bx) =1 +—1-6;j dyo(x, )B(x, )B(yy) ,  (3.2)
where x_ = max(x,y), and where

p(x) = [4/(x + m*)]w(x), (3.3)

o(x) = [1/(x + m*)*lo(x), (3.4)
in the Feynman gauge, and

p(x) = [3/(x + m?) + m*/(x + m*)?]o(x), (3.5)

o(x) = [m*/(x + m*)’]w(x), (3.6)

in the Landau-like gauge. Here m is the effective gluon mass,
which is assumed to arise from gluon—gluon interaction.
Consider first Eq. (3.2), which can be written

A * B(x) A f‘”
=1 _ d —_— .
B(x) +16 zfoy ya(x)B ; +16 : ). ydyo(y)
(3.7)

The last integral here is convergent in the Landau-like
gauge; but it is log log divergent in the Feynman gauge. Con-
vergence can be achieved in this case by the imposition of a
Pauli-Villars cutoff, which has the effect of replacing (3.4)

1/(x + A*)?]o(x). (3.8)

b
y o(x) = [1/(x +m*)* —

2495 J. Math. Phys., Vol. 28, No. 10, October 1987

Divide (3.7) throughout by B(x) and define y(x)
= [B(x)] ", thus obtaining

;:((;))= 1617’2¢7(x)fydyr(y), (3.9)
where
Ao =1+ [ ydyow). (3.10)

167 Jx

Note that (3.9) is a linear Volterra equation that can be
converted into a linear differential equation for y(x). The
unique solution of the Volterra equation is

= i) — 2 " dy £2
y(x) =f(x) T o(x) foydyf wm.

From (3.10) we see that f(x) — 1 as x —» oo, whether we
take o to be given by (3.6), the Landau-like gauge, or by
(3.8), the Feynman gauge with Pauli-Villars cutoff. Hence,
from (3.11), ¥(x) >l as x— .

(3.11)

Further,
A (" -
0 0)=|1+-— d)
7(0) =£(0) [+6ﬂ2 y,va(y)]
(3.12)
and moreover, it is easy to check from (3.11) that
—— 2 oo [(ayr
r = -0 [ dro. (3.13)

which is positive, since o’(x) is negative. Hence, as x in-
creases from zero to infinity, (x) increases monotonically
from £(0) to unity, and B(x) decreases monotonically from
[ /(0)1~" to unity.

We turn now to (3.1), which we rewrite

A [--]
-2 | " wF , 14
batx) = 2 fo dy F(x,p)6a(y) (3.14)

where

(x),B(x) yd628
PIXIPAX) 4+ £
82y 0(x —y) ) y—x).

The kernel F is square integrable,

”Fuz J. dxf dyP (x)B (x)

B*(»y)
)
+f dx dy P
0 x B (y)
1
< + 1] f dx xp*(x).
FOP " 1 &%
In the Landau-like gauge,
p(x) = [3/(x +m?) + m*/(x + m*)*]w(x)
<[4/(x + m?)]w(x), 3.17)
and the last expression is just p in the Feynman gauge. So in

both gauges
|F“2< 6[ l]f dxmwz(x),
(3.18)

which is convergent, since ©*(x) ~ (log x) ~% as x— o . No-
tice that the running coupling function w is essential for this

F(x,y) = (3.15)

(3.16)

[f(O)]2
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convergence. Since (3.14) is a homogeneous Fredholm
equation, it only has a nontrivial L ? solution 8a for A on a
point set. The smallest positive point in this set, say 4.,
which necessarily satisfies

A, >167%/|\F ||, (3.19)

corresponds to the bifurcation of a nontrivial L ? solution
a(x) of Egs. (2.9) and (2.10) away from the trivial solution
(see the Appendix).

Equation (3.14) is equivalent to the differential equa-
tion,

(d /dx)ba(x) A ba(x)

x|
-— = (3.20)
dx L(d/dx)[p(x)B(x)1] 1677 B*(x)

with the boundary condition,
4 sa(x) 0. (3.21)
dx x~0

According to the general theory of linear, second-order, or-
dinary differential equations, Eq. (3.20) has two indepen-
dent solutions, say f and f;, and the general solution of
(3.14) is

Sa(x) = Afg (x) + Bf; (x); (3.22)

and the ratio of 4 to Bis determined by the boundary condi-
tion (3.21). The solution is thus unique, up to a normaliza-
tion.

The ultraviolet behaviors of the regular and irregular
solutions follow from the fact that S(x) tends to unity as
x— o0, that p(x) is given by (3.3) or (3.5), and that @ (x)
satisfies (2.3). We find

fr(x)~x"(logx) ~ '+ (3.23)

S1(x)~ (log x) ~%, (3.24)
as x— o, where b =A /47" in the Feynman gauge and
b = 34 /1677 in the Landau-like gauge. The solution (3.22)
is square integrable only if B = 0, and the smallest value of 4
for which this happens is precisely 4., the bifurcation point.

The whole analysis is applicable to the Landau-like
gauge without cutoff, or the Feynman gauge with cutoff. As
A— o in the latter case, however, £(0) ~log log A. Sub-
tract 8(0) from (3.7),

B(x)

A
— 0 —_ d JLadih M A s
B(x) =L(0) + 1672 Jo ydy [a(x) 30) a(y)]
25)

and define a renormalized B(x) = Z,B(x), where Z,
= [3(0)] . The renormalized version of (3.25) is

’{ZZ fx d [ B(x) _ ]
1672 oy ly |o(x) 30 o -
(3.26)

As A— w0, Z,—0 and B(x)— 1. The renormalization con-
stant Z, may not be absorbed into a redefinition of the cou-
pling A = AZ, for the coupling should be renormalized by
the gluon renormalization constant Z; which we have effec-
tively approximated by unity. In the usual perturbative re-
normalization, one would expand the integral in (3.26) to
order A", and Z, to order A~ !, allowing the infinities to
cancel in the usual way. However, the present nonperturba-
tive approach, if it is to be viable, must deal with all diver-

Bx)=1+

2496 J. Math. Phys., Vol. 28, No. 10, October 1987

gences in one fell swoop. The renormalized da(x)
= Z,0a(x) satisfies

AZ, [~ > da(y)
1617'2_[) PO By
from which we see that & (x) —0 as A — «. Hence, as the
cutoff is removed, the quark propagator tends to the bare
form, (p) ~'. Thus we have demonstrated a gauge depen-
dence of a most extreme kind: chiral symmetry breakdown
in the Landau-like gauge and none in the Feynman gauge—a
most absurd result.

da(x) = (3.27)

APPENDIX: BIFURCATION THEORY

We present a theorem in bifurcation theory and apply it
to the coupled equations (2.9) and (2.10), in a neighbor-
hood of the trivial solution, a(x) = 0.

Theorem: Suppose that

a(x) =AT(a;x), (A1)

where a belongs to some real Hilbert space H, T is a nonlin-
ear operator on H, and A is a real number. Suppose further
that T is thrice Fréchet differentiable, and that

T(—ax)= —T(ax), (A2)
so that T'(0;x) = 0, which implies that (A1) possesses the
trivial solution. Let the first Fréchet derivative at the trivial
solution 7'(0;x) be compact on H, and suppose that 4, is
such that the linear equation

Sa(x) =A[T'(0; - Yoa](x) (A3)
has precisely one nontrivial, linearly independent solution
[ie., 4 . " belongs to the (point) spectrum of 7'(0; - ), the
corresponding null space of 1 —A,.T'(0; - ) being one di-
mensional].

Then there exist precisely two nontrivial solutions of
(Al), differing only in sign, for A in a half-neighborhood of
A, (e, A>A,0rd <A.). A proof can be found in Pimbley’s
book. '

In Egs. (2.9) and (2.10), there is the complication that
« and S satisfy coupled equations, the trivial solution corre-
sponding to a(x) =0 and

B(x_)

(A4)
B(y)

ﬂ' [+]
=1+2| dyLx,
B(x) +ﬂ1L ly L(x,p)

However, we can treat 8 as an implicit function of . On
differentiating (2.9) and (2.10) functionally with respect to
a, we find

Sa(x) =%J ydy K(xp)
(o]

% Sa(B(x, ) +a(y)dB(x. )
a*(p) +yB*(»)
_ 2aB(x, ) [a(n)bay) +yB(y)6B(y)]]
[22() + 382 ] ’

(AS)
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A o0
b} = dy L(x,
B (x) HJO ydy L(x,y)

X[5ﬂ(y)ﬂ(x> ) +B(NEB(x. )
() +yB*(»)
2B()B(x, ) [a()ba(y) + yB(PISB()]
B [ (») + 982N '

(A6)
These equations reduce, at a(x) =0, to
da(x) =£Jw dy K(x,y) Alx, ) da(y), (A7)
m [’} ﬂz()’)
A (7 8B(x.) B(x,)8B(y)
6(>=—de(,)[ _ B,
= e T B )

The bifurcation equations (A7) and (A4) are, respectively,
equivalent to Egs. (3.1) and (3.2). The possible existence of
a nontrivial solution of (A8) isirrelevent to the applicability
of the theorem, since Eqs. (A7) and (A8) are decoupled
from one another.

We must now check the conditions of the theorem. The
space is L %, and the nonlinear operator 7'is given in implicit
form by Egs. (2.9) and (2.10). The oddness condition (A2)
is clearly satisfied, and it is easy to check that T is thrice
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Fréchet differentiable. In Sec. III it is shown that (A7) isa
classic Fredholm equation, which means that 7'(0; - ) is
compact on L2 The fact that the null space of
1 —A.T'(0; - ) is one dimensional is implied by the analysis
of Eq. (3.14) in Sec. 111, in which it is shown that the solu-
tion is unique, up to a normalization.
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The group-theoretical treatment of aberrating systems. lll. The classification

of asymmetric aberrations
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A Lie-theoretical classification of the aberrations of systems modeled by asymmetric optical
devices is given. The classification is done on the basis of aberration order and axial symmetry
of the first-order part. This leads to finite-dimensional (nonunitary) representations of
sp(4,R) reduced with respect to its sp (2,R) subalgebra, with helicity and “symplectic spin”
labels. Based on pure-magnifier systems, a weight label reproduces and completes Seidel’s
traditional classification of axis-symmetric aberrations. Based on other first-order systems such
as optical fibers, other classification schemes are indicated.

I. INTRODUCTION

In this series of articles,'” we study the Lie theoretical
aspects of aberrating systems, i.e., systems whose action on
phase space is nonlinear and amenable to expansion by aber-
ration order.

First order corresponds to linear transformations of an
ideal “design” system. Departures from linearity are termed
aberrations. The model we regard here is that of geometrical
optics, but applications and problems also lie in ring and
linear accelerator design, wave optics, and radar detection.
Reference 3 contains several basic accounts of these direc-
tions. of inquiry.

In the first two parts of this series, we considered aligned
lens' and fiber? systems in detail to third aberration order.
Optical alignment means that the elements of such a system
are all invariant under rotations around that common opti-
cal axis. For these systems, the aberrations have been given
names such as spherical and oblique spherical aberration,
circular and elliptic coma, astigmatism, curvature, and dis-
tortion.* These designations have been attributed to Seidel,
whose generally quoted paper” in fact does not establish the
full nomenclature and treats only meridional rays to third
aberration order. No visible, systematic classification is
known to the author for asymmetric optical systems.

When no symmetry axis is present, the three-dimension-
al optics of two-dimensional screens requires the four-di-
mensional symplectic algebra sp(4,R). In accelerator de-
sign,® the program MARYLIE treats sp(4,R)-asymmetric
magnetic elements; chromatic dispersion requires sp(6,R).
Aberrations are handled in a Cartesian basis, by lexico-
graphical order of monomials.

Our purpose here is to enlarge the sp(2,R) symplectic
classification’ to sp(4,R) and to present some specific re-
sults in aberration order 4. Section II recapitulates the con-
cepts of optical phase space,” Lie operators and Lie trans-
formations,'? needed for the Dragt—Finn factorization'! of
symplectic maps by aberration order. We then present the
problem of classification of aberrations in the basis provided
by axis-symmetric optical systems of pure magnification.
Section III proceeds to construct an appropriate basis for

* Member of Centro Internacional de Fisica y Matematicas Aplicadas, AC
(Mexico).
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sp(4,R) to accommodate asymmetric aberrations of any or-
der labeled by symplectic spin, Seidel weight, and helicity.

The explicit expressions of the zero-helicity aberration
generators has been given in Ref. 12 and appears developed
in Ref. 9. They lead, in fact, a close parallel with the states of
a symmetric-quantum harmonic oscillator with angular mo-
mentum classification of orbitals.’* The Seidal third- and
fifth-order aberrations coincide with the orbitals of the
2s-1d and 2p-1fshells in the nuclear model.

The introduction of helicity lifts aberrations out of
sp(2,R). Section IV shows how the sp(4,R) multiplets
build: each spin-j aberration multiplet unfolds into 2j + 1
copies of different helicities up toj. For aberration orders 2,
3, and 4, there are, respectively, 20, 35, and 56 independent
aberrations. Section V contains the analytical formulas for
the general case and tables for orders 2 and 3.

The simple model of multipole kicks'* and quasifiat re-
fracting surfaces is given in Sec. VI. The concluding discus-
sion in Sec. VII gives some pros and cons of the Lie-theoreti-
cal classification of aberrations. Selection rules for
aberration coefficients in refracting surfaces™!? as well as
computational simplicity favor the Cartesian monomial
classification of aberrations in optical elements. Full optical
systems designed on pure magnifier and fiber properties, we
contend, may profit from the insight of Lie methods.

Il. OPTICAL PHASE SPACE AND sp(4,R)

The phase space of geometrical light rays that cross a
reference plane z = 0, is parametrized by a position two-vec-
tor qeR ? (the intersection of the ray with the plane), and a
momentum two-vector p. The latter is the projection of a
three-vector # along the ray on the reference plane. The
length of the three-vector is n(q), the refractive index of the
medium at q. We introduce Cartesian coordinates on the
plane and write

=0 - () o)

We should distinguish by a sign s, rays in the + z direction
(s = 4 1) that we regard as “forward,” and “backward”
rays in the — z direction (s = — 1). Optical systems act
through canonical transformations (i.e., symplectomor-
phisms) of phase space, preserving the Poisson brackets of

(2.1)
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functions f, g thereof,

_ v (¥ % _U i) - (Jo)(w
{ £} ;( )= oo,
at least locally. In the last expression we define the Lie opera-
tar}associated to the function f(w). We use the circumflex
notation as in Refs. 1 and 2. Other common notations are ;%,”
{f2},'° fop-'* A fundamental property of the association
Jf—fis that it carries Poisson brackets into commutators,

{reh" = [ Fel. (2.3)
Lie operators generate Lie transformations*® G through
the exponential map

" @1 A
G,=expf= Z;(f)"-
n=07%:

Lie transformations are locally canonical; those having the
origin of phase space invariant may be written as a factorized
product'!

G, = - -exp fs exp f, exp f; exp />, (2.5)
where f (w) is a polynomial homogeneous of degree N in
the components of w. This is a formal expansion and we
cannot at present say much about its global properties except
in the framework that follows.” We simply replace the opti-
cal system by a system that exhibits a mechanical-type mo-
mentum. We disregard the bound |p|{<n(q), ie, that the
space of directions is a sphere, '® in favor of peR 2. This allows
us to suppress the backward rays to treat metaxial rays in
regions still “far” from rays perpendicular to the optical
axis.

For N = degr fx, we note that

degr{ f,g} = degr f + degrg — 2. (2.6)

From (2.4) and (2.6) we see thus that}\‘2 returns the degree
of g and so generates linear transformations of the phase
space vector w corresponding to paraxial optical systems
(i.e., Gaussian thin lenses, small angles). Such systems are
well known to be amenable to 4 X 4 matrix algebra® (2x2
matrices for axis-symmetric systems) that indeed necessi-
tate an R * phase space with peR 2. .

Due to (2.6), the general factor exp fn, N > 2, generates
aberrations, i.e., nonlinear transformations of phase space as

exp fuw =w+ {fy,w} + (I/20{ fi.,{ fy W3} + -+

=W+Wy_ 1 +Woy_ 1+

22)

(2.4)

Q2.7

where w, _, (w) is a function of degree A =N —1 of w,
defined as 4 = N — 1 aberration order of the Lie transforma-
tion exp ﬁ ~- On fy, the number dy of independent mono-
mials p, ™p,"q,™q,”, m, + m, + n, +n, =N, isd, =4,
d,=10, d;=20, d,=35,.., dy=3}N+1)(N*+5N
+ 6). For N> 2, dy gives the number of independent aber-
rations of order 4 =N — 1.

The problem of classification of aberrations is that of
labeling them in accord with some clear criterion. The first
label, aberration order 4, has been given. This is tailored to
the Dragt-Finn factorization (2.5) and seems to correspond
closely with what is needed in practice. The second criterion
we introduce’? is that our interest lies around image-forming
devices. Ideally, these perform linear maps of pure magnifi-
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cation

exp(m'q)A(Z) = (; S—) (Z)

Unfortunately, aberration is unavoidable. This is due to
the basic geometric fact that even free propagation by zin a
homogeneous medium is already nonlinear: p—p but
@—>q + zp/+/ (n> — p®) the last summand is of size z tan 6,
where @ is the angle between the ray and the optical axis.
This transformation is generated by the optical Hamilto-
nian” H(p) = — v (n” — p?) (times the sign factor s if we
were to include backward rays). Free propagation is the Lie
transformation

G_,n =exp(zyn® —p?)"

g k=3, , .\
_kll exP(z(zk)unZk—'(p ) ) '

The k th factor above is /', , function of only the ray direction
p, in the form of powers of p?> = p2 + pZ. (This is spherical
aberration of order 4 = 2k — 1, excludingk = 1,i.e, N=2,
A = 1, the linear term.) Also, optical refraction surfaces ine-
vitably aberrate.’

The ideal magnifier (2.8) has two invariants,
Pq =pPxqx + pyqy and pPXq =pqu —pyqx . The first is the
generator of the transformation, while the second merits
some attention, since its square is called the Petzval (or
skewness) invariant in optics.”® If pX q = 0, the ray is meri-
dional and contained in a plane with the optical axis; rays for
which pXq#0 are skew rays of the system, and those for
which pXq = |p| |q| are saggital. The set of linear transfor-
mations for which pXgq is an invariant is the group
Sp(2,R) XSO(2). The first factor is the set of all axis-sym-
metric optical systems generated by degree-2 polynomials in
the rotation-invariant variables

(2.8)

(2.9)

exp(ap® + Bpq + y4°)" (:)

_(cosw+,8sinca) 2y sinc @ )(p) (2.10a)
"\ —2asincew cosw— Bsinc o ’ e

q
o= +Jday —B*, sinco=o0""'sino, (2.10b)

and the second factor that of pure rotations around the opti-
cal axis,

exp(#pXa)” (:) = (f: ;) (2)

— si 2.11
R= (cos¢ sin ¢). (2.11)

sin ¢ cos ¢

Canonical transformations of phase space preserve
areas,'” and pure-magnification devices, even in geometrical
optics, contain a germ of the uncertainty principle in that
they allow a reduction of image size ¢q—e —°q only at the
cost of a spread in directions: p—e * °p (in the peR 2model).
Pure rotators (2.11), on the other hand, do not exist in axial-
ly symmetric light optics.'® These systems exhibit in addi-
tion the discrete space reflection symmetry p,— —p,,
gx— —4q, but p,—p,, g,g, (across any meridional
plane). Under reflection, p?, p*q, and ¢* do not change sign,
but pXxq does. Only the former three variables thus may
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appear in the aberration functions of axially symmetric opti-
cal systems.

The discussion in this section points to our use of the Lie
operators of p-q and pXq to classify aberrations as, we
should note, the associated Lie operators commute since
{p-q, pXq} = 0. Through their effect on phase space we see
that the former is noncompact and the latter compact. This
classification is not complete, however, as in the example’ of
the degeneracy of astigmatism [generated by (peq)*] and
curvature of field (generated by p?g*), where both have zero
eigenvalue under (p+q)” and (pXq)~.

We shall now use the known structure of sp(4,R) to
accommodate the linearly independent aberrations into
multiplets where (p-q) " and (pXq) " will be weight opera-
tors, embedding the extant results'> on axis-symmetric
sp(2,R) systems.

lil. sp(4,R) AND AXIS-SYMMETRIC ABERRATIONS

The pure-magnifier matrix (2.8) is diagonal, but the
pure rotator (2.11) is not. We thus begin by introducing the
helicity basis of phase space

P =UAND . £ip,), g, =1A2)(4g, tig,).
(3.1

The following expressions and brackets may be seen to hold:

PP-=4ipP% 9.9_=}4" (3.2a)
P+q9-+p_qg.=p4q ip.q_—p_q,)=pXq.
(3.2b)
Lie operators are
},=afa F 9 9 3 9 9
dq_dp. g9, dp_ dp_9Jdg, Idp, 84_(3.3)

In particular, the basic Poisson brackets are now

{qi P4 =0, {qi P x =1 {qa’q‘r} = {pa’p‘r} =0.

3.4)

Magnification distinguishes between p and q while rota-

tion classifies w, and w_. In terms of the coordinates p, ,

pP_,4.,q_ wemay write the functions corresponding to the

generators'® of sp(4,R) in the Weyl-Cartan basis (see Fig.
1); they are

K =q2+ , Ko =p.q., Ki =P2+ ’ (3.5a)
K° =q.q_, K3=4(poq_+p_q.),
K° =p.p_, (3.5b)
K- =¢, Kig=pgq_, K =p*; (3.5¢)
L=4p.q9-—pP-9.) (3.6)
The two weight operators are described by
K§=4pq, L= —(i/2)PXg (3.7a)
= 1 a d a d
N T
0 2 +3p+ p o g9+ g, q dq_
~ 1( d J a 7] )
L=— —p_ -+ —q._ R
2 p+3p+ P o q+aq+ q g
(3.7b)
{K3,K.y=uK;, {LK.}=AK], (3.7¢)
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K3
FIG. 1. Root diagram for sp(4,R). (For convenience we tilt it 45° with
respect to the usual presentation of the C, Cartan root diagram.)

with y,A = — ,0, + . The coordinates of the root vectors in
the diagram will be « = (u,4).

We have several subalgebras worth noting. Qur former
work">%!2 regarded the “horizontal” monomials relevant to
axis-symmetric systems, p?, p-q, and g°. These are the gener-
ators of the horizontal sp(2,R) subalgebra in Fig. 1:

K° =1¢°, K§=1ipq, K° =}p% (3.8a)
K° —Q+a +Q_T,
p"a P—a (3.8b)
RO =—p 9 _, 9
+ P+aq+ p 9
{KO+ ,KO_}= —2Kg- (3.9)

In Ref. 9, the K% were denoted simply as K, .

A second subalgebra is the “vertical” one of Fig. 1, gen-
erated by K o, L, and K ;. Since {K 5" ,K ; } = 2L it is the
compact su(2) subalgebra. The two “diagonal’ subalgebras
are {(JK 1 ,1K -} —2Uand {JK 7,1k *} = — 2V with
U=4(K3+L) and V=}(K3 — L). The factor } in the
Poisson brackets come from the roots being the “long” ones
of the algebra. Poisson brackets between functions corre-
sponding to root vectors follow the standard form'®
[XaXp] =NepXoips Nap =N_o _p= —Np,. The
root vectors at 90°, if long, commute; if short, N ., (4.0

=Ng 1y = —1 At 135° we have No ,,_ 4,
=N 4r(—,—)=—2 anfi Ny o>
= —N(_ 40—, = — 2. [The signs for the compact al-

gebra usp(4) are simpler and may be put as N
= |a+BJ%]

For axis-symmetric systems involving only the horizon-
tal sp(2,R) of Fig. 1, the classification of aberration generat-
ing functions fy,, N = 2k even, is performed in the following
way. We define the coordinates'?

— (N + i) =&+ = UNDP =\2p,p_,

(3.10a)
=& =pa4=p.q_+pP_q,, (3.10b)
(N2)(E —i&) =& = (1/\2)¢ =2q.q_,

(3.10c)

and
7=pXq=i(p,9_—p_q.). (3.11)

Forpand qreal, the £, , &, £,, and 77 are real while &, is pure
imaginary. In the R? § space, the Sp(2,R) action (2.10)
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leaves invariant the spheres
EP=E1+E+E3 =602,
= (o)’ -p¢*= -7, (3.12)
where 7? is the Petzval (skewness) invariant. In terms of

these coordinates, we build'? the solid spherical harmonics
[Ref. 20, Eq. (3.153)]

(&) = [+ 1)(j+m)(j—m)/4r]'/?

2ym +n o)/ —m—2n 2\n
XZ 1 ) (rq) (¢°)
2m+2 (m ) (j—m—2n)! nl
(3.13a)
with |m|< j integers, and finally we build
kYl (pa) =", (§). (3.13b)

The latter is an eigenfunction of K 5 with eigenvalue m, sub-
ject to raising by K up to m =j and lowering by Ko
down tom = —j, and of L with helicity eigenvalue A = 0
These functions provide the basis for the horizontal sp(2,R)
aberrations on the zero-helicity plane; k —j=0,24,...,
k—1lork,ie,j=kk—2,..,10r0.

In axial systems we may have only even powers of 77; odd
powers of 7 are not allowed by reflection symmetry across
meridional planes. In Ref. 13 we remarked that this symplec-
tic Seidel classification of aberrations placed them in one-to-
one correspondence with the states of a quantum harmonic
oscillator, ¥, , with k energy quanta, angular momentum,
and “magnetic” projection m along the axis &, = p+q, i.e.,
pure-magnifier systems. The magnetic classification axis
may be chosen to conform to other systems such as fibers,
where } (p* + ¢*) = — i, is more convenient. An su(3)
algebra of operators §; /9¢;, i,j = 1,2,3, may be formally set
up to accommodate the aberrations of a given order
A = 2k — 1 into completely symmetric su(3) multiplets re-
duced with respect to so(3), characterized by eigenvalues
under the number operator

~ a 3 3 K}
N= +p_ + _ , (3.14a
N*%] (p,9) =2k *%], (p,q). (3.14b)

Note that 1/\\’ commutes with the sp(2,R) algebra (3.5) and
(3.6), and is extraneous to sp(4,R) in the sense that there is
no function N(p,q) whose Lie operator is N. The same re-
mark holds for the other su(3) generators except for the
three obtained from (3.10), basically the so(3) subalgebra
of su(3).

It is not clear to us whether the algebra su(3) can be
used beyond its role as a suggestive classification scheme.
Recall that three-dimensional classical systems always ad-
mit an su(3) algebra®’ whose generators may be quite com-
plicated functions of phase space.

The sp(4,R ) Casimir operator is a function of the num-
ber operator

= (R —{K°, K}, + D)2+ K K7},
~H{R+ K-}, —HR* K7}, =IN(N+4),
(3.15)

where {:,-}, is the anticommutator. The corresponding
classical function built out of the K 7’s is identically zero.
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The eigenvalues of (3.15) are 2k (k + 2). Since the represen-
tations are built out of the symmetric product of basis func-
tions w;w;, etc., it is the totally symmetric one, with null
fourth-degree Casimir operator. Also, from (3.13b) it is
clear that the representations of the horizontal sp(2,R) con-
tained therein are in general

j=N/2=3A+1)=kk—1k—2,..4or 0. (3.16)

We are dealing thus with the finite-dimensional (nonuni-
tary) irreducible representations of sp(4,R) and sp(2,R);
they will be in correspondence with the compact irreps of
usp(4) = s0(6) and usp(2) =su(2) =so(3).

IV. THE HELICITY OF ABERRATION MULTIPLETS

The basic dynamical observables of geometric optics (in
a reference plane) are the two position components g, g_
and the two momentum components g, p_ given in Eq.
(3.1). These are arranged in the lowest sp(4,R) multiplet
shown in Fig. 2. This is not an aberration multiplet since
these functions do not appear except in products for higher
aberration multiplets. There are two horizontal sp(2,R)
doublets g ,p, andg_,p_.

Simple (symmetric) product of two basic sp(4,R) mul-
tiplets yields the adjoint representation mulltiplet shown in
Fig. 3, basically a reproduction of the root diagram in Fig. 1.
These functions also do not generate aberrations since their
degree is 2 and they belong to f, functions. They allow us,
however, to see the role that the vertical su(2) subalgebra
Rlays in changing the helicity [i.e., the eigenvalue of
L = (i/2)(pXxq)] of the extreme — m sp(2,R) states. The
subalgebra generators are
9 .. R 9 g
dp dq_

K =p,

and L is given in (3.7b).
For m =j, the vertical su(2) multplets will have the
form

@Y~ (2%, jA>0,
@Y 2po) T, —j<A<O,
(4.2)

with the same spin-j integer or half-integer and helicity
eigenvalue A under L. For A = 0 we have equal amounts of
p.’sand p_’s; we are then in one of the axis-symmetric aber-
rations (3.13).

Now, we follow the highest A = (or lowest A = —j)
helicity sp(2,R) multiplet, starting from %/_; = 2p/, , and

@/ _.2Jp1+ﬂ- j—A _ {

2

vz
™1
' [ ]
! h FIG. 2. The basic sp(4,R) multiplet.

YT . - Continuous lines join the two “horizon-

H H tal” sp(2,R) doublets.
H (
..—--2-—_1

-1/
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! FIG. 3. The adjoint sp(4,R) multi-
—_ 3_____.____._",' plet. Dotted lines join the “vertical”

' ! su(2) multiplets.

)

:

—

br = e

move down sp(2,R) with s O . This yields
SEH=22F"¢g ", m=j,j—1,..,—j j>0. (4.3)
Both the axis-symmetric aberration functions (3.13) and
the highest-helicity aberration functions (4.3) transform in
the same way under the group Sp(2,R) of paraxial, axis-
symmetric optical transformations.

The simple product of two highest-weight states, (p*)"
and (p Y% constitutes a highest-weight state of sp(2,R)
with Seidel weight m =j = j, + j, and helicity A = +j,. In
particular, (4.2) shows that the sp(2,R) highest states %,
of spin m = jand helicity A = A|4 |, A = sgn 4, are products
between %/ 1| (p?) and S, (24 ).

When % is subject to repeated action of the sp(2,R)
lowering operator K° , it yields the m partners of the
sp(2,R) multiplet of spin j, through m =, j — 1,..., —j.
These will be denoted * 272 (p,q) and given below. So, every
multiplet of axis-symmetric aberrations of integer spin j gets
J positive-helicity partners A = 1,2,..., j and j negative-heli-
city partners A = — 1, — 2,..., — j; their highest m = j states
belong to a (2j + 1)-dimensional vertical su(2) multiplet.
This is shown in Figs. 4 and 5 for aberration orders 2 and 3.

The coupling of Z/~*} and S* to aberrations Z** of
total symplectic spin j and helicity A thus takes place
through the “completely stretched” Wigner coefficients
C) 147 that will be detailed in the next section.

What has been said for the sp(4,R) multiplet that con-
tains (p?) [the five sp(2,R) quintuplets of Fig. 5] is valid for
the three triplets in the same figure, except that we need not
resort to su(2)-lowering arguments [which mix sp(2,R)

9N
—e —
' )
) - '
; : ; !
] ] ' ]
S y L om
[} ¥ 1 1 ad
: : i :
! 1} !
o ¢ !
i !
1 §
. o !

FIG. 4. The sp(4,R) multiplet corresponding to second-order aberrations.
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FIG. 5. The sp(4,R) multiplet corresponding to third-order aberrations.

multiplets]. Itis clear that if we have an sp(4,R ) multiplet of
aberrations labeled *2%* and we multiply by the sp(2,R)
singlet 7 = pX q of zero weight and degree 2, we obtain aber-
rations **' 2% in an sp(4,R) multiplet corresponding to
aberrations of order 4 increased by 2. In this way, the three
sp(2,R) triplets and the singlet in Fig. 5 for third aberration
order, are the higher repeaters of the three triplets and sing-
let of first order in Fig. 3.

A similar compounding between spin and helicity ap-
plies to half-integer symplectic spin multiplets correspond-
ing to even aberration order. The latter contain no axis-sym-
metric aberration multiplets. Thus Fig. 4 contains the
highestj = k = } (4 X4 = 16)-plet, none of whose members
have zero helicity; and aj =k — 1 =1 (2X2 = 4)-plet, re-
peater by one power of 7 of the basic representation of
sp(4,R) in Fig. 2.

In abstract, thus the sp(4,R) Dsp(2,R) classification
scheme we propose here yields the aberration functions
ki (p,q) labeled by (%, j;A,m), where we have the follow-
ing.

k: labels the aberration order A = 2k —1=2,34,..,by
k =13,2,3,...; itis the eigenvalue of N, the number operator
(3.14a), N=2k=4+ 1.

J: symplectic spin, j = k,k — 1,...4 or 0. The power of the
skewness variable 77 = pXq in the aberration function is
k—j. N

Azhelicity, A =j, j — 1,..., — j, eigenvalue of L in (3.7b);
gives the excess of w_’s over w_’s. "

m: Seidel weight, m =j,j — 1,..., — j, eigenvalue of X'
in (3.7a); gives the excess of p’s over ¢’s.

Axis-symmetric paraxial transformations of aberrating sys-
tems will only mix m’s, respecting X, j, and A.

We may write the generating polynomial of an asymme-
tric aberrating system of order 4 = 2k — 1 as

3 J ‘
L (p@) = Y kAR (pg), (4.4)

j=0or}d= —jm= —j

where the *./;! are the sp(4,R) Dsp(2,R)-Seidel aberration
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coefficients. The generic association between the Seidel m-
label and the christened axis-symmetric aberrations* was
given in Ref. 13. Enclosing in parentheses aberrations that
are present only for order 5 or higher, they are

m=j spherical aberration,
m=j—1 (circular) coma,

m=j—2 (oblique spherical aberration),
m=j—3 (nameless),

m=3—j (elliptical coma),

m=2—j curvature of field/astigmatism,
m=1-—j distortion,

m= —j pocus.’

The traditional classification is neither complete (pocus has
not openly appeared), nondegenerate (byj), nor is it easy to
see departure directions for asymmetries. We offer (4.4) as
an attractive alternative.

We end this section with a word on reality: p,, p,, 4.,
and g, arereal,sop*, =p_andg* = q_ arecomplex con-
jugates; 7 is real. It follows that (Z*)* = 2 ~*, as may be
seen on the sp(2,R )-highest weight states. If £, (p,q) istobe
a real polynomial, then the complex aberration coefficients
in (4.4) must relate as

(k) * =k A, (4.5)
The operation of complex conjugation p_ +—sp_, g +>q_ is
equivalent to the reflection p,— —p,, g¢,— —gq,. If the
asymmetric system is even (or odd) under the latter trans-
formation, then *»* = + %~/~* (or — ) and the ¥/ are
real (or pure imaginary). Reflecting across the orthogonal
line p,—p—p,, q,—>—gq, effects p,—~—p_ and
g.— — q_, placing a factor of ( — 1)** to what was said
above for aberrations of orders 2,4,... (k=3,3,...). If the
asymmetric system is even (or odd) under the last reflection,
the ./ are pure imaginary (or real). If both reflection sym-
metries are present and even (p— — p, g¢— — q) then all
even-ordered aberrations will be zero.

V. THE ASYMMETRIC ABERRATION FUNCTIONS

There is an evident advantage in uniform notation for
the identification of the aberration functions with standard
special functions such as the solid spherical harmonics %/,
normalized by integration over the unit sphere (Ref. 20, Sec.
2.10). These functions involve numerical square roots, as
(3.13) shows, for factors of the functions themselves, under
the action of K °_, and in the representation matrices carry-
ing the Sp(2,R) paraxial transformations.

In geometric optics we have not yet required the integral
over the sphere, i.e., the subspace of rays with fixed skew-
ness. Moreover, square-root factors are not included in the
traditional scale of the known axis-symmetric aberration co-
efficients.” Finally, symbolic and numeric computer pro-
grams®? run faster when no square roots are present. For this
reason we introduced in Ref. 1, and kept in Ref. 9, the unnor-
malized symplectic aberration polynomials®?
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&, (p,q) ='2, (X, pa.q°)
4r(Y+ 1D+ m)(j—m)! @i

2=t &
_HU+mj—m! o )7t
)l w (m+n)!
2pqY """ (g*)"
\ A1
><(j—m—2n)! n! (3.1a)
*Pl = (pXQ)IZ,. (5.1b)

As a check, the coefficients of the terms (p?)° (p:q)%(¢%)¢
are all positive and sum to unity.
The aberration polynomials (5.1) are such that

12 =Y =(.p ), ‘&_,=(¢"Y=(2q.q9_).
(5.2)
They raise and lower through
R, * i = (m—j)*2, |,
+ m = (m—j) m+ 1 (5.32)

K *@ = (m4j) 2

m—1°
Indeed, our choice of the extreme-helicity states in (4.3) was
made so that also
K0+S/1 = |’1|)Sm+l’
K° §% = (m+|/1|)S,,,_l,
with the same form for the coefficients.
Now we build the sp(4,R) symplectic harmonics la-

beled in the last section through defining first the highest-
weight state (A =sgn 1),

T = RS

= (PX@)* Y~ *(2pp )M (5.4)
We construct the rest of the j multiplet through demanding
that (5.3) hold for the *Z** as well. Applying K°_ to (5.4)
we see that the general welght m aberration polynomlal is
given by the linear combination

kapjA __ . k—j AV j—A|QA
zm =7 jo]”!,“ 2’{"_1#15'“,

(5.3b)

(5.5a)

where the coeﬁic1ent C#1! is related by root factors to the
stretched su(2) Wigner coeﬁiment [Ref. 20 Eq. (6.177)].
Recursion relations found from applying K © and the base
case (5.4) yield a coefficient in terms of b1nom1a1 coefficients
with no square roots,

ol = (’Jﬂ) (J|,1_|'iu) (23 |)_

We note that the coefficients sum to unity.
The closed analytic form for the asymmetric aberration
polynomials is thus

(5.5b)

*Zi(pq)
=[N Q2IA DRI — |4 DG+ m(j— m)!
. lll+u qlll—
X (pXq)* ™/
PXO Y ATl (A=
(p2)m m+n
XN —
;(m—,u+n)!
(zp.q)j—|ﬂ.|—m+u—2n (q2)n
y 5.6
(J—A|—m+u—2n)! nl (3.6)
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TABLE I. Second-order aberration polynomials.

Y I

L =S =V g,

Mg GISVE QN2 =232
MGV @ISV LS 2 =2V (p%g, + 2pqp.)

3/2_@‘}2,1/2 — 17‘51 :ﬁ — 21/2pxqp+

where the coefficients of p7-p”-¢" ¢"= sum to 2. In the
multiplet diagrams, reflection in helicity is

T A ) = (F () = FF A (W ow_).
(5.7a)

Similarly, reflection in Seidel weight is obtained as
K2 L (p,) = (— D* 2 (gp). (5.7b)

The last operation exchanges p’s and q’s, including the 7
factor; hence the sign.

In Tables I and II we give the symplectic aberration
polynomials of orders 2 and 3 (Figs. 4 and 5) in the normali-
zation (5.6) for the upper-right quadrant of the multiplet.
Reflections in A and m through (5.7) yield the full multiplet.

As we said in Sec. II, for a given aberration order there
ared,, =}(2k + 1)(2k? + 5k + 3) independent 2k th-or-
der monomials in p’p,”q,q,™; we can count the same
number of *2’s. The coefficients to pass from the latter to
the former are present in (5.6); the inverse transformation
coefficients have a recursion relation reported in Ref. 12 for
zero helicity.

The role of the aberration polynomials *.2%4 is not only
to generate aberrations, but to serve as homogeneous space
for the optical group action linearized thereby. If we return
to (2.7) with f,, written in the symplectic basis as (4.4) and
write the basic quadruplet /2.2 /2% for w, then clearly we

TABLE. 1I. Third-order aberration polynomials.

275 =51 =45,
T~ ST =4,
“TY =S =4, 7,

22V =S = =4 p
PV =208 +1' 208 =ppags Frar
23’3’[:%1?}'5'1_] +§129(1)SA+%1291_]S<§

=g, +4ap.q. +4P ) =2qp.q,

Y= = 0 =4 P
2V =127 =p'pa

2T =2 = P°q + 2(r0)’]

i =5,

23"1',.0 — 77 129:"

233.0 = 772

2504 J. Math. Phys., Vol. 28, No. 10, October 1987

are in need of expressions of the Poisson brackets between
the Z’s. To our knowledge, this operation has not been stud-
ied within representation theory. We may state, neverthe-
less, the following structure with selection rules for the in-
dices:

J+j =1
k A k' f AT jif g k+ k-1 j"\A+ A’
(i, ¥ Y = P, kK A grAt
J=lm+m|
(5.8)

This also defines the Lie structures of the universal covering
algebra of the one generated by the basic quadruplet, and
those of its aberration algebras of order A4 briefly constructed
in Ref. 1. We note in (5.8) that the weight labels A and m
compose additively, k is diminished by 1 [cf. (2.6) ], and the
sum ranges only over the j” values present at the point
(m+m',A +A') on the multiplet diagram. The maximal
multiplicity occurs nearest to (0,0) and is the integer part of
k + 1 for asymmetric aberrations. For zero helicity, the re-
sult (5.8) involves only sp(2,R) and the coefficients are giv-
en in terms of so(3) Wigner coefficients in Ref. 9.

VI. EXAMPLES: FLAT AND QUASIFLAT REFRACTING
SURFACES TO FOURTH ABERRATION ORDER

Let us consider two optical model elements to visualize
the effect of asymmetric aberration on light rays: flat and
quasiflat refracting surfaces.

Flat refracting surfaces exist as Fresnel lenses, such as
may be seen in the back windows of some vans, with groves
that may not be circular and/or of varying depth. The action
of a flat Fresnel lens on optical phase space is to change the
direction of all rays at the surface, namely p—p’(p,q) and
q—4q’ = q. Since the transformation is canonical, p’ must be
of the form p + x’(q) and this is produced by the operator

G, = expl(q)7). (6.1)

We shall call xk(q) the kick function since the model also
applies to a potential kick in mechanical systems where the z
axis is time, and we shall speak of multipoles, as in the thin-
lens approximation to magnetic optics.

The expansion of the general kick function «(q) into
aberration polynomials is

0

K@= Y Ko d5q=
n,n_=0
© k
= Z 2 Kt kgkf{k(Q)
k=01/2 A= —k
I k
= Y S g**(C% cos 244 + S% sin 244),
k=01/2,. A=0or1/2
(6.2a)
1 gn++n- _
K, , = K( ) =2kKA;(:+—:_)/2.
" n 1 3g": Ig- q o k=(n, +n_)/2

(6.2b)

In the last expressions we have written g, = ¢ cos ¢ and
g, = g sin ¢,50 “Z**, (q) = ¢**¢**¢ and the coefficients are
C%* =2Rex} and S = — 2i Im «}. All other coefficients
of *F+* m= —j, are zero. The &’s present are only those
of the leftmost vertical su(2) multiplet in Figs. 2-5.

The k = 0 term is a constant and of no import (the Lie
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operator of a constant is zero). The k = 1 terms correspond

to a linear (free-fall) potential kick, a thin prism (a Fresnel
lens with straight groves), or a “thin” magnetic dipole
across the beam axis. Being of first order, they are excluded
from our treatment here.

The k = 1terms are the generators of linear transforma-
tions of phase space; they are produced by harmonic oscilla-
tor potential kicks, thin (Gaussian) lenses, and thin magnet-
ic dipoles along the beam axis modeled by the ! 2% = g4?
term. The other two '.2"4’s yield the independent quadru-
pole kicks ¢.¢, and ¢2 — g7 that are in sp(4,R), linear but
not axis symmetric. Since they produce linear transforma-
tions, they do not count among the aberrations.

Kick functions of angular dependence ~sin (M¢) may
be called 2M poles; this may be used to model magnetic 2M-
pole arrangements of 2M alternating magnetic poles in a
plane normal to the optical axis, and thin. Since 2M poles are
invariant under rotations around the optical axis by 2#/M, it
follows that a pure 2M-pole kick function may expand in
(6.2) only into helicity components A =0, 4+ M /2,

+ M,..., and these may appear only for k> |4 | = M /2, i.e.,
for aberration order A>M — 1. Thus sextupoles (M = 3,
k =3) require at least second aberration order, octuples
(M = 4, k = 2) require at least third order, etc.

Since each exponential factor terminates after the first
term, the required Poisson brackets are, from (3.3),

B2p, =22 (@)
:F
- ﬁ(k FA) k—1/2gk_—(]1(/_2,/11/;§)1/2. (6.3a)
The series may be summed to
R a
expr(q) p, =p, + 20 (6.3b)
0q +

as is evident from (3.3).

A quasiflat refracting surface is an interface z = £(q)
between two different optical media with refractive indices
n, n', that coincides with the reference plane up to second
derivatives at the chosen optical center. This means
5(0) =0,0( /34|y =0, and 3% /dq, Ig; |4, =0. We
may expand the quasiflat surface £(q) in “*Z*%, (q)’s as in
Egs. (6.1) with coefficients where £ § = £ = 0. We exclude
here the axis-symmetric Gaussian thin-lens coefficient £
since it produces linear transformations (q—q, p—p

+ 2£9q) that would take us beyond the purpose of simple
illustration. We exclude also the Gaussian thin saddle lenses
¢ ! since they lie in sp(4,R) outside sp(2,R).

Unlike multipole kicks, quasiflat surfaces are not quite
flat. See Fig. 6. A ray crossing the reference plane at q in
medium #, strikes the interface { at q after free flight by a
distancez = § ((—l)- This is described at the reference plane by
virtual free flight back, in medium »’, by — z. The intersec-
tion with the plane is q'. The effect of an arbitrary refracting
surface on optical phase space was introduced in Ref. 24 and
described in the articles in this series'*> and in Ref. 9, so we
need not repeat the derivation. It is shown that the refract-
ing-surface transformation is a canonical transformation
that factorizes in the manner described in Fig. 6 into two root
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FIG. 6. Refraction at the interface between two media interpreted as a
transformation at the reference plane.

transformations
Spmie = R,,,gR,,T,g‘, (6.4)

each of which is canonical and, written in the helicity basis, is

R, : Pi""ﬁi =p, +Vyn —p My (6.5a)
94+

R, g.—F, =q, +&@p, An"—p*). (6.5b)

Observations that have been made before in this regard
are that this set of equations solve implicitly for g out of
(6.5b). This process is amenable to expansion by aberration
order; using symbolic computation programs, we have
found explicit expressions to aberration order 9 for arbitrary
axis-symmetric surfaces.”>>> Here we proceed by hand
through fourth order for asymmetric quasiflat surface in-
volving k = }, 2, and 3. We abbreviate the surface shape in
(6.2) as

5(q) =63(q) +&4(q) + S5(q),
k
Cul@) =g 3 £ie.

A= —k

(6.6)

Keeping terms in phase space to the aberration order, and
this plus one in (6.6), we expand the inverse root function in
(6.5b) and find

3; =9: + (5 +6+65)@
X[(l/n)pi (p2/2n3)pi + ]
=q. +(1/n)§3(§)Pi + o5

=g, + (I/m)5(Qp, +os. (6.7)

In the last step we have replaced the left-hand side, g, into
£5(q) obtaining &5(q) plus terms beyond aberration order.
The fact that g#q shows that the quasiflat surface is not
simply a flat kick; the summand {5(q) p , is of degree 4 and
the distinction with kicks lies thus beyond aberration order
3.

We now replace the result (6.7) into (6.5a) expanding
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the square root in the same manner,

2
- d -
Py =P +(”— gn —”')a?:,: (§3+ 8+ 65) (@)

=p, +n 9 (§3+ 85 +65)(@)
dq -

—2:P= 9 () + o (6.8)

n  dgs
In the last step we have noted that 35,/dq is of degree 2 in ¢
and, since the lowest cross term in (6.7) would be already of
degree 5, we wrote d/0q + o5s. The g derivative of the
aberration polynomials are found from (6.3) .

Now we want to write the aberration polynomials
7 (p,q) that generate the root transformation (6.7) and
(6.8) as a pure-aberration Lie transformation (2.5) with
r, =0. We recall the resuits for pure kicks and proceed
through aberration orders 2 and 3,

3/2

"3((1)—”;3(‘])—'1 z ;l 3/2-2’3/3/2(‘])’ (6.9a)

A= —3/2

néiq) =n 2 §§ 27 (@) (6.9b)
The corresponding exponentlal series of the operators r,and
r4 acting on the position observables g do nothing, while on p
they stop after the first term and account for the summands
ndgs/dq - and n d5,/dg - in (6.8).

The polynomial 75 responsible for fourth aberration or-
der in the exponential series yields the fourth-order term of g
and p through its first Poisson bracket with q and p,

r,(q) =

- aa 2= {rS’qj: } _§3(Q)Pi s (6103)
P ¥
s _ {rsp. }= n———és(q) —&“f-‘——a—{s(q).
aq:F 9q + n dq;

(6.10b)

The system is integrable because of the symplectic condi-
tion.?8 Its solution is

rs(p,a) = nés(q) — (1/2n)p*E(q). (6.11)
Thus the root transformation (6.5) to fourth order is

R,, = --rexplngs(q) — (1/2n)p*(@) 1"

Xexp ni,(q)” expnéi(q)”. (6.12)
The quasifiat surface transformation (6.4) may be ob-
tained dlrectly from the two root ones, since'® eie?
= ePeleldB1+ " where A =r, + 7, + rs with n, and B the
same with —n; {4,B}~{r,rs} is of degree
3+5—2=6>5 and lies beyond the aberration order.
Hence the Lie transformation is

S

nn'iE
= --exp[(n —n')§s(q) — (L ~L ,)P2§3(Q)]‘
2n 2n

Xexp(n —n)E,(q)" exp(n —n')55(q)" . (6.13)
The phase-space transformations w' = 8§, .. w =R ;w are
also given by (6.7) and (6.8) through m—n —n' and
l/nm—l1/n—1/n".
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In the above expressions we may distinguish the kick
terms present in (6.8) by the factor ~ (n — n'). They are
functions only of q and belong to the “left edge” of each
sp(4,R) mutliplet. The nonflatness term has a factor
~(1/n—1/n') inboth ¢’, and p’, . Thelatter are the more
interesting ones: for ¢, , following (6.7) itis ~p , £5(q);for
p’, following (6.8) itis ~p® 95,(q)/dg + . A {; term at the
(k, j,m,A) position (3,3; —43,0r3]) is shifted
inthe formerto (2,[ j = 2,1]; — 1,4 + ) and in thelatter to
(2,[j=2,1,0];0, |4 + 4|<1), with a mixture of two or three
values of the symplectic spin j. We shall not go into details
beyond this point; the explicit results in terms of the sp(4,R)
aberration polynomials may be found using (6.3) and the
two tables of Sec. V.

-3 [A=3

VIl. SOME FURTHER ISSUES AND CONCLUDING
REMARKS

It seems to us that Lie methods in aberrating systems
require a balance between computational ease and math-
ematical thoroughness. The examples in the last section
would also be quite tractable using the “unclassifiable”?’
monomials C,, ., ., . P P"q": q"- for both the aberra-
tion polynomials 7, (p,q) and the nonlinear map of phase
space p—p(p,q),¢—d(p.q)- Indeed, if we ask only that the
refracting surface be tangent to the reference plane at the
optical center, we derived in Ref. 12 a set of selection rules®
obeyed by the monomial aberration coefficients of axis-sym-
metric systems. Concretely, spherical aberration ([p*]*),
circular coma ([p?]*~! p+q), and all aberrations generated
by (P’1%~*(p'q)*, k = 0,1,...,k, are zero.

We may apply exactly the same reasoning to the asym-
metric surface g(ﬂ) = é-dfqaqf + gaf¢qaqrq¢ + - (0’,T,¢
= 4+, — ) and obtain selection rules for the coefficients » of
R,.,

g
(7.1)

We shall not repeat the details since they follow closely the
arguments presented in Ref. 9. We obtain

=0 for n, +n_<I1,

— M
T (q) - rm*m_n*n_P +*p -
m,+m_+n,_4+n_=2k

rm+m_n+n_ (723)

i.e., the rightmost two columns of every symplectic aberra-
tion multiplet are absent: spherical aberration and circular
coma, with all their helicity versions. For the third column
from the right, we find

Tmomnon =0 forn,+n_=2and m,#m_,
(7.2b)

i.e., only the monomial aberrations p°q"; ¢"- ,n, +n_ =2
(so A =0, 4 1) are nonzero.

The point we want to emphasize here is that the selec-
tion rules are imposed by nature on the coefficients of the
monomials p7p™-q"; g"-, not on the coefficients of the
symplectic polynomials *Z*, By itself, this result would
argue against the usefulness of our classification. This, we
saw in Sec. IT is based on pure magnifiers; it represents the
“best choice of balance” between refracting surface transfor-
mations and free propagation (2.8), where only fi, o0 (2) is
different from zero. Principally, it is the symplectic spin j
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that may be questioned for convenience. Let us therefore
present the basics of another development that argues for the
economy of Lie theory in aberration optics."?

Optical fibers with bends or other defects may be expect-
ed to suffer from asymmetric aberrations. Moreover, the Sei-
del aberrations of a fiber? are bound to a paraxial harmonic
oscillator motion and describe epicycles in the complex
plane. A simpler description of their behavior becomes evi-
dent already for axis-symmetric systems'®> when we refer
their weight (m) classification to the oscillator axis

H* =y +¢) =2, +£) = —i&,  (13)
The transformation from the Seidel axis for magnifiers to the
coherent-state axis for fibers is through a (complex) rota-
tion of 7/2 around the £, = — }(p* — ¢°) axis. This is Barg-
mann’s transformation?®

{
exp[———;—iﬂ(pz—qz)‘] (:)=%(’. l]) (:). (7.4)

Under this transformation, the components of each
sp(2,R) spin multipletj mix only among themselves. Instead
of a Seidel weight m, we shall have a “coherent state” weight
m'; aberration order, sp(2,R ) spin, and helicity are the same.
The coherent state basis aberration coefficients now follow
multiply periodic circular motion (with z) in the complex
plane that does not surround the origin. The adaptability of
the Lie classification scheme to the paraxial system under
consideration will extend to the general asymmetric situa-
tion as well.

In this article we have presented as the main result the
classification of asymmetric aberrations; we have also
brushed several issues we left aside as lateral, and questions
remain to be answered. There is a need for more realistic
examples of optical systems, analyzed and computed in
greater depth. This we propose to do in future work.
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The stability and symmetry breaking bifurcation of a planar liquid drop is studied using the
energy-Casimir method and singularity theory. It is shown that a rigidly rotating circular drop
of radius » with surface tension coefficient 7 and angular velocity €2/2 is stable if (£2/2)2
<37/r. A new branch of stable rigidly rotating relative equilibria invariant under rotation
through 7 and reflection across two axes bifurcates from the branch of circular solutions when

(N/2)% =37/

I. INTRODUCTION

Bifurcation of systems with symmetry has been a subject
of much interest in recent years. Symmetric systems are
common in nature and even more common in the literature,
as multidimensional bifurcation problems possessing sym-
metry are typically more tractable than asymmetric prob-
lems of comparable dimensions. The requirement that the
bifurcation equation be equivariant under the action of a
given group G, i.e., that f(g-x,4) = gf(x,A4) for all geG, can
force the bifurcation equation to take on a relatively simple
form. For example, if one considers a function fon R which
is equivariant with respect to the Z, action x —» — x itis clear
that f can be written as f(x?)x for some function f. [See
Golubitsky and Schaeffer! for a thorough presentation of the
singularity theory approach to bifurcations with (and with-
out) symmetry. ]

The class of bifurcation equations with which we are
particularly concerned here arise in Hamiltonian systems
with symmetry. Using the energy-Casimir method (cf.
Holm et al.?), one can typically find a combination C of
conserved quantities such that a given (relative) equilibrium
of a Hamiltonian system is a critical point of H + C, where H
is the usual Hamiltonian of the system. The bifurcation pa-
rameter may appear in either the Hamiltonian itself or in the
added conserved quantities; if we denote the parameter-de-
pendent modified Hamiltonian by (H + C),, then the ap-
propriate bifurcation equation is D, (H + C) ; (x) = 0.

Invariance of the Hamiltonian under a given group ac-
tion usually induces constraints on the form of its differen-
tial. In the analysis of a symmetric bifurcation problem it is
important to exploit these constraints as fully as possible;
behavior exceptional in an asymmetric context may be typi-
cal or even necessary if all existing symmetry is taken into
account. Several important generic properties of bifurca-
tions of Hamiltonian systems are presented in Golubitsky
and Stewart.> The present paper is largely the result of dis-
cussions with Golubitsky and Stewart; the lemma presented
here is a variation on results due to Cicogna® and Golubitsky
etal’

There are a number of well known, but as yet incom-
pletely understood, examples of bifurcation with symmetry
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breaking in hydrodynamics, including Taylor—Couette flow
and the vortex breakdown. The energy-Casimir method has
been applied to a wide variety of hydrodynamic problems
with a great deal of success in recent years (see Holm et al.?
for a generous selection of applications of the energy-Casi-
mir method). In earlier works we have determined the Ham-
iltonian structure for free boundary fluid problems (see
Lewis et al.°) and formal stability for the two-dimensional
circular liquid drop (see Lewis et al.”); in Lewis,® condition-
al nonlinear stability under the same hypotheses is estab-
lished. The method is readily applicable to analytic solutions
(e.g., the Kelvin-Stuart cat’s eye, cf. Holm et al.®) and
should be implementable for approximate numerical solu-
tions.

Our basic approach is to determine the stability of a
relatively simple equilibrium flow by applying the energy-
Casimir method and then, at the point at which this flow
loses formal stability, apply the techniques of symmetric bi-
furcation theory to gain information about the new, typically
more complicated, solution branch. The techniques and gen-
eral results discussed here are not, however, restricted to
problems in fluid dynamics; another class of examples cur-
rently being studied is the stability of coupled rigid bodies
and spacecraft with flexible attachments; see Krishnaprasad
and Marsden. "

The paper consists of three sections. Section II gives a
brief (and incomplete) summary of existing results in this
area. Section III contains a lemma outlining conditions un-
der which bifurcation of the critical manifold of an SO(2)
invariant function on R? can be shown to occur. Section IV
discusses, as an application of the lemma, the bifurcation of a
two-dimensional rotating liquid drop with surface tension
from a rigidly rotating circular configuration. In future pub-
lications we hope to present some numerical studies of the
drop configurations and possibly search for boundary bifur-
cations from the “flip” symmetric two-lobed branch.

Il. BACKGROUND

Rotating liquid drops have been the object of intense
study, both in the nineteenth century and in the last twenty
years. While the original research was necessarily restricted
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to the study of approximate theoretical and experimental
models, recent work has benefitted greatly from the avail-
ability of computer simulation and elaborate and accurate
experimental configurations. Swiatecki'' provides a thor-
ough review of research in this area up to the early seventies.

The principal analytic approach to the study of the equi-
librium configurations and their stability has been to analyze
linearized models and low-order approximations of the actu-
al drop shapes. Analytic linear stability results for axisym-
metric drops held together by surface tension have been
found by Chandrasekhar'? using the method of virials. Sec-
ond-order expansions for the evolution of a perturbed
spherical drop have been developed by Tsamopoulos and
Brown."

Several thorough numerical studies of rotating liquid
drops have been made. Brown and Scriven' use a finite ele-
ment code to trace the bifurcations of an initially spherical

rotating drop held together by surface tension; they analyze

the linear stability of the solution branches and show general
agreement with Chandrasekhar’s analytic results. Benner'?
has performed numerical studies of cylindrical (i.e., planar)
drops under the effect of surface tension and traced the evo-
lution of small potential flow perturbations of the stationary
circular solution. The results of his simulations indicate that
these perturbations remain bounded for at least a short peri-
od of time. Both the calculations of Brown and Scriven and
Benner assume that the drop possesses reflectional symme-
try across some axis; equilibria lacking this symmetry could
conceivably appear through subsequent secondary bifurca-
tions.

Experimental research regarding rotating liquid drops
with surface tension dates back to Plateau’s study of fat glob-
ules suspended in a liquid of nearly equal density. The most
dramatic recent research is that of Wang ez al.’5; these ex-
periments, which involved free floating, acoustically acceler-
ated droplets, were conducted in near zero gravity in Space-
lab. The observed bifurcation of a family of two-lobed drops
from a family of oblate, axisymmetric drops agrees qualita-
tively with both the analytic and numerical predictions, al-
though there are some unresolved quantitative discrepan-
cies. (In particular, the bifurcation from the axisymmetric to
the two-lobed branch appears to have occurred somewhat
earlier than predicted.)

lll. BIFURCATION LEMMA

The initial step in the analysis of a given bifurcation is to
establish that a bifurcation has, in fact, taken place. It is
typically the case that if a known solution loses stability as a
given parameter is varied, then a “transfer of stability” oc-
curs and another stable solution exists for nearby parameter
values. This supposition must, however, be checked in each
case. In complicated examples, e.g., those obtained from
large or even infinite-dimensional systems by Liapunov-
Schmidt reduction, the task of determining points of bifurca-
tion need not be trivial.

At a point of bifurcation one typically expects to see a
new one-dimensional solution branch emerge; a typical non-
degeneracy condition for bifurcation results is that only one
eigenvalue of the system pass through zero at the point of
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bifurcation. In problems without symmetry, or with discrete
symmetry, this is an entirely reasonable assumption, but if
the symmetry group is continuous, it may be impossible to
satisfy. If a map fis equivariant under the linear action of a
group G, then the following situation occurs. If x is a zero of f
then, for any geG, g-x must be a zero as well, since

flgx) =gf(x) =0

if f(x) = 0. Thus the solution branches are made up of orbits
of the group action. If & acts freely on a given solution
branch, then the dimension of that branch cannot be less
than the dimension of G. Even if the action is not free, it may
still force the solution branch to be multidimensional, imply-
ing that at the point of bifurcation multiple eigenvalues pass
through zero simultaneously. In this case many standard
bifurcation theorems may not be applicable.

If analyzed strictly with regard to dimension, the study
of bifurcation problems with continuous symmetry groups
may appear to be extremely difficult. In fact, the multidi-
mensional solution branches are usually redundant; all es-
sential information about the bifurcation may be obtained by
studying a representative point in the orbit swept out by the
group action. In some cases it is feasible to explicitly reduce
the original manifold by the group action, but there are cir-
cumstances under which this reduction can be somewhat
complicated. For example, if one considers a linear group
action on a vector space, the action at the origin is not free
and the reduced space may fail to be a manifold at that point.
Thus, if one is considering a bifurcation from the “trivial”
solution (0,4), analytic difficulties arise exactly at the point
of interest. In such cases it seems preferable to leave the state
space unaltered and instead generalize the usual criteria for
bifurcation to account for the redundancy induced by the
group action. The central result of this section is a simple
generalization to the case of the group SO(2) acting on R?.
(In this case both eigenvalues pass through zero simulta-
neously at a point of bifurcation never leaving the imaginary
axis.)

The following lemma is a modification of results of Ci-
cogna® and Golubitsky et al.> The idea behind the lemma is
to split the bifurcation map into a scalar function that de-
pends on the bifurcation parameter and a multidimensional
map that is independent of the parameter and equal to zero
at the bifurcation point; one then applies the implicit func-
tion theorem to the scalar equation to establish the existence
of a new solution branch. The second result in this section is
an application of the lemma to the differential of an SO(2)
invariant function on R? where the restrictions imposed on
the function by SO(2) invariance guarantee that the decom-
position of the differential into scalar and vector-valued
components is possible.

Lemma 1: Let V be a vector bundle over a manifold M
and A€R. Let F be a A-dependent section of V. Assume
F(x,A) = g(x,A)*h(x) for some (smooth) maps g: M XR
—»Randh: M- V. Let S, = {x: h(x) = 0}. If for some point
(x0:40) With x,€S, we have

(i) D, F(x040) = 0;

(ii) D h(x,) #0;

(iil) Dy; F(xp,44) #0,
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then a branch (or possibly family) of solutions (i.e., points
mapped into 0) bifurcates from the trivial solution manifold

S, at (x5,40).
Proof

0 =D, F(x440)
= D, g(XpAo)h(Xo) + 8(XpAo) Dch(Xo)

implies g(xg,40) = 0, since x&S, implies h(x,) = 0 and, by
(ii), D, h(x,) #0. Similarly,

0#£D,; F(xp,4,)

= D,8(XpA0) D, h(x,)

implies D, g(x,.4,) #0. Thus we can apply the implicit func-
tion theorem to g and find a function A: M—R such that
g(x,A(x)) =0 for all x in a neighborhood of x,. It follows
that there must be a set of solutions of F = 0 passing through

S at (Xp4)- "

We now specialize the above result to the study of criti-
cal points of an SO(2) invariant function on R

Corollary 1: If

(i) £ RZXR-R is (smooth and) invariant under the
standard SO(2) action on R%;

(ii) D,, £(0,0,4,) = 0 for some A,;

(iii) Dyen S10,0,44) #0,
then a branch of critical points of femanates from the trivial
critical point branch (0,0,1) at 4.

Proof: The invariance of /: R* X R—R under the SO(2)
action implies the existence of a function f: RXR—R such
that f(x, y,A) = f(x* + y*A). (For smoothness of £, see Go-
lubitsky and Shaeffer.') Identifying 7*R*> with R>XR?, it
follows that

D, fix,y.A) =g’;(x2 + 24 (2x,2p).

Thus, letting g(x, p,A) = (f/3r) (x* + y*A) and h(x,p)
= (2x,2y), we have

F(x,yA) =D, f(x,yA)
=g(x,yA)h(x, ).
Conditions (ii) and (iii) imply that
D, F(0,04,) = D,, f(0,0,4,)

=0
and

-ij(F(OyO/tO) = Dxx/l f(gioy/{o)
#0.

Differentiating the linear map h gives

D_h(0,0) = ((2) 0).

Thus the conditions of the lemma are satisfied and a branch
of nonzero solutions of F = 0, i.e., critical points of f, must
branch from (0,0,4,). n

Remark: The above result for SO(2) acting on R* can be
generalized to the case of an n dimensional Lie group G act-
ing on an n + 1 dimensional manifold .#. If a function f
4 XR-R is G invariant, then Df typically lies in a one-
dimensional subspace of the cotangent bundle of .#; thus, if
the appropriate nondegeneracy conditions are satisfied, the
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lemma can be applied. More precisely, let f; 4 +Rbea G
invariant function, xe.# and ®(s) beacurvein G tangent to
a vector £€¥, the Lie algebra of G, at s = 0. Differentiating
the equality f{®(s)x)=f(x), one sees that D, f(x)
£ +(x) = 0. Here £ , (x) denotes the infinitesimal gener-
ator of £, defined by & , (x) = (d /ds)|,_ , ®(s)x. [Forex-
ample, in the case of R? with the usual SO(2) action,
1, (x)=2Xx.]Leté’,...,£ "beabasisof 4. Atany point x
in .# at which G acts freely, £ !, (x),..., £” (X) span an n-
dimensional subspace E, of T, .#. Then Df(x) must lie in
the one-dimensional subspace E; of T'* .# consisting of one
forms annihilating =, . Any nondegenerate local section of
= will serve as h, so that the lemma may be applied.

IV. ROTATING PLANAR LIQUID DROP

As an application of the preceding results, we consider a
planar liquid drop consisting of an incompressible, inviscid
fluid with a free boundary and forces of surface tension on
the boundary. The dynamic variables are the free boundary
= and the spatial velocity field v, a divergence-free vector
field on the region Dy bounded by 2. The surface 2. is an
element of the set .7 of closed curves in R? diffeomorphic to
the boundary of a reference region D and enclosing the same
areaas D. Welet. /" denote the space of all such pairs (Z,v).
The Hamiltonian approach to hydrodynamic problems was
introduced in the fixed boundary case by Arnold'’ and de-
veloped by Marsden and Weinstein.'® The free boundary
case has also been studied by Sedenko and Iudovich.'

The equations of motion for an ideal fluid with a free
boundary £ with surface tension 7 are

v Jz

——+ .v = '_v y = ’ 3

5 T VY P (vw) "
divv=0 and p|Z=1x,

where v is the unit normal to the surface, £, « is the mean
curvature of =, and 7 is the surface tension coefficient, a
numerical constant.

The Poisson bracket will be defined for functions F,G:
A" =R, which possess functional derivatives defined as fol-
lows.

(i) 6F /v is a divergence-free vector field on D5 such
that

D F(Zv)dv= J.

Dy

(-‘SE ,&r) d4,
ov
where the partial (Fréchet) derivative D, F is computed
with X fixed.

(ii) 8F /5¢ is the function on 2 with integral zero given
by

L
5p sv

(The symbol @ represents the potential for the gradient part
of v in the Helmholtz, or Hodge, decomposition. )}

(iii) 6F /6% is afunction on X determined up to an addi-
tive constant as follows. A variation 62 of X is identified
with a function on Z representing the infinitesimal variation
of 2 in its normal direction. It follows from the incompress-
ibility assumption that 8% has integral zero. Let 6F /8% be
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the function determined up to an additive constant by

OF 5% ds= D, F(3,v)63.
>3

p3

We now define a Poisson bracket on .#” as follows. For

functions F and G mapping .#" to R and possessing func-
tional derivatives as defined above, set

{F,G} = (w,‘s—Fxé-G—> dA
Ds Sv  Ov

L[ (Eoe s ony, @
s\63 8¢ 63 89

where @ = curl v. This Poisson bracket on .4" is derived
from the canonical cotangent bracket on 7*% , where, in the
two-dimensional case, ¥ = Emb,,, (D,R?) is the manifold
of volume-preserving embeddings of a two-dimensional ref-
erence manifold D into R? by reduction by the group
G = Diff,, (D), the group of volume-preserving diffeomor-
phisms of D (i.e., the group of particle relabeling transfor-
mations). (See Lewis er al.® for details.)
We take our Hamiltonian to be

H(Z,v) =J

Dy

%|v|2dA+rJ ds. (3)
z

The functional derivatives of H are computed to be

S6H oH <5H >
— =V, ———={—,V =<V,V>,
v bp ov

where §H /6% is taken modulo constants. For this H and the
Poisson bracket (2), the equations of motion (1) for the free
boundary fluid with surface tension are equivalent to the
relation dF /3t = {F,H} for all functions Fon.#" possessing
functional derivatives.

We consider the stability of the planar incompressible
fluid flow such that the boundary X, is a circle of radius  and
the fluid is rigidly rotating with angular velocity ). We shall
apply the energy-Casimir method as follows. For the circu-
lar equilibrium solution of the equations of motion, we shall
find a conserved quantity C such that H. = H + C has a
critical point at the equilibrium. We shall then test for defi-
niteness of the second variation of H. at the equilibrium
point. If it is definite, then the equilibrium is said to be for-
mally stable. (See Holm et al.? for a thorough description
and applications of the energy-Casimir method. For details
of the following stability analysis, see Lewis ez al.”)

One class of conserved quantities consists of the Casi-
mirs of the Poisson manifold .+, i.e., functions C on 4~
satisfying {C,F} = Ofor all functions F for which the bracket
is defined. We will make use of Casimirs of the form

Ci(Zv) = D(w)dA,

Ds
where ® is a C? function on R? and w = {curl v,2). We will
also include the angular momentum

J(Zw) =

Dy

(xXv,2)dA.
Here J is the momentum map associated to the left action of
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the group O(2) on .#". The conservation of J is a conse-
quence of the invariance of the Hamiltonian H under the
O(2) action, which implies 3J /8t = {J,H} = 0. The inclu-
sion of J in the modified Hamiltonian H allows us, roughly
speaking, to view the fluid from a rotating frame with arbi-
trary angular velocity.

We take our total conserved quantity to be

H.(Zw) =f (—;— [v|* —p(xXv,2) + <I>(a)))dA
D

X
+'rf ds,
3

where u is a constant, as yet undetermined. Using elemen-
tary vector identities, we can rewrite H as

H.(Z,v) =f (—1— |€'|2—i,u2[x|2+<l>(w)) dA
o \2 2

+TJdS,
3

where ¥ = v — uz X x. This rephrasing corresponds to view-
ing the fluid from a flame rotating with constant angular
velocity y; ¥ is the fluid velocity in the rotating flame.

The first variation of H is computed to be

DH(3,v)+(62,6v) 4)

= ((#,6v) + ®'(w)-{(curl 6v,2))dA (5)

Dy

+f (_1_|9|2_i#2]x|2+rk+¢(w))52ds.
s\2 2

(6)

We now consider the case where X, is a circle of radius

and v, = (/2)Z X x for some constant (1, i.e., the equilibri-
um flow is rigid rotation with angular velocity ). The circle
2., has constant mean curvature x = 1/r. We require DH . to
vanish at this equilibrium. Since w, = (curlv,,z) = Q,
DH . depends on ¢ only through the constants ®(Q) and
P'(Q). If we set u = /2, corresponding to choosing a
frame moving with the rigidly rotating fluid, then ¥, = 0, so

DH_(Z,,v,)*(8%,6v)

=] &'(Q){(curl bv,2)dA

Dy

+(_i(9)zrz+f+¢(m”52ds
2\2 r by

= | ®'(Q){curl bv,2)dA,

Dy
since 62 satisfies fy 62 ds =0. Thus DH-(Z,,v.) =0 iff
@®’'()) = 0. For convenience we choose ® = 0. (Other
choices of ¢ will give better stability estimates.)

The second variation of H at a general point (2,v) is
calculated to be
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D?H_(3,v)+(62,6v)

=f (|6v]> + @” (w)¢|curl v|*)dA
Ds .

+f [2(“’,5") + @' (w)+(curl 6v,2))53
)
+ (¥ — L p?[x|? + % + P(2))(8°Z + k53?)

ad (1 ., 1 , ) 2

A TR @ >
+ Ew (2 |¥| 5 pex|*+ ®(w) ) 8
— 1(A8Z)83 — TK2522] ds,

where A is the Laplacian on 2 and 873 is the variation of §2
with respect to 2. (The presence of the terms involving §°2
is due to the constraints on the variations of X arising from
the fact that the manifold .¥ of boundary curves is not a
linear space; for fixed 3 the space of v’s on X is linear, so no
such 8%v term arises.)

For the circular flow described above the second vari-
ation reduces to

D?H (Z,,v,)*(82,6v)?

= f |6v|* dA
DE

Q 2 2 7 2
_f [(_) r63% 4 7(ASZ)SS + L 63 ] ds.
x L\ 2 r

It follows that D2H . (Z,,v,) is positive definite iff

TJ (——(SE —(ASZ)(SE)ds>(—) r| 63°ds
= r 2 b3

(7N

for all area preserving variations 6.

We simplify the expression of this condition by estimat-
ing — (A8X)562 using eigenvalues of the negative of the La-
placian on the circle of radius ». The eigenfunctions are
52,4 (0) = cos k(0 — ¢) with eigenvalues A, , = (k/r)?
for all positive integers k. The eigenfunction 62, ,

= cos(8 — ¢) corresponds to an infinitesimal translation in

the ¢ direction. If we wish to consider our system modulo
position, regarding two configurations as equivalent if one
can be obtained from the other by a Euclidean motion, then
we can simply ignore the perturbations generated by the low-
est eigenfunctions 8%, , and test for the definiteness of
D?H_ only with respect to perturbations which actually dis-
tort the drop shape. In this case, taking 1, , = 4/r” as the
lowest admissible eigenvalue, D ?H_. is positive definite iff

3r/r > (Q/2)% (8)

It follows from the stability analysis above that the ri-
gidly rotating circular drop (Z,,v, ) is formally stable iff (8)
holds. If we fix values for 7 and r and consider the rotation
rate () as a variable parameter, then the above statement may
be interpreted as saying that the circular solution loses (for-
mal) stability as the parameter () increases through the criti-

cal value Q, =127/7°. Typically, one expects that at a
point where a known curve of solutions loses stability (in
this case, when the second variation of the Hamiltonian loses
definiteness) a “‘new” branch of solutions bifurcates from
the known curve. Thus we look for a bifurcation of critical
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points of H — (Q2/2)J at (Z,,v,) when = (1,.

We now consider the O(2) action on the manifold .4,
This action is induced by the O(2) action on R? as follows:
Let R,: R>>R? denote the action of €O(2) on R>. Then
72 ={R,(x):x€X} and y* (5,v) = (y'Z, R, v). We are
concerned here primarily with relative equilibria; in particu-
lar, we are seeking equilibria whose motion is given by the
action of some curve in the group O(2). Since the motion of
our configurations must be continuous, we do not allow a
sudden flip; hence the motion must be given by a smooth
rotation. We choose to work with the group O(2) so as to be
able to capture any reflectional symmetries of the equilibri-
um configurations, although this is not the appropriate
group for a study of the dynamics of the problem. While the
Hamiltonian is invariant under the O(2) action, the dynam-
ics are not invariant under reflection; hence, if one wishes to
consider the time-dependent behavior of solutions near the
bifurcating equilibria, it is necessary to take SO(2), rather
than O(2), as the appropriate symmetry group. The SO(2)
action preserves both the bracket and the Hamiltonian; thus
the theory of bifurcations of Hamiltonian systems with sym-
metry may be applied in this case.

When discussing the symmetries of a given configura-
tion it is convenient to do so within a given rotating frame.
This is motivated as follows: consider a drop moving in rigid
rotation with angular velocity ; if the drop shape is fixed at
some time £, by a reflection across an axis X, then at time ¢ it
must be fixed by reflection across R, _,,,,X, where
Rq( _ ., denotes rotation through the angle (¢ — ¢,)/2,
while in general it will not continue to be fixed by reflection
across X. Thus, while the conjugacy class of the isotropy
subgroup of the drop is fixed, the actual axes of symmetry of
the drop vary in time. Shifting the problem to a rotating
frame eliminates this complication; a rigidly rotating drop is
stationary in the appropriately chosen frame and hence has a
constant isotropy subgroup.

Another advantage of viewing drop symmetries from
within a rotating frame is that in this context one can have
nontrivial velocity fields which are fixed by orientation re-
versing actions. More specifically, if one considers rigidly
rotating equilibrium configurations, then such drops are
fixed points of some subgroup of the O(2) action in the sense
that the drop shape is preserved by the subgroup, although
the velocity field is reversed. [If one incorporates a time re-
versal as part of the flip action, then rigid rotation is fixed by
the O(2) action.] Within an appropriately chosen rotating
frame the velocity field of a rigidly rotating drop is equal to
zero; thus, if we consider the action of O(2) within this
frame, the drops described above are actual fixed points un-
der the action. For these reasons we shall now shift the prob-
lem to a rotating frame and work with triples (Z,¥,Q)),
where = denotes as usual the drop boundary, ) is the rota-
tion rate of the rotating frame, and ¥ is the velocity field in
the rotating frame. For an arbitrary pair (2,v), we take Q) to
be the average angular velocity of the velocity field, i.e.,

1

Q0=—— {curl v,2)dA4;
volume D5 Jp,

for a rigidly rotating drop, this sets the frame rotation rate
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equal to the rotation rate of the drop. For example, the con-
figuration (Z,(2/2)zXx) is identified with the triple
(£,0,Q2). The dynamics in the rotating frame are determined
by the bracket

6F 6G

{F.G} = <5+Qi,—~x—7> dA
Dy v OV

J‘ (cSF 8G 6G 6F )

+ —_ =] ds

s\82 8¢ O3 8%

where @ (respectively, 6F /6% and 8F /6@) is the vorticity
(respectively, functional deriv~atives of F with respect to ¥
and &), and the Hamiltonian H: #"X R—R is given by

s ee a1 (O
H(Z9,Q) =— [¥)> — (= ]x[)dA +7'J ds
2 Jp, 2 p3

=(H—%J)(2ﬁ+%2x::).

The trivial solution (2,,v.) = (Z,,0,Q) is a fixed point
of the O(2) action in the rotating frame; we expect that the
new solution branch bifurcating from (Z,,v,) should be
fixed by some subgroup of O(2). We find, in fact, that the
new solutions have isotropy subgroup conjugate to the sub-
group Z, X Z, of O(2) generated by rotation through 7 and
reflection across the x axis. (For a discussion of the theory of
bifurcation with symmetry relevant here, see Ihrig and Go-
lubitsky?° or Golubitsky ez al.”)

As we are concerned only with the immediate neighbor-
hood of the point (Z,,v, ), it is convenient to work in normal
coordinates centered at (Z,,v,). We endow ./~ with the
O(2) invariant metric

(6v,6v)dA

Dy

({(8Z,6v),(82,6%))) = J 5383 ds +
=

and use the exponential map exp associated to the metric
given above to map a neighborhood ¥ of (0,0) in T3, , A+~
diffeomorphically onto a neighborhood U of (Z,,v. ) in /"
We define the function H on F X R to be the pullback of the
Hamiltonian plus conserved quantity;

H((862,6v),Q) = H (exp(5Z,6v)).

It follows from the invariance of H and the equivariance of
exp that H is O(2) invariant.

We construct the bifurcation equation using the Lia-
punov-Schmidt procedure. First we construct the splitting
V=V, oV, where ¥, = Ker D’H(0,0,Q,) and ¥, is the
{( , )) orthogonal complement to ¥,. We have

D2H(0,0,Q,) = DYH — (Q,/2)J)(Z..v.).

Thus
¥V, =Ker DYH — (Q,/2)J)(3,,v.)
= {(cos 26,0),(sin 26,0)}.

The pure rotation elements of O(2) act on the §2 compo-
nent of (62,6v) by a negative phase shift, i.e.,

R ;'52(0) =62(0 — ¢);

a reflection across the axis at an angle @ to the x axis is given
by

R -85(0) = 5229 — 0).
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Let

(62.6v,0) __(5_11 63.6v,0), 22 (52,5v,9))
62 v
denote the map determined by

f (5—H (52,6v,ﬂ),5v> dd + | %2 (53.6v,.0)55 ds
Dy A\ s 62

= DH(83,6v,Q) - (53,6v),

where 2 denotes the first component of exp(6Z,6v), for all
(62,8v)eV. Let P denote the orthogonal projection P:
V- V,. The mapping

PoF. V,xV,XR-V,

is nonsingular at (0,0,Q,); hence, by the implicit function
theorem, there exists an O(2) equivariant mapping u:
V,XR -V, such that

(P o F)((62,0) +u((62,0),02),2) =0
for all (6X,0)eV;. The bifurcation equation is then given by
(Id — P) o F((63,0) + u((63,0),2),0) =0.

Weintroduce the coordinate chart ¥ on a neighborhood
W X Y in R* X R, given by

V: WXY-V XY,
(x, »,Q2) = ((x cos 260 + y sin 26,0)
+ u((x cos 28 + y sin 26,0),02),Q).

We pull back " by ¥ to gbtain the bifurcation Hamiltonian
H: WXY-R given by H = H o ¥. In summary, we have
reduced the original problem to that of finding critical points
of an O(2) invariant function on a two-dimensional space
with an O(2) invariant metric.

The bifurcation space W possesses nontrivial symmetry.
This symmetry is not artifically imposed on the system; it is a
natural property of Ker D2H (Z,,0) which is inherited by
the bifurcation space. The O(2) action on Winduced by that
on ¥, is simply twice the standard O(2) action on R i.e., for
X = (x,),0'x = R,,(x). In this action, rotation through 7
is equivalent to the identity action, thus the entire space Wis
fixed by the subgroup Z, generated by rotation through 7.
We also note that any element (x, y) of W is fixed by reflec-
tion across the line through the angles arctan(x/y) and
arctan(x/y) + 7/2. Thus any element of W has isotropy
subgroup O(2), conjugate to Z, X Z,. Since the mappings u
and exp are equivariant, it follows that any solution xe W X Y
of the bifurcation equation must be mapped to an O(2),
invariant solution in .#"XR (the “rotating frame space”)
under exp © V.

There are two possible methods for demonstrating that
a bifurcation does, in fact, occur. If we consider the group
O(2) acting on the space W, then each isotropy subgroup
0O(2),, for some nonzero element x of W, has a one-dimen-
sional fixed point space consisting of the line spanned by x.
Thus, we can apply the equivariant branching lemma to
show that there is a branch of relative equilibria with iso-
tropy subgroup O(2), branching from the trivial solution
branch at () = §2,. The equivariant branching lemma states
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that, given a Lie group G acting on a vector space ¥ such that

(i) Fix(G) ={0};

(i) T C G is an isotropy subgroup satisfying
dim(Fix(I))=1;

(iii) g: V X R - Vis a G-equivariant bifurcation problem
satisfying D, Dg(0,4,)+v,7%0 for some 4, and some nonzero
v, € Fix(T'),
then there exists a branch of solutions (#vy,A (7)) to the equa-
tion g(v,A) = 0. (See Cicogna* or Golubitsky et al.’ for a
proof of the equivariant branching lemma.) The first two
conditions are clearly satisfied for the O(2) action on W; we
take, for example, the subgroup Z,XZ, corresponding to
reflection across the x axis and rotation through 7 as our
isotropy subgroup and let v, = (1,0). The equivariance of
themap F = DH follows from the O( 2) invariance of H the
fact that DF(0,0,),) = D2H(0,0,Q,) = 0 implies that the
map Fand the point (0,0,(),) form a “bifurcation problem.”
Finally, we compute that

Do DF(0,0,Q,)-(1,0) = Dg D2H(0,0,0,)*(1,0)
= — Q,77*/2

#0,
thus the conditions of the equivariant branching lemma are
fulfilled and a branch of solutions of F(x,0,{?) = 0 must ex-
ist. It follows from the equivariance of the equations that the
existence of one solution branch implies the existence of an
entire circle of solution branches swept out by the group
action.

If we wish to consider only symplectic group actions,
then we must restrict our attention to the group SO(2),
which preserves the symplectic two-form on the space W. In
this case, there are no one-dimensional fixed point spaces, so
the equivariant branching lemma is not applicable. We can,
however, apply the corollary given above to show that a bi-
furcation occurs. [ The fact that the SO(2) action on W is
twice the usual SO(2) action does not effect the applicability
of the corollary.] The space W and function H clearly satisfy
condition (i) of the corollary; we shall show that the point
(0,0,Q2,) satisfies conditions (ii) and (iii):

(i) D2H(0,0,2,)
_ ((37-/r2 — (Q,/2)* ) 0 )
- 0 37/ — (Q,/2)%r)r.
=0

(iii) Do D2H(0,0,,)
3 ( — Q72 0 )
o 0 — Q7/2
#0;

provided that Q, = 127/ #0 (e.g., that the surface ten-
sion coefficient 7 is nonzero).

Thus the corollary applies to W and H and so there is a
branch of critical points of H bifurcating from (0,0,{}) at
Q1 = Q,. Note: The matrices computed above are simply sca-
lar multiples of the identity matrix; these scalars are the rel-
evant quantities which must be computed when checking the
conditions of the equivariant branching lemma in the O(2)
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case. Taking the image of the solution branch under the map
exp © ¥, we obtain a curve in 4" of critical points of the
original function H + uJ. The elements in.#" thus obtained
have the same isotropy subgroups as their preimages in ¥; in
particular, the isotropy subgroups of elements along the new
branch near the bifurcation point contain a subgroup conju-
gate to Z, X Z,.

By computing higher-order derivatives of the bifurca-
tion equation, it may be seen that the bifurcation equation
has normal form 0= — V((x* + y*) (x* + y* + @ — Q,))
(see Lewis® for details). Thus, the bifurcation at £, is sub-
critical with respect to the bifurcation parameter Q (i.e.,
locally the nontrivial solutions exist only for values of € less
than Q0,).

Remark 1: The bifurcation is supercritical with respect
to angular momentum. Angular momentum is the “physi-
cally appropriate” bifurcation parameter in the sense that
angular momentum is a physically meaningful conserved
quantity for all isolated flows (whereas the bifurcation pa-
rameter {2, which functions mathematically as a Lagrange
multiplier, is related to angular velocity, a physical param-
eter which is only defined for rigidly rotating flows). In this
case, the bifurcation equation has normal form
0 = V((x* +y*) (x* + y* + p? — u)), where u is the bifurca-
tion parameter and i, is the angular momentum at the bifur-
cation point; the energy-Casimir method shows the new
branch is formally stable near the bifurcation point, which
agrees with the general notion of transfer of stability if one
views the bifurcation as supercritical. Despite the greater
physical relevance of angular momentum, we have chosen
the Lagrange multiplier ) as the bifurcation parameter,
since the necessary computations are straightforward in this
context and it is easy to interpret the results with respect to
angular momentum once the bifurcation branches have been
determined.

Remark 2: The symplectic form induced on the reduced
space W is a multiple of the standard symplectic two-form
on R?, given by o((x, »), (%, §)) = yX — x, which changes
sign under the action of reflections; hence, as remarked
above, the symplectic structure on the reduce space Wis not
preserved by the action of the orientation reversing elements
of O(2). The symplectic form is, however, preserved under
the action of $'; hence the analysis of Golubitsky and
Stewart® may be applied, viewing the drop as an S ! invariant
Hamiltonian system. We see that in this context the behavior
of the drops near the point of bifurcation is generic.

Remark 3: It can be seen from the second variation of
H + uJ (or H 4+ C) that the variation will be indefinite in
the direction of (83 ,,0) = (cos k(8 — #),0) when u’

= (k? — 1)7/7. It may be shown as above that a subcritical
bifurcation occurs at Q, =4(k? — 1)7/7. The solution
branches intersecting the trivial solution branch are invar-
iant under rotation through 27/k and flips across lines con-
jugate to nw/k; thus their isotropy subgroups are conjugate
to D, the dihedral group of symmetries of a k-gon. Note: D,
is the semidirect product Z,8Z,, where Z, acts on Z, by
negation, i.e., by reversing the rotation associated with the
elements of Z, .
Remark 4: The remark in Lewis e al.” regarding three-
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dimensional equilibria is incorrect; it will be corrected else-
where.
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The effective conductivity tensor is calculated for a periodic composite composed of
alternating rectangular blocks of two very unequal conductors. The two-dimensional case of a
checkerboard pattern of rectangles is also treated, and Gautesen’s result for it is obtained. The
checkerboard of parallelograms is treated, too. The method can be applied to alternating

parallelepipeds and to certain other configurations.

I. INTRODUCTION

We consider the effective conductivity tensor Z(o,,0,)
of certain two- and three-dimensional periodic composites
composed of two materials with scalar conductivities o, and
o, . Examples are the “checkerboard” patterns of rectangles
or parallelograms in two dimensions (Fig. 1) and the analo-
gous arrangement of rectangular blocks or parallelepipeds in
three dimensions (Fig. 2). We shall show how to calculate
asymptotically as o, /o, tends to zero or to infinity. This
work grew out of an attempt to obtain a simpler deriviation
of one of Gautesen’s' recent results for a rectangular “check-

erboard” in two dimensions.
First we shall present our result for the three-dimen-

sional alternating arrangment of rectangular blocks shown
in Fig. 2. Let the edges of the blocks be parallel to the axes,
and let A; be the length of the edge parallel to the x; axis.
Clearly the axes are the principal directions of Z. Our result
for 2, is

Ell(aayab ) ~ [hl(hZ + h3)/h2h3] (Uan )1/2
as 0,/0,—0 or oo. (1.1)

For cubes this yields 2 (o, o, ) '/?, which was obtained before
by Milton? and by Séderberg and Grimvall,> while when 4,
tends to infinity it yields Gautesen’s two-dimensional result
(h,/hy) (0,,05 )2 Cyclic permutation of indices in (1.1)
yields 2,, and 2;,.

In Sec. II we derive the result for a two-dimensional
rectangular checkerboard and in Sec. III we derive the three-
dimensional result (1.1). In Sec. IV we calculate the conduc-
tance o between two highly conducting parallelograms that
meet at a corner. Then in Sec. V we use o to determine 2 fora
checkerboard of parallelograms. The result (1.1) is not uni-
form in the A4;, so an appropriate modification of it is dis-
cussed in Sec. VI. Finally in Sec. VII we discuss these results
and indicate some generalizations of them.

1I. RECTANGULAR CHECKERBOARD PATTERN

We begin with the two-dimensional checkerboard of
rectangles with conductivities o, and o, shownin Fig. 1(a).
The principal axes of the effective conductivity tensor 2 are
the x, and x, axes, s0 2, = 2,, = 0. By definition X, is just
the average current density in the x, direction resulting from
an electric field of unit strength in the x, direction. We sup-
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pose that o, »o,. Then the current will flow through the
highly conducting regions as much as possible, and it will
traverse the poorly conducting regions only at the corners
where it goes from one highly conducting rectangle to a dia-
gonally adjacent one. In Sec. IV we shall show that thereisa
well-defined conductance o associated with such a corner.

We now use ¢ to find the current density due to a unit
electric field along the x, axis. This field produces a voltage
difference 4, between the planes x, = — A,/2and x, = 4,/
2. As aresult a current 4,0 flows across each corner, and the
resulting current density Z,; is this current divided by the
vertical spacing 4, between corners. Thus X, ~A4,0/h,, and
similarly =,, ~h,0/h,. These results are asymptotic as o, /
g, — o« because only then can we associate all the conduc-
tance with the corners.

For a square checkerboard we have shown*® that
3,1 = 2, = (0,0, )2 Therefore by applying our asymp-
totic result to this case, for which 4, = h,, we find that
o~ (0,0,)". By using this value of o in the preceding for-

(a) h2
Ob x2 Ca
0 X1 h1
Ta Op
(b) ag=(h2cosa , hasina)

/c'o o,
3 a1=(h1.0)
G'a/ (=4

FIG. 1. (a) Part of a checkerboard pattern of rectangles with conductivities
o, and o,,. Edges parallel to the x, axis are of length 4, and those parallel to
the x, axis are of length 4,. (b) Part of an alternating pattern of parallelo-
grams with conductivities o, and o,,. The vertices are generated by the vec-
tors a, = (4,,0) and a, = (h, cos @, h, sin a).
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Ta Ub Ca

e ) Ta Ob

Ta Tp Oa

FIG. 2. Part of an alternating arrangment of rectangular parallelipipeds of
conductivities o, and o,

mulas, we obtain for the rectangular checkerboard
I~ (h/hy)(o,0,)"?

(2.1)
3.~ (hy/h ) (0,0,)"% as 0,/0, — .

This is just Gautesen’s result,’ which he derived in a different
way that proves it to be asymptotically correct. In Sec. IV we
shall calculate o directly for general corners, including rec-
tangular ones, and again obtain the value (g, 0, )'/* for the
present case.

Il. RECTANGULAR BLOCK PATTERN IN THREE
DIMENSIONS

We shall now obtain the result (1.1) for the medium of
alternating rectangular blocks shown in Fig. 2. The diagonal
element 2|, is, as before, the average current density in the x,
direction due to a unit electric field in the x, direction. When
o, >0, the current will flow through the highly conducting
blocks as much as possible. It will pass through the poorer
conductors only along the edges where it goes from one high-
Iy conducting block to another. The conductance per unit
length of such an edge is just o, where ¢ is the two-dimen-
sional conductance introduced in the preceding section. The
voltage between the planes x, = + A,/2is just 4,. Therefore
the current through each highly conducting block is
(2h, + 2h3)h,0 because 2k, + 2h, is the length of edge be-
tween a highly conducting block and its highly conducting
neighbors in the direction of increasing x,. The current den-
sity is obtained by dividing this current by the area 24,4,
which is the cross-sectional area normal to the x, axis of a
highly conducting block and a poorer conducting neighbor.
In this way we get £,,~h,(h, + h;)o/hh,. When we use
the value o~ (0, 0, ) /? in this formula, we obtain our result
(1.1).

IV. RESISTANCE OF A CORNER

In order to treat the two-dimensional medium of alter-
nating parallelograms shown in Fig. 1(b), we shall first de-
termine the conductance o () of the corner shown in Fig. 3.
The medium with the high conductivity o, occupies the sec-
tor — a/2 < 8 <a/2 and the opposite sector, while the other
two sectors contain the medium of conductivity o, . The cor-
ner is surrounded by a circle of radius R which is an insulator
in the o, regions and a perfect conductor in the ¢, regions.
Its potentialis + 1intheinterval —a/2 <8 <a/2and — 1
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Pr=0

a2
q ¢=1

-a/l2

Pr=0

FIG. 3. A corner of the pattern in Fig. 1(b), rotated to be symmetric about
the coordinate axes. The value of the potential @ = + 1 and its derivative
@, = 0 are indicated on a circle of radius R centered at the vertex.

in the opposite sector. Then the current between these two
conductors is just the potential difference multiplied by the
conductance, i.e., 20. Weshall calculate the current and thus
determine o.

In terms of polar coordinates g, 6 the potential ¢ must
be a function of p/R and 6, by dimensional analysis:
@ = @(p/R,6). Then the current, which is equal to 20, is
given by

/2 a A
20(a) = r g, —?i(ﬂ ,0)
—arz OP\R

/2

R dg

p=R

=0, (4.1)

@, (1,6)d6.

—a/2

Here @, is the derivative of @ with respect to its first argu-
mentp = p/R.From (4.1) we see that o'is independent of R,
the radius of the circular conductors and insulators, so it can
be interpreted as a property of the corner.

To simplify (4.1) we use the symmetry of @ about 6 =0
to write the integral as twice the integral from 0 to a/2:

/2
a=g, f @,(1,6)d0.
0

Now @ must be a harmonic function satisfying the following
conditions:

(4.2)

p(1,) =1, 0<f<a/2, (4.3)
@, (1,6) =0, a/2<8<m/2, (4.4)
@o(p.0) =@(p,m/2) =0, O<p<l, (4.5)

a
(4.6)

a
0a¢0(/)’_£'—) =Ub¢9(P’f2i+), 0<p<1.

Equation (4.3) follows from the specification of the poten-
tial on the conductor, (4.4) is the condition of no current
flow into the insulator, (4.5) expresses the evenness of ¢
about & =0 and its oddness about = 7/2, while (4.6)
states that ¢ and the normal component of current are con-
tinuous at 8 = a/2.

To solve for ¢ we write

¢ =A,p"cosvl, 0<6<a/2, (4.7
¢ =A,p'sinv(n/2 —8), a/2<0<n/2. (4.8)
Joseph B. Keller 2517



These functions are harmonic for any v and they satisfy
(4.5). Upon imposing (4.6) we get

A, cos % =4, sin v(% - (—;-),
(4.9)
A o, sin e =A,0, cos V(E - i) .
2 2 2
Dividing the second equation in (4.9) by the first yields
o, tan < = g, cot v(—’i—ﬁ). (4.10)
2 2 2

Wheno, /o, > 1, it follows from (4.10) that the first positive
root for vis small. Therefore we expand tan and cot and solve
for v to obtain

v~2o,/a(r —a)o,)?, foro,/o,>1. (4.11)
Now (4.7) and (4.8) become

p~A,p°, 0<0<a/2, (4.12)
p~Apv(r/2—0), a/2<0<7/2. (4.13)

By using (4.12) in (4.3) we find that 4, ~1 and then the
first of Eqs. (4.9) yields 4, ~2/v(7 — a). We also see from
(4.13) that (4.4) is satisfied to order v. Finally we use (4.12)
for @ in (4.2) with 4, ~1 to get

o(a)~a,va/2. (4.14)
Then by substituting (4.11) for v into (4.14) we obtain the
final result
(4.15)

result

o(a)~lao,0,/ (7 —a))''?, foro,/o,>1.

When a=#/2 this reduces to the
o(7/2) ~(0,0,)"'? which we obtained in Sec. II.

V. PARALLELOGRAMS IN A CHECKERBOARD
PATTERN

We shall use the result (4.15) to calculate = for the two-
dimensional checkerboard of parallelograms shown in Fig.
1(b). First we note that the average current density / is relat-
ed to the average applied field E by I = 2 E, and therefore the
component of I parallel to the unit vector # is

nl=n2E. (5.1)

By using this relation for three pairs of values of #» and E, we
shall obtain three equations from which to determine the
three independent components of =.

First we introduce the two vectors @, and a,, which gen-
erate the lattice of vertices, defined by a, = 4,(1,0) and
a, = h,(cos a,sin a). Here h, and h, are the lengths of the
two sides of a parallelogram, and a is the angle between
them. The unit normals to these sides are b, = (0,1) and
b, = (sin a, — cos a@). Now we choose n = E = b, in (5.1)
to obtain

b I=32,, (5.2)

To compute the current density on the left side of (5.2)
we note that the voltage across a parallelogram in the verti-
cal direction is 4, sin . The vertical current through one
highly conducting parallelogram is the sum of currents
across two corners with angles a and 7 — a. Thus the cur-
rent is A, sin a[o(a) + o(7 — a)]. The current density is
obtained by dividing this current by 24,, the horizontal ex-
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tent of two parallelograms. Thus (5.2) yields
So~[(h,sina)/2h][o(a) + o(r—a)].
Finally (4.15) and (5.3) give

(5.3)

2~ & (Uaab)l/z

1/2 _ 172
cond(22) +(55)]
T—Q a

Next we take n = b, and E = b, in (5.1) to get

(5.4)

b, I=sinaZ,, — cos aZ,,. (5.5)

The vertical voltage across a parallelogram is still 4, sin a.
The net current through a parallelogram in the b, direction
is the difference between the current in at the corner of angle
a and the current out at the corner of angle 7 — a. Thus it is
h,sina[o(a) — o(7 — a)], and it must be divided by the
width 24, of two parallelograms in the @, direction. Thus
(5.5) becomes

sinaX,, —cos a3, ~[(sina)/2][o(a) — o(7r —a)].

(5.6)
Solving for 2, in (5.6) with the aid of (5.3) yields
2o~[(hcosa)/2h][a(a) + o(m —a)]
+4lo(a) —o(r —a)]. (5.7

This and (4.15) for o gives
h2 )]/2 Cosa[( a )]/2+(17._a)1/2]

2h, T—a a
+ (0,0,)'"? [( a )"2 _ (#—a)‘/z].

2 T—a a

As a third choice we take n = E = b, in (5.1), which
becomes

(5.8)

b, I =sin’ a3, — 2sina cos a2, + cos’ a3,,. (5.9)

The voltage in the b, direction across one parallelogram is
b,ra, =h,sina and the current in the b, direction is
h,sina[o(a) + o(r — a)]. Dividing this current by 24,
and using it in (5.9) yields

sin’ aZ,, — 2 sin acos a2, + cos’ aZ,,

~[(h,sina/2h,][o(a) +o(r —a)]. (5.10)

Solving for 2, leads to

h h 1
)3 ~(—‘ +—zcos2a)
H h, hy 2sina

[o(a) +o(r—a)]

cos a

-+

[o(a) —o(m—a)]. (5.11)

When (4.15) is used in (5.11) it becomes

2 1/2
2“~(h+ h, cos a) (o'aa..b)
h, h, 2sina

172 _ 172
T—Q a

172 _ 172
><Cf)sot [( a ) _(1T a) ] (5.12)
sina I\7—a a

Equations (5.4), (5.8), and (5.12) determine 2.
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V1. NONUNIFORMITY

The result (2.1) is not valid when 4,/A, tends to zero or
to infinity. To obtain a result that is uniformly valid we must
take account of the conductivity of the material away from
the corner. We can do this roughly by replacing o in the
expression X, ~h,0/h, by the series-parallel conductance

%_
o~ ' +2h/ho,  h/20, + h/20,
1 2h,0,

(6.1)

o~ ' +2h /0, h,
The first term accounts for the fact that the corner is in series
with the resistance of half the rectangle of material ¢, and
this resistance tends to 2A,/h,0, as h,/h, becomes large.
The second term represents the conductance directly across
the rectangles, which tends to 2h,0, /h, as g, /0, - . Then
3 ,, becomes, with o = (0,0,)"?in (6.1),

127 -1
211~%l(0a0b)1/2|:1+2—,11(0a) ] + 20,

2 hy \ o,
as &——» . (6.2)
Ty
By interchanging 4, and 4, in (6.2) we get 2,,.
From (6.2) we find that
172
s, ~20,, for f’i<(””) , (6.3)
h2 O,
o h o 172
3, ~— for = ( 2 ) , (6.4)
D) h2> o,

172 172
2”~% (o,0,)"%, for (:’) <%<(za) )
2 2 b
(6.5)

a

The conditions for validity of (2.1) are thus those in (6.5).
In the same way, we can modify (1.1) for rectangular
blocks to obtain

—1/2 —1
3~ [((0“0”) M )
2h.hs |\ 2k, + 20, | hohso,

h hy \~!
2h,h,( —L +—') ]
+ 3(2aa 20,

hl(h2+h3) 1/2
~172 1 37 (0,0

hay )

1727 -1
X[Hﬂbﬁ_"sl(”_f’) ] +20,. (66
h2h3 o,
Thus
172

2,,~20,, for ———h‘(h2+h3)<(a—b) ’ (6.7)

o, hy(hy + h3) (%)"2
s . ~Ze 1t/ T 13 -1, 6.8
11 ) or hyh, > g, ©8)
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~hl(h2+h3)

2 l/2’
11 h2h3 (aaab)
12 172
for(ab) <hl(h2+ha><(£a_), (6.9)
o, hohs %

VII. DISCUSSION

The method of Sec. V can be applied to a three-dimen-
sional alternating configuration of parallelepipeds, using the
value of ¢ given by (4.15). Furthermore all of our results
remain valid if the squares, parallelograms, rectangular
blocks, or parallelepipeds are distorted, provided that their
shapes near the corners in two dimensions, and near the
edges in three dimensions, are unchanged. In addition the
method can be applied to three-dimensional periodic media
with curved edges and a variable angle a (s) along each edge.
Then we must integrate o{a(s) ] along each edge to find its
conductance.

The concept of corner conductance can be extended to
other kinds of “corners” besides those treated in Sec. IV. For
example, suppose that the two highly conducting sectors in
Fig. 3 did not meet, but were separated by a small gap filled
with the low conductance material. Then the conductance
between the two highly conducting sectors could still be de-
fined, and the same method could employed. The results of
Sec. II, III, V would still apply with the appropriate value
of 0.

The possibility of analyzing a continuous problem by
replacing it with a network of lumped elements is a conse-
quence of the asymptotic behavior of the solution with re-
spect to some parameter. In the present case the parameter is
the conductivity ratio o, /o,, which tends to zero or to infin-
ity. In other cases it is a geometrical ratio. The analytical
basis for the procedure is provided by the method of matched
asymptotic expansions. In the present case, for example, the
construction in Sec. IV provides the leading term in the inner
expansion valid near each corner of the rectangles or paral-
lelograms. The leading term in the outer expansion within
each highly conducting rectangle or parallelogram is a har-
monic function. It has current sources at two vertices and
curent sinks at the other two, and a vanishing normal deriva-
tive on the boundaries. The magnitudes of the currents are
determined by matching the inner and outer expansions. By
constructing these expansions we could obtain further terms
in the asymptotic expansion of =.

We have used similar ideas before to treat periodic con-
figurations of perfectly conducting cylinders or spheres, or
nonconducting cylinders, in a finitely conducting matrix.®
Batchelor and O’Brien’ carried it over to highly conducting
bodies, and Buchal and Keller® extended it to time harmonic
problems.
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