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When expressed in terms ofthe trace, the characters ofSU(2) are known to be related with the 
Chebyshev polynomials of second kind. It is shown that those of the first kind also playa 
fundamental role. If AESU(2) and t = Tr A, then/" (t) = Tr(A" ),j" (2 cos 0) = sin nO Isin 0, 
I" (t) = Tr(A "), I" (2 cos 0) = 2 cos nO, where A" denotes the representative of A in the irrep 
of dimension n. Other polynomials related with them are of interest. They are (i) the 
"primordial" polynomials P" (every I" or I" can be expressed in a unique way in terms of Pd , 

where d is a divisor of n), (ii) the "factorial" polynomials I,,! = 1II2' . '/" which occur in a 
natural way in the representations, (iii) the g" polynomials appearing in the generating 
functions of powers of I" . 

I. THE In POLYNOMIALS 

The characteristic equation for AESL(2,C) is 

A 2_ tA +1=0, (1.1 ) 

where t = Tr A and I is the unit 2 X 2 matrix. From ( 1,1) it 
follows that any power (positive or negative) of A is a linear 
combination of A and I 

( 1.2) 

where/" and h" only depend on t. It is a simple matter to 
prove that they are in fact polynomials with integral coeffi­
cients. By multiplying (1.2) by A, one gets in using (1.1) 

A n+ I = [f" (t)A - h" (t)/]A 

= [if" (t) - h" U)]A - f" (t)1 

and, by identification, we obtain the recurrence formula 

1"+1 (t) = if" (t) -/,,-1 (t), 

lo(t) = 0, II (t) = 1, 

together with h" (t) = f" _ I U), 

A" =/" (t)A -/,,-1 (t)I. 

( 1.3a) 

( 1.3b) 

(1.4) 

Equation (1.3) could be used as a definition of the sequence 
I" (t). By choosing for A a diagonal matrix with entries e ± i(), 

we get for n;;;.O, 

I" (2 cos 0) = sin nO Isin 0 = U" _ I (cos 0), (1.5) 

as it can be shown by induction. Here U is the standard 
notation for the Chebyshev polynomial of the second kind. 
Our labeling is justified by the symmetry property 

( 1.6) 

but also by the property (3.2) which will be derived later on. 
It is well known that the representative A" ofSU(2) in the 
irreducible representation of dimension n has the trace 
sin nO Isin 0 if the eigenvalues of A are e ± i(). Therefore 

( 1.7) 

Remark 1: If we multiply (1.1) by A -I we see that 

A +A -I = tI. (1.8) 
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Moreover if we replace A by A -I in (1.4) and subtract the 
equation obtained from (1.4), we get 

(A" -A -")/(A -A -I) =/" (t)/. (1.9) 

Remark 2: The choice of the letterl for denoting our set 
of polynomials is made to recall the well-known link between 
Fibonacci numbers tp" and Chebyshev polynomials, namely, 

I" (i) = i" - If/J", 
( 1.10) 

f/J" + I = f/J" + f/J" _ I' f/Jo = 0, f/JI = 1. 
Remark 3: The orthogonality of the I" (t) is just the 

orthogonality of characters 

_1_ f + 2 (4 - t 2) 1/2/" (t)lm (t)dt = ~"m' 
21T' - 2 

(1.11) 

Remark 4: The generating functions of the I" 's can be 
written 

z ~ z 
<I>(t,z) = = L I" (t)z" = r . 

det(l-zA) ,,=0 1- tz + 

II. THE In POLYNOMIALS 

The I" 's are polynomials in t defined by 

I" (t) = Tr(A ") 

(1.12) 

(2.1 ) 

[compare with (1.7)]. Taking the trace of both sides ofEq. 
(1.4), we get 

I" (t) = if" (t) - 2/" _ I (t) 

and, by use of ( 1.3 ) , 

I,,(t) =/,,+ I (t) -/,,-1 (t). (2.2) 

It is a simple matter to deduce that the I" 's satisfy the same 
recurrence relation as the.! .. 's, namely, 

1,,+ I (t) = tl" (t) -/"_1 (t), 

Instead of (1,6), we have 

I_,,(t) =/,,(t). 

Instead of (1.8), we have 

A" + A -" = I" (t)/, 

(2.3) 

(2.4) 

(2.5) 
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which can be easily proved by replacing A by A nand t by 
In(t) inEq. (1.1). 

Remark: The numbers An defined by In (i) = ;nAn are 
known as the Lucas numbers. They obey the same recur­
rence relation as the one of Fibonacci (with Ao = 2, 
Al = 1). 

Finally suppose that A is diagonal with entries e ± je, we 
readily get from (2.5), for n>O, 

In (2 cos 0) = 2 cos nO = 2Tn (cos 0) (2.6) 

or 

(2.7) 

which relate the In's to the Chebyshev polynomials of the 
first kind. 

Remark: For a given value of t, the sequences hn (t) 
satisfying the recurrence relation (1.3a) form a two-dimen­
sional vector space. The sequences In (t) and In (t) form a 
basis characterized by the fact that they are eigenvectors of 
the operator T transforming a sequence (h n ) into the se­
quence (h _ n ). That sequence space can be given a symmet­
ric scalar product 

(g,h) = ~(2goho - glh_ 1 - g_lh l ). (2.8) 

We get an orthogonal (resp. pseudo-orthogonal) space if 
I t I < 2 (resp. I t I > 2) and an indefinite metric for I t I = 2. 
Note that (g,g) is invariant under a shift, namely, 

(g,g) = det[ gn gn + I ] for any nEl. (2.9) 
gn+ I gn 

For a diagonal matrix, the entries are !(t ± (t 2 - 4) 1/2). 
Formulas (1.9) and (2.5) give 

(2.10) 

(2.11 ) 

where a = !(t+ (t2-4)1/2),f3=!(t- (t2-4)1/2)=a- l. 

The sequences (an) and ({3 n) both satisfy the recur­
rence relation (1. 3a). They form an isotropic basis for the 
sequence vector space. 

Other properties 01 the In and In: We must underline that 
the SL(2,C) group is a very pedagogical tool for a study of 
the Chebyshev polynomials. As an example the property 

Imn (t) = Im(ln (t») (2.12) 

follows from 

Tr(A mn) = 1m (Tr(A n»). 

Also 

1n(2)=n, In(2)=2 

follow from A = 1. 
Let us mention that the expressions 

In (t) = nil (2n - k - 1)(t _ 2)n-k-1 
k~O k 

n - I (2n - k - 1) = L (t+2)n-k-I(_)k 
k~O k 

(2.13 ) 

n-I( 2n ) = 21 - 2n L (t - 2) n - k - I (t + 2) k 
k~O 2k+ 1 
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are easily obtained by setting A = X ± lor A = (X + 1)1 
(X - I) (the same for the In's). 

III. THE PRIMORDIAL POLYNOMIALS Pn 

In the following, In and In have positive index n. We 
have already mentioned the relationship between theln and 
the Chebyshev polynomials, 

Un (t 12) =In+ I (t). (3.1) 

Our labeling was clearly justified by the symmetry property 
(1.6), but also by the following ones: 

In 11m iff nlm, (3.2) 

In Aim =Inllm' (3.3) 

In (3.2) the vertical bar means "is a divisor of." In (3.3) 
the symbol A means "greater common divisor" (g.c.d.). 
The same symbols are used both for polynomials and natural 
integers. 

The proof of those properties is quite easy. A matrix A is 
said to be 01 pseudo-order n if n is the smallest integer such 
that A n is a scalar matrix; it is clear that 

Am =AI iff nlm. 

From Eq. (1.4), we get 

1m (1) = 0 iff nlm. 

Property (3.2) follows. 
Property (3.3) can be derived from the following identi-

ty: 

lab(t) =1a(/b (t»)ft, (t), (3.4 ) 

a direct consequence of the property 

Tr(Aab) = Tr(A ~ )Tr(Ab ) (3.5) 

obtained with the aid of identities (1.9) and (2.5) :Note that 
A ~ can be considered as well as (Aa)b or (A b)a (representa­
tion property). 

Let us denote by d the g.c.d. of m and n. It is clear that 
Id (t) = 0 implies 1m (t) = In (t) = O. Conversely suppose 
1m (t) =In (t) = O. We have m = ad, n = bdwitha Ab = 1. 
From (3.4) we have 

1a(/d (t»)/d (t) =lb(/d (t»)/d (t) =0. 

Since a A b = 1,1a andlb cannot vanish together. Therefore 
Id(t) =0. 

As a consequence we have also the following property: 
In andlm are relatively prime iffn and m are relatively prime. 

An important consequence of (3.2) and (3.3) is that 
any polynomial In can be factorized in a unique way as a 
product of prime factors, 

In(t)=IIPd(t), (3.6) 
din 

where the product is taken for all divisors of n. The Pn are 
characterized by the properties 

(i) Pn only divides thelm such that nlm, 
(ii) Pn = In iff n is prime, 
(iii) Pn APm = 1 ifn#m. 
Before giving a rigorous definition of the Pn's (hereafter 

called primordial polynomials), let us examine some exam­
ples. 

Henri Bacry 2260 



                                                                                                                                    

Example 1: We know that 121h. Since h = P2 (2 is 
prime) we have/4 = P2P4 • 

Example 2: 12116 and 131/6' Therefore there exists a 
unique polynomial P6 such that/6 = P2P3P6. 

Example 3: 112 = P2P3P4P~12' 
112(t) =t(t2-1)(t 2-2)(t2-3)(t 4-4t 2+ 1). 

In order to get a rigorous definition of the Pn's, we will 
use the M0bius function. It is an arithmetical function I de­
fined as follows: 

,u(1) = 1, 

,u (n) = 1 (resp. - 1) if n is a product of an even (resp. 
odd) number of different primes, 

,u (n) = 0 otherwise. 

Formula (3.6) can be written 

login (t) = I log Pn (t). 
din 

By making use of the inverse M0bius formula, I we get 

log Pn (t) = I ,u(!!...) logld (t) 
din d 

or 

Pn(t) = II[ld(t)]p(nld). (3.7) 
din 

Consequence: A matrix A is of pseudo-order n if and 
only if Pn (tr A) = O. 

Proof: Pn (t) = 0 implies In (t) = O. The pseudo-order 
must be a divisor of n. Since/n (t) = lId InPd (t) and the P/s 
are relatively prime, not other P d (t) can vanish. The pseudo­
order is n. 

The In's also can be factorized in primordial polynomi­
als. The proof is based on the relation 

(3.8) 

which is a direct consequence of (3.4) for a = 2 and of the 
valueof/2 (t) = t. Now, any n can be written in a unique way 
as n = 2a m where m is odd and a>O. We have 

12am = II PdP2d " ·P2ad · 
dim 

From (3.8) it follows that 

12am (t) = IIP2a + ld (t) (m odd). 
dim 

The inverse formula is given by 

(3.9) 

P2a + 1m (t) = II [l2ad(t) r(nld) (3.10) 
dim 

(the proof is easy but tedious; it is left to the reader). 

2261 

As particular consequences we have 

(ii) Ip (t) = P2 (t)P2p (t) if P is prime, 

(iii) 12a(t) =P2a + I (t). 

J. Math. Phys., Vol. 28, No. 10, October 1987 

(3.11 ) 

(3.12) 

(3.13) 

Some properties 01 the primordial polynomials (given 
without proof). 

(i) They are polynomials with alternate integral coeffi­
cients. 

(ii) Pn (t) = II (t - 2 cos P1T), (3.14) 
pen) n 

wherep(n) meansp<n andpl\n = 1. 
It follows from (3.14) that 

deg Pn (t) = tp(n), (3.15 ) 

where tp(n) is the Euler arithmetical function. From (3.6) 
we obtain the well-known formula 

I tp(d) = n ( 3.16) 
din 

[taking into account that degree/n = n - 1 andtp(1) = 1]. 
(iii) We have 

Pn (t) = t",(n) - [tp(n) + ,u(n)]t",(n) -2 + ... . (3.17) 

(iv) As a consequence of (3.15) every polynomial P n is 
of even degree except P2: P2 (t) = t. 

(v) For practical computations of the primordial poly­
nomials it is convenient to use the following property: 

log Pn (t) = logi;" (lniPI (t») 

- I logi;" (lnlPi (t)) + Ilogi;,,(lnIPiPj (t») .. . , 
i ij 

(3.18) 

where n = Pf'P~2'" andpi,pj""#PI' As examples, we have 

P
I8 

(t) = 13(/6(t») = 12(/9(t» , 
h(13(t») 12(/3(t)) 

P
30

(t) =/2(/15(t»)/2(/1(t») =h(lIO(t»)/3(/1(t»). 
12(/1O(t) )/2(/6(t») 13(/5(t) )/3(/2(t») 

(vi) The divisibility property (3.2) can be proved on a 
physical problem: the polynomial/n (t) appears as a charac­
teristic equation for a massless string on which (n - 1) iden­
tical massive points have been fixed at equal distances. Obvi­
ously any eigenfrequency for the n-interval problem is also 
an eigenfrequency for an nm-interval one. More precisely 

In (t) = det(tI - I n), 

where 

0 1 
1 0 

0 
J = n 

0 0 

0 0 

0 

1 
0 

0 

o 
o 

o 1 
1 0 

(3.19) 

(3.20) 

Although the divisibility property is physically obvious, it is 
not evident on the structure of I n • 

(vii) For t = 2, Pn (2) is related with an arithmetical 
function A(n) known as the Von Mangoldt one l 

A(n) = Log P
n 

(2) = {loogp if n = pa (p prime, a> 1), 
otherwise. 
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In other words, 

PII (2) = p if n = pa (p prime), 

PII (2) = I otherwise. 
(3.21) 

IV. THE CLEBSCH-GORDAN SERIES AND THE In's 

Let us consider a Kronecker product of the type 

B=A
II

, ®A llz ® ••• ®A llk , (4.1) 

whereB is the representative of the matrix AeSL (2,C) in the 
representation which is the direct product of representations 
of spins (n i - 1)/2(i = 1,2, ... ,k). Suppose thatBreduces as 
follows: 

(4.2) 

where a i is the multiplicity of the representation of dimen­
sion mi' One gets from (4.2) 

TrB=adm,(t) +admz(t) + .. , +a.lm,(t) (4.3) 

and from (4.1) 

Tr B = /", (t)/lIz (t) . . '/"k (t). (4.4) 

We intend to give a formula permitting to compute the mul­
tiplicities ai as functions ofthe n;'s. 

Before going to the general case, let us study the case 
where B is of the form 

B=A®A®A"'®A (k factors). (4.5) 

Then 

Tr B=tk. (4.6) 

From 

A+A-I=t] 

we get 

(A +A -I)k+ I = :t~(k; I)A k+ 1-2r = tk+ I] 

or 

~ k±1 (k + I) ik+ 1-2r(t) = tk+ I. 
2 r=O r 

By taking the derivative of both sides and using the property 
(valid even for negative n) 

00 

F (x ,x ,x ) - ~ a XIlI'XIl2z .. 'Xll
k
k++ I' k I 2'''' k+1 - £.i 1I,lIz"'lIk+' 

ni=O 

I ~ (t) = n/" (t) 
we obtain 

(4.7) 

k Ik+1 k! 
t = - L (k + I - 2r)lk + I _ 2r (t) 

2 r=O r!(k+ I-r)! 

or 
[(k+1)/2] k' 

tk = L ---' -- (k + I - 2r) 
r=O r!(k + 1 - r)! 

Xik+ 1-2r(t), (4.8) 

where we have taken into account the property (1.6). 
The coefficients appearing in (4.8) can be considered as 

entires of an infinite matrix K. They give the mUltiplicity of 
the representations appearing in the reduction of a tensor 
product of k spin-! representations. The matrix K is reduc­
ible into an odd and an even part. It reads 

I 

0 

1 0 I 

0 2 0 
K= 

0 3 0 
(4.9) 

2 

0 5 0 4 0 

5 0 9 0 5 0 I 
........................... 

All entries2 above the diagonal are zero. The entries of the 
first column are known as Catalan numbers. 3 

Let us now examine the most general problem; namely, 
the reduction of the Kronecker product (4.1). The number 
of t~es the representation of dimension n appears is given 
by the scalar product 

= _1_ J2 111 (t)/" (t) .. '/11 (t)/1I (t) (4 - t 2) 1/2 dt. 
21T _ 2' z k 

(4.10) 

Because of the symmetry of that formula we will write nk + I 

instead of n. 
Instead of computing the formula (4.10) we will derive 

a generating function for the a's. For such a purpose, we 

multiply (4.10) by x~'x~z .. 'X~k++I' and sum over all n;'s. We 
get, with the aid of (1.12), 

I J+2 
= 21T -2 

XIX2" .xk+ I (4 _ t 2 )1/2 dt 

(l-txl+xi)"'(l-txk+ 1 +X~+I) 

( 4.11) 
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The simplest functions Fk are 

FI (X I ,x2) = XIX2/(1 - XIX2), 

x lxr3 
F 2(X I,x2,x3) = , 

(1 - XIX2)( 1 - Xr3)( 1 - XIX3) 

F () 
xlxr~4(1 - XIXr3X4) 

3 X1,X2,X3,x4 = , 
(1 - XIX2) (1 - XIX3)( 1 - XIX4)( 1 - Xr3) (1 - Xr4) (1 - X3X4) 

F4(XI,X2,X3,X4,XS) = as [1 - a4 + as (1 - as)], 
ni<j (1 - XjXj ) 

where a j are the elementary symmetric functions of degree i. 
Let us note that theFk's for larger values of k have more and 
more complicated expressions. 

V. FACTORIAL CHEBYSHEV POLYNOMIALS 

In the present section, we study two kinds of polynomi­
als which are involved in representations of SL(2,C) and 
SU(2). They are 

In(t)!=/l(t)/2(t)""fn(t), .fo(t)!= 1, (5.1) 

In (t)! = II (t) 12 (t) .. ·In (t), lo(t)! = 1, (5.2) 

and the 1; k) (1) defined by 

(A n-I_z)(A n-3 -z)"'(A -n+l_z) 

n 

= I1; k) (t)( - 1)kzk1, 
k=O 

(5.3 ) 

where t = Tr A. 
Proposition 5.1: We have the recurrence relation 

2/.( n +') (1) = Ik + 1 (1)/.( n ) (t) + In _ k (1)/.( n) (t). 
k+1 k+1 k 

(5.4) 

Proof First we note that for A = 1, t = 2 and definition 
(5.3) gives1;,) (2) = (~) and (5.4) gives the well-known 

recurrence relation for binomial numbers [in (2) = 2] 

It is clear that ( 5.3) is symmetric in the exchange 
A+-+A -I which explains why the/( ,) 's only depend on t. 

Multiply each factor of (5.3) by A and the left-hand side 
by A - n - Az. It follows that the right-hand side must be 
multiplied by 1 - An + IZ. We get 

(A n -Az)(A n-2 -Az)"'(A -n -Az) 

n 

= I1; n) (1) ( - I )k(l_ An + IZ)Zk. 
k=O k 

According to the definition (5.3), we have 

n+1 

I 1;,+') (1)( _1)k(Az)k 
k=O 

n 

= I1;n)(t)(-I)k(zk-A n+ 1zk + I ). 
k=O k 

Replace now z by A -IZ and identify the terms of both sides. 
We get 

/.(n+.) (1)1=/.(n ) (t)A -k-I +/.(n) (t)A n-k. 
k+l k+l k 
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Multiply by A r and take the trace of both sides. We obtain 

Ir (t)/.( n+.) (t) k+. 

=lk-r+dt)/(k+.)(t) +In-k+r(t)1;,)(t). (5.5) 

The relation (5.4) is just a particular case of (5.5) for r = O. 
Proposition 5.2: 

I( z) (1) = In (1)!/lk (t)!/" - k (t)!. (5.6) 

Proof' This can be proved recurrently with the aid of 
(5.4). For n = 1, (5.3) gives 

1 

I - z = I 1;.) (t)( - I)kz\ 
k=O k 

which proves (5.6) for n = 1. Let us suppose that (5.6) is 
valid for n. The relation (5.4) gives with the aid of (5.6) 

2/.( n+.) (1) = [Ik+ dt)ln-k (t) + In_ k (t)/k+ 1 (t)] 
k+' 

X [In (t)!/Ik+ 1 (t)!/n-dt)!] 

and Proposition 2 follows from the identity 

lab (t) =Ia (t)/b (t) + la (t)lb (t) (5.7) 

[a direct consequence of (2.10) and (2.11)]. 
Remark 1: Other identities like 

2n+ 1 

I I( 2n+') (t) = 2[ln (t)!]2, 
k=O k 

2n+ 1 

I 1;2-+') (t)( - I)k = 0, 
k=O k 

can be proved. 
Remark 2: By making t = i, we can discover nice prop­

erties of Fibonacci and Lucas numbers. 
In the next two sections we give applications of the 

1; ,) (t)'s. 

Proposition 5.3: The1; z) (t) with k (n - k) = 0 are poly­

nomials with simple roots. More precisely, any 1; z) (t) can 

be written in a unique way as a product of distinct primordial 
polynomials 

(5.8) 

with the properties 

I rp(m j ) = k(n - k), (5.9) 
m, 

(5.10) 
m, 
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I A(m j ) = log (~). 
m, 

(5.11 ) 

Proof: Equation (5.8) can be written 
n 

fW (t) = II Pm (t)a(n.k.ml, (5.12) 
m=1 

where a(n,k,m) must be proved to be 0 or 1 (never nega­
tive!). Euclidean divisions of nand k by m give 

n = mIen - n)/m) + n, O.;;;n <m, 

k = m(k - k)/m) + k, O.;;;k<m. 

Then, the Euclidean division of n - k by m will be 

n - k = m([n - k - (n - k) ]1m) + n - k if n>k 

= m([n - k - (n - k)]lm - 1) 

+ n - k + m if n < k. 
It follows that in fc z) , Pm will appear at the numerator 

(n - n)/m times and at the denominator 

k - k {[n - k - (n - k)]lm times if n>k, 
-;;;- + [n - k - (n - k)]lm - 1 times if n < k . 

Therefore it will appear once as a factor infc z) if n < k and 

not otherwise. That proves the beginning of our proposition, 
that is, 

a(n,k,m) = 1 if n <k, 

a(n,k,m) = 0 otherwise. 

Now, we know that 

fn (t) = tn-I - (n - 2)t n- 3 + "', 
Pn (t) = t'P(n) - [,u(n) + fP(n) ]t'P(n) - 2 + .... 
From (5.14), we easily get 

P2 

P3 

P2P4 P3P4 

(5.13) 

(5.14) 

(5.15 ) 

P3 

Ps P4Ps P4Ps 
P2P3P6 P3PSP6 P2P4PSP6 

The relations (5.16)-(5.18) permit one to check that 
table. For instance,j(~) = PSP~7 is such that 

3(7 - 3) = fP(5) + fP(6) + fP(7) = 4 + 2 + 6, 

-1 =,u(5) +,u(6) +,u(7) =: -1 + 1-1, 

log(7'6'5/2'3) = log 5 + 0 + log 7. 

VI. THE GENERATING FUNCTIONS OF THE fn(t)k 

We already know that [(Eq. 1.12)] 

00 z I /" (t)zn = 2 • 
n=O I-tz+z 
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(6.1 ) 

In (t)! = t n(n - 1)/2 

_ [(n-2)(n_l)/2]t n(n-I)/2-2+ ... 

and, if ken - k) #0, 

fc z) (t) = t ken - k) [ken - k) - l]t ken - k) - 2 + .... 
But (5.15) and (5.12) give us 

n 

fc k) (t) = t N 
- I a(n,k,m) 

m=l 

x [fP(m) +,u(m) ]t N
-

2 + "', 
where 

n 

N = I a(n,k,m)fP(m). 
m=l 

It readily follows that, if ken - k) #0, 
n 

I a(n,k,m)fP(m) = ken - k), 
m=O ( 5.16) 

n 

I a(n,k,m) [fP(m) + ,u(m)] = ken - k) - 1, 
m=O 

which becomes by use of (5.16), 
n 

I a(n,k,m),u(m) = - 1. ( 5.17) 
m=O 

Equations (5.17) and (5.16) are alternatives for (5.9) and 
(5.10). The last property to prove, namely, (5.11) follows 
from (5.12) by replacing t by 2, 

log (~) = i a(n,k,m)A(m). (5.18) 
m=l 

Consequence: The fc k) (t) can be written in a "Pascal 

tableau" analogous to the one of binomial numbers. We get 

P2P4 

Ps 1 
P3PSP6 P2P3P6 

Proposition 6.1: The generating functions ofthefn (t)k is 
given by 

~ /, (t)kzn = gk (t,z) (6.2) 
£.. n ...,k + If. « J J ' n=O ~J=O (~+I) t) -)z 

where gk is a polynomial in t and z, of degree k in z with 
gk (t,0) = O. 

Proof(by induction): The property is true for k = 1 [Eq. 
(6.1) ]. It can be also written as follows: 

00 z I fn(t)znI= I' 
n=O (A-z)(A- -z) 
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Equation (6.2) would follow from definition (5.3) and the 
relation we are going to prove recurrently: 

(A k -z)(A k-2 -z)"'(A -k -z) 

That relation can be written 

gk (t,z)I = i: fn (t)kzn(A k - z)··· (A - k - z). 
n=O 

(6.3) 

Let us replace z by Az. A simple transformation leads to 

gk (t,Az) = i: fn (t)kA n + k~(A k-I - z) 
n=O 

and 

(A - A - kZ)gk (t,Az) 

= i: fn (t)A nzn(A k+ 1_ z) 
n=O 

(6.4 ) 

A similar relation can be obtained by replacing A by A -I 
(same trace). By subtracting that relation from (6.4) and 
dividing by A - A - I, one obtains 

(A - A - kZ)gk (t,Az) - (A -I - A kz)gdt,A -IZ) 

A _A-I 

(6.5) 

We readily see that ifgk isofdegreekinz, gk+ I is of degree 
k + 1. Moreover gk+ I (t,0) = Oandgk + I (t,z) ispolynomi­
al in t. 

Proposition 6.2: Define 
k-I 

gk(t,z) = L ak,I(t)zl+l, 
1=0 

where ak,l is a polynomial of degree I(k -1- 1) and 

(6.6) 

ak,l (t) = ak,k_ I _I (t), (6.7) 

ak + 1,1 (t) = h + I (t)ak,1 (t) + fk _I + I (t)ak,l_ I (t). 
(6.8) 

Proof From (6.5) and (6.6) we get 

k-I 
gk+ I (t,z)I = L ak,I(t)zl+ I 

1=0 

A I + I _ A 1- kZ _ A - 1- I + A k - IZ 
x--------------~--~----A-A -I 
k-I 

= L ak,l(t)[h+I(t)r+ l +fk_I(t)zl+2] 
1=0 

from which (6.8) follows. 
For k = 1, ak,l (t) is of degree I(k - 1- 1) = O. Let us 

find the degree recurrently. From (6.8), we get 

deg [ak + 1,1 (t)] 

= sup [l(k-I-l) +1,(l-I)(k-/) +k-/] 

= I(k -I). Q.E.D. 

Finally (6.7) can also be proved by induction 
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ak+\,k-I(t) 

=fk-I+ I (t)ak,k_I(t) + h+ I (t)ak,k_I_1 (t) 

= fk -1+ I (t)ak,l_ I (t) + h+ I (t)ak,l (t) = ak+ 1,1 (t). 

Here are the first gk polynomials, 

gl(t,z) =z, 

g2(t,z) =z+r, 

g3(t,Z) = z + 2tr + z3, 
g4(t,Z) =z+ (3t 2 -1)z+ (3t 2 -1)z3+z\ 

g5(t,z) = z + (4t 3 - 3t)r 

+ (6t 4 - 8t 2 + 2)z3 + (4t 3 - 3t)z4 +r, 

g6(t,z) =z+ (5t 4 -6t 2 + 1)r 
+ (1Ot 6 - 25t 4 + 16t 2 - 2)z3 

+ OOt 6 - 25t 4 + 16t 2 - 2)Z4 

+ (5t 4 
- 6t 2 + 1)r + Z6. 

Remarks: (1) By taking t = 2, we get the generating 
functions of the k th powers of natural integers 

(ii) By taking t = i, one would get the generating func­
tions of q? ~ 'so 

(iii) An analogous computation could be made for the 
k th powers of the In polynomials. The results are 

(6.2') 

where hk is a polynomial in t and z, of degree k in z. If we 
state 

k 

hk (t,z) = L bk,m (t)zm, 
m=O 

wherebk.m(t) is a polynomial ofdegreem(k+ I-m) sat­
isfying 

bk + I.m (t) = 1m + I (t)bk,m (t) -Ik - m + I (t)bk,m -I (t). 

Moreover hk (t,0) = 2k. 

VII. CAYLEY-HAMILTON RELATION FORAn 

Proposition 7.1: The Cayley-Hamilton equation for An 
is 

(7.1) 

Proof: If A is diagonal and unitary, i.e., 

[
exP(iO) 0] 

A= , o exp( - ;0) 
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its representant An is 

A. ~ [exp(i(no~ 1)81 
exp(i(n - 3)0) 

If we replace z in (7.1) by one of the eigenvalues of An' one 
obtains an identity [see (5.3) ]. That proves our proposition. 

Consequence: Using the identity (3.4) 

lab(t) =1a(t)lb(/a(t») 

and taking the trace of (7.1 ), we get 

± (- 1)"fc z) (t) Ink (t) = O. 
k=O In (t) 

VIII. CONCLUSION 

The present work has two possible continuations. One 
involves the SL(2,F) groups where F is a finite field. An 
elementary study of that kind of group proves that our vari­
able t instead of t 12 is natural. To give an argument for that 
we state without proof the following property: If p is an odd 
prime and t an integer 

1 [(t-2) (t+2)] fi(p+ 1)/2) (t) =2 -p- + -p- , 

1 [(t-2) (t+2)] fi(P-I)/2)(t)=2 -p- - -p- , 

where (alp) is the Legendre symbol. I 
Another study concerns the generalization of Cheby· 

shev polynomials for SL(N,C). The main results in that do­
main have been presented in some conferences4 and will be 
written in a forthcoming paper. 

Notes added in proof 
(1) Equations (3.9) and (3.10) can be conveniently re­

written as 

In(t) = II P2n1d (t), 
dlln 

P2n (t) = IT [lnld(t)]!L(d), 
.tIt. 

where d lin means d is an odd divisor of n. 
(2) If we rewrite a(n,k,m) as a function of k and 

I = n - k, for a fixed value of m, a is a periodic function in k 
and I of period m. 
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APPENDIX A: THE FIRST fn POLYNOMIALS 

lo(t) = 0, 

11(t) = 1, 

h(t) = t, 
13(t) = t 2 - 1, 

h(t) =t 3-2t=t(t2_2) =P2P4, 

J;(t) = t 4 - 3t 2 + 1, 

16(t) = t 5 - 4t 3 + 3t = P2P3P6, 

h(t) =t 6 -5t 4 +6t 2 _1, 

Is(t) = t 7 
- 6t 5 + lOt 3 

- 4t = P2P4PS' 

19(t) = t S - 7t 6 + 15t 4 - lOt 2 + 1 = P3P9, 

llO(t) = t 9 - 8t 7 + 21t 5 - 20t 3 + 5t = P2P5P IO' 

Ill(t) =t lO -9t S+28t 6 -35t 4 + 15t 2 -1, 

112(t) = t II - lOt 9 + 36t 7 - 56t 5 + 35t 3 - 6t 

= P2P3P4P ~12' 

113(t) = t 12 - lIt 10 + 45t S - 84t 6 

+ 70t 4 - 21t 2 + 1, 

114(t) = t 13 - 12t II + 55t 9 - 120t 7 + 126t 5 

- 56t 3 + 7t = P2P7P14, 

115(t) = t 14 - 13t 12 + 66t 10 - 165t S + 21Ot 6 

- 126t 4 + 28t 2 - 1 = P3P5P 15, 

116(t) = t 15 _ 14t 13 + 78t II _ 220t 9 + 330t 7 

- 252t 5 + 84t 3 - 8t = P2P4PSPI6' 

117(t) = t 16 _ 15t 14 + 91t 12 _ 286t 10 + 495t S 

- 462t 6 + 2104 
- 36t 2 + 1, 

Ils(t) = t 17 _ 16t 15 + 105t 13 _ 364t II 

+ 715t 9 -792t 7 + 462t 5 

- 120t 3 + 9t = P2P3P~~IS' 
119(t) = t IS _ 17t 16 + 120t 14 _ 455t 12 + 100It 10 

- 1287t S + 924t 6 - 330t 4 + 45t 2 - 1, 
ho(t) = t 19 _ 18t 17 + 136t 15 _ 560t 13 + 1365t II 

- 2002t 9 + 1716t 7 -792t 5 + 165t 3 

- lOt = P2P4P5P l oP20. 

APPENDIX B: THE FIRST In POLYNOMIALS 

10= 2, 

II = t=P2, 
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12 = t 2 - 2 = P4 , 

13 = t 3 - 3t = P~6' 

14 = t 4 - 4t 2 + 2 = PS' 

Is = t S - 5t 3 + 5t = P2PIO' 

16 = t 6 - 6t 4 + 9t 2 - 2 = P4P12, 

17 = t 7 - 7t 5 + 14t 3 - 7t = P~14' 
Is = t S - 8t 6 + 20t 4 - 16t 2 + 2 = P16, 

19 = t 9 - 9t 7 + 27t S - 30t 3 + 9t =P2P~IS' 

110 = t 10 - lOtS + 35t 6 - 50t 4 + 25t 2 - 2 = P4P20, 

III = t II - lIt 9 + 44t 7 - 77t 5 + 55t 3 - lIt = P2P22, 

112 = t 12 - 12t 10 + 54t S - 112t 6 + 105t 4 - 36t 2 + 2 

=PSP24, 

113 = t 13 - 131 II + 65t 9 _ 156t 7 + 182t S 

- 91t 3 + 13t = P2P26, 

114 = t 14 - 14t 12 + 77t 10 - 210t S + 294t 6 - 196t 4 

+ 49t 2 - 2 = P4P2S' 

liS = t IS - 15t 13 + 90t II - 275t 9 + 450t 7 - 378t S 

+ 14Ot3-15t=P2P~IOP30' 
116 = t 16 _ 16t 14 + 104t 12 _ 352t 10 + 660t S 

- 672t 6 + 336t 4 - 64t 2 + 2 = P32, 

117 = t 17 - 17t IS + 119t 13 _ 442t 11 + 935t 9 

- 1122t 7 + 714t 5 - 204t 3 + 17t = P2P34I 

liS = t IS _ 18t 6 + 135t 14 _ 546t 12 + 1287t 10 

- 1782t 8 + 1386t 6 - 54Ot 4 + 81t 2 - 2 

=P4PI2P36' 
119 = t 19 _ 19/ 17 + 152t IS _ 665t 13 

+ 1729t II _ 2717t 9 + 2508t 7 

- 1254t S + 285t 3 - 19t = P2P3S' 

APPENDIX C: THE FIRST PRIMORDIAL POLYNOMIALS 

Ifp is prime, Pp (t) =/p (I), 

P4 (t) = t 2 
- 2, 
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P6 (t) = t 2 
- 3, 

Ps(t) = t 4 - 4t 2 + 2, 

P9(t) = t 6 - 6t 4 + 9t 2 - 1, 

PIO(t) = t 4 - 5t 2 + 5, 

PI2 (t) = t 4 - 4t 2 + 1, 

PI4 (t) = t 6 -7t 4 + 14t 2 -7, 

PIS(t) = t S - 9t 6 + 26t 4 - 24/2 + 1, 

PI6 (t) = t S - 8t 6 + 20t 4 - 16t 2 + 2, 

PIS(t) = t 6 - 6t 4 + 9t 2 - 3, 

P20 (t) = t 8 
- 8t 6 + 19t 4 - 12t 2 + 1, 

P21 (t) =tI2-13tlO+64tS-146t6 

+ 148t 4 - 48t 2 + 1, 

P22 (t) =tlO-llts+44t6-77t4+55t2_11, 

P24 (t) = t S - 8t 6 + 20t 4 - 16t 2 + 1, 

P2S (t) = t 20 _ 20t IS + 170t 16 _ 800t 14 + 2275t 12 

_ 4OO3t 10 + 4280t S _ 2605t 6 

+ 775t 4 -75t 2 + 1, 

P26(t) = t 12 _ 13/ 10 + 65t S _ 156t 6 

+ 182t 4 - 91t 2 + 13, 

P27(t) = t 18 - 18t 16 + 135t 14 _ 546t 12 + 1287t 10 

- 1782t S + 1386t 6 - 54Ot 4 + 81t 2 - 1, 

P2S (t) = t 12 - 12t 10 + 53t S - I04t 6 

+ 86t 4 - 24t 2 + 1, 

P30 (t) = t S - 7t 6 + 14t 4 - 8t 2 + 1, 

P32 (t) = t 16 - 16t 14 + 100t 12 _ 352t 10 + 660t S 

- 672t 6 + 336t 4 - 64t 2 + 2. 

'0. H. Hardy and E. M. Wright, An Introduction to the Theory 0/ Numbers 
(Clarendon, Oxford, 1965), Chaps. 16 and 17. 

2R. Pauncz, Spin Eigenfunctions, Construction and Use (Plenum, New 
York, 1979), p. 21. 

3M. Aigner, Combinatorial Theory (Springer, Berlin, 1979). 
4H. Bacry, in Lecture Notes in Physics, Vol. 201 (Springer, Berlin, 1984), p. 
483; Lecture Notes in Mathematics, Vol. 1171 (Springer, Berlin, 1985), p. 
564; Group Theoretical Methods in Physics (Nauka, Moscow, 1986), p. 
239. 
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Pedestrian approach to two-cocycles for unitary ray representations 
of Lie groups 

J. Krause 
Facultad de Fzsica, Pontificia Universidad Catblica de Chile, Casilla 6177, Santiago 22, Chile 

(Received 28 August 1986; accepted for publication 17 June 1987) 

Necessary and sufficient conditions for unitary ray representations of connected Lie groups are 
reexamined. Thus a systematic constructive method is obtained for calculating the admissible 
exponent factors (two-cocycles). The gauge freedom of the unitary ray representation 
formalism is also considered. This introduces the distinction between trivial and genuine ray 
representations. A special gauge is then adopted, within which the two-cocycle is almost 
unique. The only prerequisite of the exponent factor calculus is the knowledge of the binary 
combination rules for the essential parameters of the group. The attained method affords a 
simple, general, and explicit (i.e., coordinate-dependent) two-cocycle calculus. The aim of this 
paper is merely instrumental. 

I. INTRODUCTION 
This work concerns non-Abelian two-cocycle calculus, 

as required in many applications of the quantum theory of 
symmetries. Indeed, it is a well-known fact that quantum 
mechanics does not fix the phase of the vectors describing 
pure states, and one associates such states to rays rather than 
to vectors. Therefore, unitary ray representations should be 
used in quantum theory, in general. l The extension of the 
unitary formalism, from "true" (vector) to "projective" 
(ray) representations, faces no difficulties, as long as one is 
able to calculate the admissible exponent functions (i.e., the 
two-cocycles) of the corresponding group G. The current 
techniques for calculating two-cocycles, however, are con­
ceptually difficult and complicated to handle, because they 
are usually presented within a highbrow mathematical for­
malism that goes beyond the standard curriculum of most 
physicists in these matters. In fact, these techniques seem to 
be reserved to those physicists who are specialists in coho­
mology theory and other sophisticated issues of Lie group 
theory.2 

There are two (perhaps more) available methods; one is 
purely group-theoretic, the other has a more geometric fla­
vor. Briefly stated, the group-theoretic method is as follows. 
It is known that the exponents of a Lie group G are related to 
the true unitary representations of a "larger" group Gk asso­
ciated with G. This Gk is a central extension of the universal 
covering group G of [the Lie algebraL( G) of] Gby the one­
dimensional Abelian group R [that is, by the additive group 
of real numbers, which, by its turn, is the universal covering 
group of U ( 1 ): R :::; U ( 1 ) ]. This fact immediately affords a 
constructive method for obtaining the two-cocycles of G. 
The starting point of the process is the choice of an admissi­
ble extension3 Lk (G) of the Lie algebra L (G) by the trivial 
algebra L 1 = L (R). Then, once an allowable extended alge­
bra Lk (G) has been established, one can determine the 
group Gk (by means of the Campbell-Baker-Hausdorfffor­
mula, for instance). In this way, the two-cocycles of G can be 
read off by inspection of the group multiplication law of the 
parameters ofGk • Moreover, it has also been shown that for 
the determination of the associated two-cocycle of G one can 
use directly any faithful representation of the extended alge-

bra L k ( G). 4 Exponent factors for several Lie groups of phys­
ical interest have been calculated by means of this technique. 
Perhaps this is the approach to unitary ray representations 
of G preferred by people familiar with cohomology theory5 

of Lie groups and Lie algebras.6 

The other method of construction of continuous (in 
fact, of class COO) exponents that figures in the literature7 is 
analytic and uses the powerful coordinate-independent tech­
niques of modern differential geometry.s This method was 
introduced by Houard in classical mechanics (in connection 
with the problem of determining the Lagrangians whose 
Euler-Lagrange equations are invariant under a given trans­
formation group9). Clearly, the same technique serves the 
purposes of quantum theory as well. After introducing some 
differential forms, obtained from any given COO exponent of 
G, in this approach one proceeds reciprocally to deduce a 
general formula giving the exponents in terms of the closed 
left-invariant two-forms of the group. In effect, Houard 
proves the following theorem: For a Lie group, any C 00 local 
exponent explicitly determines a closed left-invariant two­
form and, conversely, to any closed left-invariant two-form 
corresponds a family of C 00 local exponents that can be ex­
plicitly calculated (see Ref. 7). In this manner, the trivial 
(local) exponents correspond to those two-forms that are 
differentials of left-invariant one-forms and, moreover, the 
classes of equivalent local exponents3 on G correspond biuni­
vocally to the classes of equivalent closed left-invariant two­
forms (i.e., those that differ by the differential of a left-invar­
iant one-form). (Let us here remark that, for any given Lie 
group, every conceivable method of construction of its two­
cocycles, in general, produces only local exponents. 3

) 

These are beautiful and powerful methods indeed. Yet, 
it seems that there is still some room for a more pedestrian 
approach to this subject. Thus this paper addresses the prob­
lem of developing a general and elementary method for cal­
culating local two-cocycles of a given Lie group, once the 
group multiplication law o/its essential parameters is known. 
To our knowledge, an approach such as the elementary and 
explicit (i.e., parameter-dependent) constructive approach 
to exponent factors of Lie groups is lacking in the current 
literature, notwithstanding the many important features 
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concerning this issue that can be found in the excellent "clas­
sical" works of Wigner,1O Bargmann,3 and others.4.7 Our 
main purpose here is to bring this matter into a tailor-made 
formalism, manageable enough for the needs of quantum­
theoretic application. Of course, we do not claim complete 
originality for the mathematical contents of this paper, 
whose aim is purposely instrumental. Our approach to the 
issue of two-cocycles is analytic and, in many respects, 
comes very close to Houard's work,7 as a simplified, coordi­
nate-dependent version of it. (Though there are some novel­
ties in our scope of the subject.) 

Clearly, this is an endeavor interesting for its own sake; 
even more interesting and timely since two-cocycles are be­
coming fashionable in several areas of theoretical physics. 
For instance, two-cocycles have been investigated recently 
in connection with the Wess-Zumino-Witten anomaly, II as 
nontrivial extensions of current algebra,12 and also in the 
cohomology of Wess-Zumino Lagrangians of gauge fields. 13 
In a different context, a special two-cocycle of the Euclidean 
group E2 has been used recently to obtain the kinematic 
quantum model 14 of the simple harmonic oscillator.15 It 
should also be mentioned here that a suitable (well-known) 
two-cocycle of the Galilei group 16 yields the kinematic quan­
tum model of a Newtonian free particle. 17 Furthermore, 
even three-cocycles are becoming fashionable (as they can 
be found, for example, in the quantum mechanics of a point 
particle moving in an external magnetic field that is not di­
vergence-free ls ), and several physicists have pointed out 
their usefulness in the quantum mechanical description of 
magnetic monopoles. 19 (We would like to mention this fact 
here, although we do not touch on three-cocycles in the pres­
ent article.) Hence, a simplified, self-contained formalism of 
two-cocycles, presenting its own calculational tools, may be 
of some help to a wide realm of physicists. 

Let us outline the contents of this paper. We first exam­
ine the consequences of the various (well-known) functional 
relations for two-cocyc1es that occur in the theory of unitary 
ray representations of Lie groups (Sec. II). In Sec. III we 
obtain a set of necessary and sufficient conditions for the 
required functional relations that characterize an admissible 
two-cocycle. Therefore, a systematic constructive procedure 
arises (and this is the main point in the present approach). 
In Secs. IV and V we discuss the gauge transformations of 
unitary ray representations of Lie groups. In order to illus­
trate the main features of the method, some miscellaneous 
examples are also included in this paper (Sec. VI). For the 
sake of completeness, we add an Appendix where we present 
an elementary introduction to "non-Abelian calculus." We 
hope that his appendix will help the reader to grasp the dis­
cussions contained in the following context. Let us finally 
remark that in this paper we shall proceed in a straightfor­
ward formal manner, since our emphasis is on method. For 
all the important topological details we refer the reader to 
Bargmann's paper. 3 

II. EXPONENT FACTORS FOR UNITARY RAY 
REPRESENTATIONS REVISITED 

We begin our work presenting the general features of the 
ray formalism conducive to the allowable exponent func-
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tions of an arbitrary, connected, r-parameter Lie group G. 
We denote by q = (ql, ... ,qr) a generic point of the group 
manifold M( G); the coordinates qQ, a = 1, ... ,r, are real and 
form a set of r essential parameters of G. We shall write 
q = (qi , ... ,qr) (instead of q-I) to denote that point in 
M( G), uniquely associated with the point q, that labels that 
element of G and that is the inverse of the element corre­
sponding to q; the point e = (el, ... ,er

) of M(G) labels the 
unit element of G. Thus the r-dimensional manifold M( G) 
carries an analytic mapping g: M(G) XM(G) --M(G), 
which is endowed with the group properties. This mapping is 
realized by a set of r group-multiplication functions of the 
parameters, say, g(q';q) = q".20 (Indices are often sup­
pressed when there is no danger of confusion.) In the Ap­
pendix we present a summary of useful formulas pertaining 
to the affine geometry of M ( G), which shall be needed in the 
sequel; in particular, some general properties of the analytic 
functions g" can be recalled from the Appendix. 

In order to simplify our discussion, and concentrate on 
the main problems of two-cocycle calculus, in this paper we 
assume that the coordinate patch {q} covers a whole sub­
manifold N(e) CM(G), which is a neighborhood of the 
identity point e. Sometimes, however, when G is a noncom­
pact, connected, and simply connected Lie group (as, for 
instance, the universal covering group of a noncompact Lie 
group), we also formally assume that the coordinate patch 
{q}, containing the identity point e, covers the whole mani­
fold M( G) and maintains everywhere the required one-to­
one correspondence with the elements of G. (Certainly, if G 
is compact, this last assumption would be inaccurate. ) 

We now tum to the unitary ray representations of G. In 
quantum mechanics G establishes an isomorphism between 
rays that preserves all transition probabilities. Therefore, it 
is useful to define unitary (or anti unitary ) operators rays, in 
analogy to the notion of vector rays. In this fashion, accord­
ing to Wigner's theorem,21 the operators of the isomorphism 
are representatives selected from the corresponding opera­
tors rays. Hence one infers (by well-known arguments) the 
ray representation property 

Uk (q') Uk (q) = /<P.<q';q) Uk [g(q';q)] , (2.1 ) 

where,pk is a real function ofthe points q' and q, and where 
Uk (q') and Uk (q) are suitable selected representative oper­
ators. (Right now, k is a label for the selection of representa­
tives.) It is clear that for a different choice of representatives, 
a different function,pk will appearin (2.1). We shall discuss 
this gauge freedom in Sec. IV. Since G is connected, it can be 
shown that the operators Uk (q) are necessarily unitary.3 
However, as a consequence of (2.1) one gets 

U k+ (q) =U k-I(q) = e-il'k(q)Udq) , (2.2) 

where,uk (q) is defined by 

,udq) =,pk (q;q) =,pk (q;q) (2.3) 

(which identity can be proved rather easily). The relation 
stated in (2.2) holds for unitary ray representations in gen­
eral, instead of 

(2.4 ) 

which holds for unitary vector representations. Of course, 
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one recovers (2.4) within the ray formalism by choosing a 
gauge such that ILk (q) =0 (cf. Sec. V). Also, the "initial 
value" property of ¢ k' 

¢k (e;q) = ¢k (q;e) = 0, (2.5) 

for all qEN(e) , need not be assumed since it can be proved 
quite directly. (That is, this property is not a gauge condition 
imposed on the exponent function.) Thus 

ILk (e) = 0 

follows, wherefrom 

Uk(e) =1 

(2.6) 

(2.7) 

is attained for all selections of representatives. Now, the as­
sociative property of the representation (2.1) yields the fol­
lowing well-known functional relation for the exponent 
function: 

¢k (q';q) + ¢k [q";g(q';q)] 

= ¢k (q";q') + ¢k [g(q",q');q] . (2.8) 

This three-point relation entails the fundamental property 
for an admissible local exponent function, and thus it repre­
sents the backbone of two-co cycle analysis.3 Finally, the op­
erator identity for the Hermitian adjoint of the product of 
two operators gives 

¢k (q';q) + ¢k (q;q') 

(2.9) 

Altogether, the functional properties we have sketched 
above enhance the two-cocycle ¢k (q';q) with the group 
properties ofthe Uk (q)'s, at least on N(e) CM( G). 

Before proceeding to examine the technicalities of two­
cocycle calculus, we wish to mention two important fea­
tures. First, let us recall that, using an elegant construction 
of Iwasawa's,22 one can show that every local exponent 
¢k (q';q) is equivalent (cf. Sec. IV) to a local exponent 
¢k (q';q) that, on some neighborhood N(e) of the identity, 
has continuous partial derivatives of all orders with respect 
to the parameters q' and q. Iwasawa's theorem is a direct 
consequence of the functional relation (2.8). Next, let us 
also recall that, for a connected and simply connected Lie 
group G, every local exponent ¢k (q';q), defined on some 
neighborhood N(e) of the identity, can be extended to a 
global two-cocycle function defined on the whole group 
manifold M(G) (cf. Theorem 5.1. in Bargmann's paper3). 
Moreover, the extended two-cocycle is differentiable every­
where on M(G) XM(g) if ¢k (q';q) is differentiable on 
N(e) XN(e). 

III. TWO-COCYCLE CALCULUS ON THE GROUP 
MANIFOLD 

This section deals with the general theory of exponent 
calculus corresponding to a connected Lie group G. Looking 
first for the necessary conditions of the formalism, let us 
define the functions 

r~k)(q) = Da (q')¢k (q';q) , 

I~k)(q) =Da(q')¢k(q;q') , 

(3.1) 

(3.2) 

attached to a given phase function ¢ k' The operators D a (q') 

stand for limq, -e a ~ [cf. Appendix, Eq. (A8)]. These func-
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tions will be called right and left exponent generators, respec­
tively. Clearly, they satisfy the initial conditions: 

(3.3 ) 

Now, we subject the three-point functional relation of ¢k to 
the following manipulations: On both members of Eq. (2.8) 
we perform the operations (1) Da (q"), (2) Da (q), and (3) 
Da (q'), separately. Thus we obtain 

Xa(q')¢k(q';q) =r~k)[g(q';q)] _r~k)(q'), (3.4) 

Ya (q)¢k (q';q) = I ~k) [g(q';q)] -I ~k)(q) , (3.5) 

[Xa(q) - Ya(q')]¢k(q';q) =/~k)(q') _r~k)(q), (3.6) 

respectively, whereXa (q) and Ya (q) are Lie's infinitesimal 
operatorsinM(G) [cf. Eqs. (A9) and (A1O)]. 

However, the exponent generators are not completely 
arbitrary. In fact, ifone performs (1) Db (q') and (2) Db (q) 
separately on Eq. (3.6), one gets 

Xa(q)rkk)(q) -dj,ar~k)(q) =/~~~(e) +u~~)(q), 

Ya (q)1 kk)(q) - u'/,bnk)(q) = r~~~(e) + v~~)(q) , 
where we have defined 

u~~)(q) = lim a ~ a ~ a¢k (q';q) , 
q'-e 

v~~) (q) = lim a ~ a ~ ¢k (q;q') , 
q'-e 

(3.7) 

(3.8) 

and where the u'/,b denote constants defined in Eq. (A21). 
Hence, taking q = e in Eqs. (3.7), one obtains 

r~~ ( e) = I k'2 ( e) . 

Moreover, Db (q) applied to Eq. (3.5) yields 

Xa(q)/kk)(q) = Yb(q)r~k)(q). 

(3.9) 

(3.10) 

In this way, it can be shown that Eqs. (3.7) and (3.10) are 
the only first-order differential equations for the exponent 
generators one can obtain from the set (3.4 )-( 3.6). Accord­
ingly, besides Eqs. (3.10), taking the skew-symmetric parts 
ofEqs. (3.7), one concludes that the generators have to sat­
isfy also the following inhomogeneous non-Abelian curl 
equations: 

Xa(q)rkk)(q) -Xb(q)r~k)(q) -f~br~k)(q) = -kab' 

(3.11 ) 

Ya (q)1 kk) (q) - Yb (q)1 ~k) (q) + f~bnk) (q) = kab , 

( 3.12) 

where f~b = dj,a - u'/,b are the structure constants of G (cf. 
the Appendix), and where the kab are constants such that 

(3.l3) 

These constants will be briefly referred to as the ray constants 
of the extended representation. 

Finally, let us point out that the ray constants them­
selves are not all independent, in general, for they have to 
satisfy two sets of constraints. Indeed, we first observe the 
following constraints: 

kab + kba = O. (3.14) 

Furthermore, if we operate with Dc (q) in Eq. (3.11), we get 

rk'2c (e) - r~~~(e) =f~br~~j(e) - O:cr~~j(e) + c1:r~1(e) , 
from which the Bargmann constraints3 easily follow: 
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f:bkcd + f~akbd + ftckad = O. (3.15) 
This completes our analysis of the necessary consequences of 
an admissible exponent function of G.23 

In the sequel we discuss this framework from a synthetic 
point of view, since we are searching for necessary and suffi­
cient conditions on which a constructive method of expo­
nent calculus can be grounded. To this end, we organize our 
discussion in a series oflemmas, which may be proved rather 
easily once we are in possession of the typical manipulations 
of "non-Abelian calculus" (cf. the Appendix). For the sake 
of briefness, however, we here omit the proofs of these lem­
mas. 

Hereafter, any given set {ra (q),la (q); a = 1, ... ,r} for 
which there exists a solution ¢(q';q) ofEqs. (3.4) and (3.5), 
with the initial conditions (2.5), will be called an admissible 
set of exponent generators. Then, according to Lemma A. V, 
one has the following lemma. 

Lemma 3.1: The solution ¢ associated with an admissi­
ble set of generators is unique. 

Albeit trivial, this lemma is important because it means 
that all the gauge freedom one has for settling two-cocycle 
functions comes from the gauge freedom of the generators 
themselves (cf. Sec. IV). The following lemma is "crucial" 
for the issue we are stUdying. 

Lemma 3.1L· If ¢(q';q) is the solution associated with an 
admissible set of generators, then ¢ (q';q) satisfies the three­
point functional relation (2.8). 

Thus admissible sets of generators produce admissible 
two-cocycle functions. The consistency of Eqs. (3.4) and 
(3.5) with the initial conditions (2.5) can be checked quite 
directly, without recourse to the relation (2.8), so that the 
problem tackled in the previous lemma is well posed indeed. 

We now present two lemmas concerning the relations 
between the several differential equations of the formalism. 

Lemma 3.III: For an admissible set of exponent genera­
tors such that ra (e) = la (e), a = 1, ... ,r, the associated solu­
tion¢(q';q) ofEqs. (3.4) and (3.5) also satisfies Eq. (3.6). 

[Of course, sensu stricto, the condition ra (e) = la (e) of 
the previous lemma is a necessary feature of a set of admissi­
ble generators.] Hence, Eq. (3.6) plays no essential role in 
the constructive approach. Furthermore, we have the fol­
lowing lemma. 

Lemma 3. IV: Iffor a given set of right exponent genera­
tors {ra (q)}, the function ¢(q';q) satisfies Eq. (3.4) with the 
initial conditions (2.5), and if there exists a set ofleft genera-

tors Va (q)} such that Eq. (3.10) holds, then ¢(q';q) also 
satisfies Eq. (3.5) (and vice versa). 

In this way, recollecting the previous results, one has 
proved the following theorem. 

Theorem 3.1: The necessary and sufficient condition for 
¢ k (q';q) to be an admissible two-cocycle function of G is that 
it satisfies either Eqs. (3.4) or Eqs. (3.5), with the initial 
conditions (2.5). 

Next, we present three lemmas concerning the exponent 
generators. 

Lemma 3. V: If {ra (q), la (q)} is a set off unctions satis­
fying Eqs. (3.10), and such thatf~brc (e) = f~blc (e), then 
these functions also satisfy Eqs. (3.11) and (3.12), where 
(now) thekab correspond toaset of constants of integration. 
(Clearly, kab + kba = 0.) 

As an immediate consequence one has the following 
lemma. 

Lemma 3. VI: For a given set of ray constants, if one 
assumes the initial conditions (3.3), then Eqs. (3.10) and 
(3.12) imply Eq. (3.11). 

Finally, our last lemma is a consequence of Lemmas 
A.II and A.VIII. 

Lemma 3. VlL' If a set off unctions {ra (q)} satisfy Eq. 
(3.11) then there exists a function ¢(q';q) that satisfies 
(3.4). In the same manner, if a set offunctions Va (q)} satis­
fies Eqs. (3.12), then there exists a function ¢(q';q) that 
satisfies (3.5). 

Thus one has the following theorem. 
Theorem 3.11: For a given set of ray constants, a neces­

sary and sufficient condition for the existence of an admissi­
ble exponent function ¢(q';q) is either (1) to have a set of 
right generators r~k) (q) satisfying Eqs. (3.11), or else (2) to 
have a set of left generators l~k)(q) satisfying Eqs. (3.12), 
together with the initial conditions (3.3). 

In summary, given a connected Lie group G, the general 
procedure for obtaining an admissible two-cocycle function 
¢k (q';q) is clear. One first introduces a suitable set of ray 
constants, which have to satisfy the required constraints 
(3.12) and (3.15), and may be otherwise arbitrary. Then 
one may solve the problem completely "from the right" [i.e., 
solve Eqs. (3.11) and (3.4)], or completely "from the left" 
[i.e., solve (3.12) and (3.5)]. We present a resume of this 
general method in Table I, adopting the "right" framework 
for the sake of concreteness. (However, this method is far 
from producing a unique two-cocycle function, because of 

TABLE I. General procedure (from the right) for obtaining an admissible nontrivial local exponent function of a connected non-Abelian Lie group. 

Step 

(I) Ray 
constants 

(2) Right 
exponent 
generators 

(3) Two-cocycle 

Symbol 

¢J. (q';q) 
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Solve Initial conditions 

kab + k"" = 0 
f:bkCd + f~akbd + f'tckad = 0 

¢Jk (e;q) = 0 
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the ample gauge freedom one has in selecting the representa­
tive operators. ) 

As a very simple example of the method we observe that, 
in particular, for an Abelian Lie group all the ray constants 
can be taken arbitrarily (withinkab + kba = 0). In this case, 
if the q's are canonical parameters, the exponent generators 
are simply given by 

r~k)(q)=/~k)(q)=~kabqb, (3.16) 

and the admissible two-cocycles are all of the form3 

tPk (q';q) = ! kabq,aqb . (3.17) 

More interesting examples are discussed in Sec. VI. 
It must be borne in mind that for a connected Lie group 

the previous method produces only a local two-cocycle 
tPk (q';q) defined on N(e) XN(e). In the applications one 
usually obtains a two-cocycle of class C 00 quite directly (i.e., 
without recourse to Iwasawa's construction22

). Moreover, if 
G is a noncompact, connected, and simply connected Lie 
group, the method usually yields aglobal two-cocycle which 
is COO onM(G) XM(G). 

IV. GAUGE TRANSFORMATIONS AND GENUINE 
UNITARY RAY REPRESENTATIONS 

As was already mentioned, it is evident that the expo­
nent factor one uses in a ray representation depends on the 
selection of representative operators. Thus if one considers a 
different choice of representatives, say, 

Uk' (q) = /Yk'k(q) Udq) , (4.1) 

taken from the corresponding operator rays, then a new two­
cocycle function appears in Eq. (2,1); namely, 

tPk' (q';q) = tPk (q';q) + Yk'k (q') 

+ Yk,dq) - Yk,dg(q';q)] . (4.2) 

Here Yk'k (q) is an arbitrary real function, provided it satis­
fies 

(4.3) 

Two exponents related in this fashion are called equivalent. 
Hence one has a local gauge freedom inherent to the unitary 
ray representations formalism, since Eq. (4.2) is a gauge 
transformation of the second kind. 

Taking q' = q in Eq. (4.2) yields 

J.lk,(q) =J.lk(q) +Yk'k(q) +Yk'k(q)· (4.4) 

(We shall return to this equation presently.) From the defi­
nitions (3.1) and (3.2), the general gauge transformation 
law induced by Eq. (4.1) on the exponent generators imme­
diately obtains; viz., 

r~k')(q) = r~k)(q) -Xa (q)Yk'k (q) + Yk'k,a (e), (4.5) 

I~k')(q) =/~k)(q) _ Ya(q)Yk'k(q) +Yk'k,a(e). (4.6) 

As a consequence, the general gauge transformation induced 
on the ray constants follows: 

k~b =kab +f~bYk'k,c(e). (4.7) 

Clearly, weare using the label k = (k t ,2, ... ,kr - t ,r) to denote 
the set of ray constants used in the determination of the two­
cocycle tPk (q';q), attached to the Uk (q)'s according to Eq. 

2272 J. Math. Phys., Vol. 28, No.1 0, October 1987 

(2.1). Hence, if Yk'k(e) =0 and f~bYk'k,c(e) =0 (i.e., 
k ~b = k ab ), we write Ykk (q) = Yk (q) and we say that the 
two exponent functions tPk (q';q) andtP~ (q';q) are equivalent 
within a restricted gauge transformation. Briefly, restricted 
gauge transformations leave the ray constants invariant. 

It can be proved quite directly that the consistency of the 
general gauge transformation scheme demands 

( 4.8) 

However, according to Lemma A.II, this is an identity, and 
therefore it sets no restriction on the gauge generating func­
tion Yk'k (q). Thus, in conclusion, one has a consistent 
scheme of gauge transformations (of the second kind), and 
every unitary ray representation of G defines in a unique way 
only a class of equivalent exponent functions. 3 

We next supply some lemmas that concern the gauge 
transformations of unitary ray representations. 

Lemma 4.L· For a given set k of ray constants, the gener­
ators {r~k) (q), I ~k) (q)} are defined only within the restrict­
ed gauge transformation, 

r~(k)(q) =r~k)(q) -Xa(q)Yk(q) , (4,9) 

I~(k)(q) =/~k)(q) - Ya(q)Yk(q) , (4.10) 

provided 

Yk,a (e) = o. (4.11 ) 

This lemma (4.1) is an immediate consequence of the 
Lie algebra L( G) (i.e., cf. Lemma A.lII). 

Lemma 4.Il: A general gauge transformation of the ex­
ponent generators [viz., Eqs. (4.5) and (4.6)] induces a 
gauge transformation of the exponent function [i.e., Eq. 
(4.2) ]. 

Furthermore, as was already remarked (cf. Lemma 
3.1), all the gauge freedom of a two-cocycle function comes 
from the gauge freedom of the exponent generators. One also 
proves the following lemma as a corollary to Lemma 4.1. 

Lemma 4.IlI: An arbitrary gauge transformation of the 
ray constants, i.e., 

k~b =kab +f~bkc (4.12) 

(withka , a = 1, ... ,r, arbitrary real constants), induces a gen­
eraI gauge transformation of the exponent generators [i.e., 
Eqs. (4.5) and (4.6)], with the only proviso that 

Yk'k,a (e) = ka . (4.13 ) 

So we have shown that the whole formalism of gauge 
transformations, as deduced from Eq. (4.1), is inversible. 
Let us epitomize this in the following theorem. 

Theorem 4.1: The general gauge transformation [i.e., 
Eq. (4.12), with somef~bkc#O] of the ray constants is a 
necessary and sufficient condition for having a nonrestricted 
gauge transformation [i.e., Eq. (4.2)] of the exponent func­
tion. 

In Table II we present a summary of general gauge 
transformations for unitary ray representations of non-Abe­
lian connected Lie groups. 

Of course, genuine unitary ray representations of G are 
those ray representations that may not be reduced to a vector 
representation by a mere gauge transformation, as presented 
above. In order to further study this matter, we better con-

J. Krause 2272 



                                                                                                                                    

TABLE II. Gauge transformation scheme for unitary ray representations. The transformations shown are necessary and sufficient conditions for having 
equivalent unitary ray representations. 

Step Gauge transformations Conditions 

(1) Ray 
constants 

(2) Exponent 
generators 

ro (q) ~r;, (q) = ro (q) - Xo (q)r(q) + ko 
10 (q) ~I ~ (q) = 10 (q) - Yo (q)r(q) + ko 

r.o (e) = ko 

(3) Two--cocycle ~(q';q) ~t//(q';q) = ¢i(q';q) - r[g(q';q) 1 + r(q') + r(q) - r(e) 

(4) Gauge 
generator 

r(q)~r'(q) = r(q) - r(e) r'(e) = 0 

sider' instead trivial unitary ray representations; namely, 
those whose exponent functions are of the form 

¢(q';q) = y[g(q';q)] - y(q') - y(q) . (4.14 ) 

Two-cocycles of this kind are nothing but gauge artifacts; as 
such, they bear no physical meaning in quantum theory. 
Therefore, it is worthwhile to learn how to avoid these trivial 
solutions. 

It is an immediate consequence of Eq. (4.14) that the 
trivial exponent generators are of the form 

ra (q) = Xa (q)y(q) + ka , 

la (q) = Ya (q)y(q) + ka , 

(4.15 ) 

(4.16 ) 

where we set ka = - Y.a (e), and therefore the correspond­
ing trivial ray constants are given by 

( 4.17) 

(which are obviously admissible, in principle). One can easi­
ly see that Eqs. (4.14), with (4.15) and (4.16), satisfy the 
system (3.4 )-( 3.6) in a trivial fashion, that is, identically for 
whatever function y(q) one may consider. In the same way, 
it also can be shown that Eqs. (4.15) and (4.16), with 
(4.17), satisfy Eqs. (3.10)-(3.12) in a trivial manner. 
Hence, one has no true differential equations for the deter­
mination of y( q), as it should be. In other words, albeit tri­
vial and arbitrary, a purely gauge exponent function is an 
admissible solution of the problem. 

Conversely (and most importantly), the reader can 
prove the following lemmas. 

Lemma 4.IV: Trivial exponent generators produce only 
trivial two-cocycle functions. 

Lemma 4. v.. Trivial ray constants produce only trivial 
exponent generators. 

We thus have the following theorem. 
Theorem 4.11: The necessary and sufficient condition 

for having a trivial two-cocycle function is that all the ray 
constants are trivial. 

This theorem settles the issue since, as a corollary, to 
have a genuine unitary ray representation of G it is enough to 
introduce at least one ray constant that is not trivial (Le., 
such that 0 ¥= kab ¥= f~b kc ). A glance at Eq. (4.7) shows that 
it is impossible to eliminate a nontrivial ray constant by means 
of a gauge transformation. On the other hand, if a given set k 
contains some trivial ray constants, these always may be 
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eliminated simultaneously by means of a suitable change of 
gauge. In particular, for an Abelian Lie group, all trivial ray 
constants are necessarily zero, and thus yield nothing (Le., 
all ray representations of Abelian Lie groups are genuine). 

An interesting consequence of Theorem 4.11 arises, for 
instance, in applications to the group SU(2), for which all 
the ray constants are obviously trivial. Hence, all unitary ray 
representations of SU (2) are gauge artifacts (as is well 
known indeed). An analogous result holds for the homogen­
eous Lorentz group. (Even so, let us recall that the double­
valued representations of these groups are more properly 
interpreted as ray representations. ) 

V. A SPECIAL GAUGE 

As usual when one deals with a theory that formally 
contains some gauge freedom, in the unitary ray representa­
tion theory one takes advantage of the allowable gauge trans­
formation to choose a gauge in which the two-cocycle func­
tion ¢ k (q';q) becomes "simpler" (or behaves in a physically 
"reasonable" manner). On physical grounds, one of the 
most reasonable properties of ¢ k one would like to retain 
when the formalism is used in quantum theory corresponds 
to the unitarity of the representative operators, as expressed 
in Eq. (2.4). There are, of course, other gauges within the 
unitary ray formalism. However, henceforth we impose the 
following gauge condition: 

(5.1 ) 

It is clear that in order to transform a given unitary ray 
representation into a ray representation belonging to this 
special gauge one uses Yk (q) = - !,uk (q) as the generator 
of the required gauge transformation. Moreover, it is also 
clear that one still has some remaining gauge freedom for 
selecting the representative operators within this gauge. In­
deed, this freedom entails the property 

(5.2) 

which must be satisfied everywhere by the gauge generating 
function. In agreement with Eq. (A26), this means that the 
gauge generators Yk (q) (which operate within the special 
gauge) must be solutions of the differential equations 

Xa (q)Yk (q) - Ya (q)Yk (q) = 0, 

together with the initial datum Yk (e) = o. 
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When expressed in terms of the exponent function 
¢k (q';q) itself, our special gauge is characterized by the 
property 

¢k(q';q) +¢k(q;q') =0, (5.4) 

for allq',qEM"( G), which is clearly equivalent to Eq. (5.1). If 
one now performs the operation D a (q') in this last equation, 
and uses Eq. (A26), one easily obtains the relation 

(5.5) 

characterizing the exponent generators within this gauge. In 
effect, conversely, if one assumes this relation and considers 
Eqs. (3.4) and (3.5), written for ¢k (q';q) and for ¢k (q;q'), 
one arrives at Eq. (5.4), because of the initial conditions 
(2.5). Hence we arrive at the following theorem. 

Theorem 5.1: The relation I ~k) (q) = r~k) (q) is a neces­
sary and sufficient condition for the special gauge defined in 
Eq. (5.1). 

Furthermore, if one assumes Eq. (5.5), then the differ­
ential equations for the exponent generators are Eqs. (3.11) 
and also 

(5.6) 

In the applications, however, it may be rather cumbersome 
to find a solution r~k)(q), a = 1, ... ,r, of Eq. (3.11), with 
r~k)(e) = 0, which at the same time satisfies Eq. (5.6). 

According to the preceding discussion, one can always 
bring a (previously calculated) exponent function into the 
special gauge (5.1) by performing a suitable gauge transfor­
mation at the end of the calculations. 

VI. MISCELLANEOUS EXAMPLES 

With the aim of exhibiting the technicalities ofnon-Abe­
lian two-cocycle calculus, in this section we present some 
simple instances that are, at the same time, mathematically 
nontrivial and physically important. Many features of the 
results obtained in this section are well known, of course. 
Our emphasis is on method. Here we content ourselves with 
obtaining the formal results, and do not delve into their 
physical meaning. 

A. The Galilei group in one-dimensional space 

Let us apply the formalism of two-cocycle calculus to 
the Galilei group in one-dimensional space. The group-mul­
tiplication functions for this three-parameter Lie group are 
given by 

q,,1 =gl(q';q) =q,1 +ql, 

q,,2 = g2(q';q) = q,2 + q2 _ qt3ql , 

q"3 = ~(q';q) = q'3 + q3 , 

(6.1 ) 

where ql corresponds to Newtonian time translation, q2 to 
Euclidean space translation, and q3 to the Galilean boost in 
one-dimensional space. Clearly, the group manifold corre­
sponds to - 00 <qa < 00, a = 1,2,3, with the identity point 
at the origin, e = (0,0,0), and the group-inversion formulas 
for the parameters are 

ql = _ ql, q2 = _ q2 _ q3ql, q3 = _ q3 . (6.2) 

Thus one easily obtains the right and left infinitesimal opera­
tors; namely, 
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(6.3 ) 

and 

YI = al - q3 a2 , Y2 = a2 , Y3 = a3 , 

respectively. The well-known Lie algebra follows: 

(6.4) 

[XI ,x2] = ° , [XI ,x3] = - X 2 , [X2,x3] = ° , 
[YI ,Y2 ] = 0, [YI ,Y3 ] = Y2 , [Y2,Y3 ] = 0, 

( 6.5) 

and also [Xa' Yb ] = 0, for a,b = 1,2,3. Hence the only non­
zeroth structure constant is/i3 = - 1. 

After settling these details, we are ready to apply two­
cocycle calculus to this group. One first considers the con­
straints (3.15) for the ray constants. After some simple cal­
culations, one concludes that all the ray constants 
{k l2,k l3,k23 } survive. Clearly, k 13 is a gauge artifact and may 
be eliminated from the beginning. However, Since our pur­
pose is merely illustrative, it seems worthwhile to feign igno­
rance on this fact, and manage the issue with all three ray 
constants present. Then Eqs. (3.11) for the right generators 
yield 

r l •2 - r2,1 = k 12 , (6.6) 

r2,3 - r3,2 - qlr2,2 = k23 , (6.7) 

r3,1 - r l ,3 + qlrl,2 + r2 = k31 ' (6.8) 

Of course, one can tackle these equations following several 
integration schemes. We shall use the following scheme. 

Let us assume (without loss of generality) 

r l (q) = ! k12q2 + ! k13q3 + U (qt,q2,q3) , (6.9) 

where u(q) is an undetermined real function. Then, Eqs. 
(6.6 )-( 6.8) (also without loss of generality) yield 

r2(q) = ! k21ql + ! k23q3 

+ [' dqtl U,2 + V(q2,q3) , 

r3(q) =! k31ql +! k32(q2 + q3ql) 

+ lq' dq,1 U,3 - ql lq' dqtl U,2 

(6.10) 

+ ['dq'2 V,3 -q IV+W(q3). (6.11) 

Thus Eqs. (6.9 )-( 6.11) represent a general solution to Eqs. 
(6.6)-(6.8). However, the functions U(ql,q2,q3), V(q2,q3), 
and W(q3) remain completely arbitrary. Clearly, defining 
the function 

y(q) = [' dq,1 U + [' dq'2 V + [' dq'3 w, (6.12) 

one obtains 

xl(q)y(q) = U(ql,q2,q3), 

x 2(q)y(q) = lq' dqtl U,2 + V(q2,q3) , 

rq
' rq

' 
x3(q)y(q) = Jo dq,1 U,3 - ql Jo dq,1 u.2 

+ lq' dq,2 v.3 - qlv + W(q3) , (6.13) 

and also y(e) = y(O,O,O) = 0. So one gets, after performing 
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the gauge transformation generated by r(q) in (6.9)-(6.11) 
the following completely gauge-reduced solution: 

r l (q) = ! k12q2 + ~ k13q3 , 

r2(q) =! k2lql +! k23q3 , (6.14 ) 

r3(q) = ~ k31ql +! k 32 (q2 + q3ql) . 

Thereafter, for the corresponding left exponent generators, 
using Eq. (3.10), one obtains 

II (q) = -! k12(q2 + q3q l) - ! k13q3 , 

12(q) = -! k2lql -! k 23q3 , (6.15) 

13(q) = -! k31ql -! k32q2; 

which, according to Eq. (6.2), show that these exponent 
generators belong to the special gauge discussed in Sec. V 
[i.e., one has la (q) = ra (q)]. 

We now finish our work using these exponent genera­
tors. Let us consider Eq. (3.4) for the two-cocycle function 
produced by the right generators. In the present case these 
equations are 

J; ¢J(q';q) = ! kl2(q2 - q'3q l) + ! k13q3 , 

J ;¢J(q';q) =! k2lql +! k 23q3 , 

(J 3 - qd J; )¢J(q';q) 

=! k31ql +! k32(q2 + qVI + q3q l) . 

A straightforward integration of this system yields 

¢J(q';q) = ! k 12 [q,1 (q2 _ q'3ql) _ q'2q l] 

+! k 23 [q'2q3 _ q'3(q2 + qlq3)] 

(6.16) 

+!k31(q'3ql_q'lq3) , (6.17) 

which meets the condition ¢J ( e;q) = ¢J (q;e) = O. The reader 
can show that ¢J (q';q) as given in Eq. (6.17) is also a solution 
of (3.5). Furthermore, a rather tedious (but easy) calcula­
tion shows that this solution satisfies the three-point func­
tional relation (2.8). Clearly, ¢J(Cj;q) = ¢J(q;q) = 0 (as ex­
pected). 

Finally, we observe that the gauge transformation gen­
erated by 

r(q) = _!k31 (qlq3+2q2) , (6.18) 

when performed on the solution (6.17), eliminates the k31 
term. Thus our solution reduces to the form 

¢J(q'q) = ! kdqd (q2 _ q'3q l) _ q'2ql] 

(6.19) 

(which, of course, could have been assured from the begin­
ning, since k31 is a gauge artifact). This solution is unique in 
the sense that it is a completely gauge-reduced two-cocycle 
satisfyingjl(q) = O. It is interesting to observe that r(q), as 
defined in Eq. (6.18), generates a gauge transformation that 
is not a restricted one [i.e., one has r,l (e) = 0, 
r.2 (e) = - k31' r.3 (e) = 0], nevertheless it operates within 
our gauge [i.e., r(q) = - r(q)]. Once we have a unitary 
ray representation of the Galilei group (corresponding to 
one-dimensional space), with the phase function given by 

¢J(l2)(q';q) = ! kdq d (q2 _ q3q l) _ q'2q l] , (6.20) 

or 
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(6.21) 

[ or else ¢J(2) + ¢J(23), as in (6.19)], then it is not possible to 
change this ray representation into a vector representation 
by a mere gauge transformation. 

The literature on unitary ray representations of the Ga­
lilei group is rather extensive.3.24

,25 The issue has been stud­
ied mainly in connection with the Galilean invariance of the 
Schrodinger equation of a free particle. 26

,27 Indeed, the im­
portant fact to remark is that these projective unitary repre­
sentations of the Galilei group are the only ones to which we 
can attribute a usual physical meaning.28

,29 The two-cocycle 
function ¢J(23) presented in Eq. (6.21) corresponds to the one­
dimensional space version of the well-known Galilei two­
cocycle function for three-dimensional space. (The constant 
k23 corresponds to the mass of the particle. 3

) The two-cocy­
cle ¢J(l2), presented in Eq, (6.20), also figures in the current 
literature,30 and its physical meaning has been discussed by 
Levy-Leblond. 

B. The Euclidean group in the plane 

The group of translation and rotations of two-dimen­
sional Euclidean space has the following rules of binary com­
bination of the parameters: 

q"l =gl(q';q) =q,1 +ql, 

q"2 = g2(q';q) = q,2 cos wql + q'3 sin wql + q2 , 

q"3 = ~(q';q) = q,2 sin wql + q,3 cos wql + q3 , 

(6.22) 

where wql = () is the angle of rotation in the plane, and 
{q2,q3} corresponds to space translations along a system of 
rectangular Cartesian axes. The group manifold is given by 
-1T< wq l<+1T, -oo<q2<+oo, -OO<q3<+OO, 

the identity corresponds to the origin, e = (0,0,0), and the 
inversion formulas for the parameters are 

ql= _ql, 

q2 = _ q2 cos wql + q3 sin wql , (6,23) 

q3 = _ q2 sin wql _ q3 cos wql . 

Hence, the right and left infinitesimal operators are 

and 

XI = J I , X 2 = cos wql J2 - sin wql J3 , 

X3 = sin wql J2 + cos wql J3 , 

Y I =JI -W(q
2 J3 -q3 J2 ) , 

Y2 = J2 , Y3 = J3 , 

(6.24) 

(6.25 ) 

respectively. So one gets two nonzeroth structure constants; 
namely,J~1 = li3 = w. Therefore, k23 is the only admissible 
ray constant that is nontrivial. 

We next solve the differential equations for the right 
exponent generators; i.e., 

(cos wql )r l ,2 - (sin wql )r l ,3 = r 2,1 + wr3 , 

(sin wql )r l ,2 + (cos wql )r l ,3 = r 3,1 - wr2 , (6.26) 

( cos wq I )( r 3,2 - r 2,3 ) - (sin wq 1 )( r 2,2 + r 3,3) = - k23 . 

It seems advantageous to consider, without loss of genera­
lity, 
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r2(q) = ! k 23q3 sec wql + U(ql,q2,q3) , 

r3(q) =! k32q2 sec wql + V(ql,q2,q3) , 
(6.27) 

U(ql,q3) = W(ql)q3 + j(ql) , 

V(ql,q2) = W(ql )q2 + g(ql) . 
(6.29) 

which, when substituted into the last of Eqs. (6.26), yield (This "ansatz" is legitimate, since we are just looking for one 
set of right generators.) Thus we have 

r2(q) = ! k 23q3 sec wql + W(ql )q3 + j(ql) , 

r3 (q) = ! k32q2 sec wql + W(ql )q2 + g(ql) ; 
(6.30) 

Clearly, as a simple possibility for this last relation to hold, 
one may choose v.2 - u.3 = 0, and U,2 + V,3 = 0, wherefrom 
one easily obtains 

which, when substituted into the first two equations of 
(6.26), give us 

r l (q) = -! k 23W [(q2)2 + (q3)2 ]sec2 wql + ! [(q2)2 - (q3)2] [WW(ql )cos wql + W(ql )sin wql] 

-q2q3[ww(ql)sinwql- W(ql)coswql] +q2{[j(ql) +wg(ql)]coswql + [g(ql) -wj(ql)]sinwql} 

_q3{[j(q l) +wg(ql)]sinwql- [g(ql) -wj(ql)]coswql} +S(ql). (6.31) 

Thefunctions j(ql ),g(ql), W(ql), ands(ql) remain arbitrary. However, it is an obvious general rule that all those undefined 
terms in an exponent generator that do not exhibit a linear dependence on the ray constants may be eliminated by means of a 
suitable restricted gauge transformation. Indeed, in the present example it can be proved that the function 

r(q) =! W(ql) [(q2)2 - (q3)2]sin wql + W(ql)q2q3 cos wql 

(6.32 ) 

generates a gauge transformation that reduces the right exponent generators [presented in Eqs. (6.30) and (6.31)] to the 
form 

r l (q) =! kw[ (q2)2 + (q3)2]sec2 wql, r2(q) = _! kq3 sec wql, r3(q) =! kq2 sec wql , 

where we have written k = k32• Therefore, the associated left exponent generators are given by 

II (q) =! kw[ (q2)2 + (q3)2]sec2 wql, 12(q) =! kq2 tan wql +! kq3, 13(q) =! kq3 tan wql _! kq2 . 

One can easily check that these phase generators belong to the /-l (q) = 0 gauge [cf. Sec. V]. 

(6.33) 

(6.34 ) 

We now obtain the two-cocycle corresponding to these generators. If one proceeds from the left, one has to solve the 
following set of differential equations: 

[a l - W(q2 a3 - q3 a2) ]c,b(q';q) 

=! kw[ (q'2)2 + (q'3)2 + (q2)2 + (q3)2]sec2 W(q'l + ql) +! kW(q'2q2 + q'3q3)coswql sec2 w(ql! + ql) 

+! kW(q'3q2 _ q'2q3) sin wql sec2 w(ql! + ql) _! kw[ (q2)2 + (q3)2]sec2 wql , 

a2c,b(q';q) = ! k(q'2 cos wql + q'3 sin wql )tan(q'l + ql) 

- ! k(q'2 sin wql - q'3 cos wql) + ! kq2[ tan w(ql! + ql) - tan wql] , 

a3c,b(q';q) = -! k(q'2 sin wql - q'3 cos wql ) tan W(q,l + ql) 

-! k(q'2 coswql + q'3 sin wql) +! k~[tan w(ql! + ql) - tan wql] . 

A straightforward calculation then yields the final answer: 

c,bk (q';q) = ! k[ (q'2)2 + (q'3)2][ tan W(q,l + ql) - tan wqll] + ! k[ (q2)2 + (q3f][tan W(q,l + ql) - tan wql] 

+! k(q'2l + q'3q3) [cos wql tan W(q,l + ql) - sin wql] 

I 

(6.35) 

(6.36) 

( 6.37) 

(6.38 ) 

The reader can check this solution against the fundamental 
three-point functional relation (2.8). This two-cocycle be­
longs to the special gauge /-l (q) = O. 

C. The Poincare group in two-dimensional space-time 

Let us recall that the Euclidean group in two dimensions 
corresponds precisely to the Newtonian symmetry group of 
the (classical) one-dimensional harmonic oscillator.15 In 
another paper we have dealt with the quantum kinematic of 
the harmonic oscillator, using the regular ray representation 
of the Newtonian group E2 of the system, with the two-cocy­
cle presented in Eq. (6.38) Y 
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The Poincare group in two-dimensional Minkowskian 
space-time {( f,x)} is a three-parameter Lie group, with the 
following binary combination law: 

q"l =A(qI3)(ql_q'3q2) +q'l, 

q"2 = A(q'3) (q2 _ q'3q l) + q'2 , 

q"3 = (q'3 + ~)/(1 _ q'3q3) , 
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where 

A(q3) = 11- (q3)zl-'ll. (6.40) 

Clearly, q' corresponds to coordinate-time translation, ql to 
(one-dimensional) space translation, and q3 is the one-di­
mensional Lorentz boost. (We set c = 1.) The group mani­
fold is thus defined by - 00 <q' < + 00, - 00 <ql < + 00, 

I <q3 < + I; and e = (0,0,0). Thus 

ql= _A(q3)(ql+q3l), ql= _A(q3)(ql+q3ql), 

q3 = _ q3 . ( 6.41 ) 

Using a0(q3) = q3[A(q3)]3 one obtains the following infin­
itesimaloperators: 

XI = JI , Xl = J l , (6.42) 
X3 = - ql J, + [I - (q3)1]a3 , 

and 

YI = A(q3)(al _ q3 al ) , 

Y3 = [1- (q3)1] a3 . 

Yl = A(q3)(az - q3 al ) , 

(6.43 ) 

Therefore, the nonzeroth structure constants are 
f~1 = f~z = 1. Hence this group has just one nontrivial ray 
constant; namely, k12 = k ::;60. Now, the differential equa­
tions for the right exponent generators read 

rl,l - rZ,1 = I , 

r 3,z + q2rz,1 + q'rz,z - [I - (q3)2]rZ,3 + r l = 0, (6.44) 

q2rl ,1 + qlrl,z - [I - (q3)1]r l ,3 + r 3,1 + r2 = 0 . 

Starting with the assumption 

rl(q) =! kq2 + U(ql,ql,q3) , (6.45) 

one easily arrives at the completely gauge-reduced solution 

rl(q) = ~ kq2, r2(q) = -! kql, r3(q) = o. (6.46) 

Hence the associated left exponent generators are such that 
la (q) = ra (q) holds, and we have a solution within the 
gauge,u(q) = O. 

In this manner, the differential equations (from the 
right) for the function ¢Jk (q';q) become [after substitution 
of the first two equations into the third, cf. Eq. (3,4), with 
a=I,2,3] 

a; ¢Jk (q';q) =! kA(q'3)(q2 _ q'3ql) , 

a;'¢Jk(q';q) = _!kA(q'3)(q'3q2), 

a ;¢Jk (q';q) =! k [A(q'3) ]3(q2 _ q'3q l )q'Z 

which one readily integrates to read 

¢Jk (q';q) = ! k(q'Zql _ q"q2) . 

(6.47) 

(6.48) 

Clearly, ¢Jk (q;q) = ¢Jk (q;q) = O. Moreover, one easily 
checks that this is an admissible nontrivial two-cocycle in­
deed. 

ACKNOWLEDGMENTS 

Part of this work was done while visiting the Institute 
des Hautes Etudes Scientifiques (Bures-sur-Yvette, 
France). The author is grateful to Louis Michel for his kind 
hospitality and encouragement. He is also indepted to Nin-

2277 J, Math, Phys" Vol, 28, No, 10, October 1987 

oslav Bralic for a critical reading of the manuscript and in­
valuable discussions. 

A travel grant from PNUD (UNESCO) and partial 
support by FNDCYT( 1106/85), by DIUC(21185), and by 
DGI-UCV (123.746/85) are hereby acknowledged. 

APPENDIX: AN INTRODUCTION TO NON-ABELIAN 
CALCULUS 

For the sake of completeness here we append some (not 
as well-known albeit elementary) features of non-Abelian 
calculus used in this paper. We shall develop this issue in a 
rather sketchy fashion. Here G denotes an r-parameter con­
nected Lie group and M( G) = {q = (q' , ... ,qr)} denotes the 
group manifold. Hence M( G) is endowed with r group-mul­
tiplication functions, 

(AI) 

with a = I, ... ,r, which realize the binary composition law of 
the essential parameters of the group. zo Thus one has 

(q';q)EM(G) XM(G) --+g(q';q)EM(G) , 

g(q;e) = g(e;q) = q, 

g(q;q) = g(q;q) = e, 

g[q";g(q';q)] =g[g(q";q');q] , 

the meaning of which is clear. 
Now, let us define the following functions: 

R: (q) = Db (q')~(q';q) = lim J ~~(q';q) , 
q'_e 

L: (q) = Db (q')~(q;q') = lim a ~~(q;q') . 
q'_e 

(A2) 

(A3) 

(A4) 

(AS) 

(A6) 

(A7) 

[Bear in mind that under the action of one of the operators 

(A8) 

a = I, ... ,r, all the corresponding variables q = (ql, ... ,qr) be­
come ignorable in the result.] Because of well-known geo­
metric reasons, one refers to the functions R: (q) and 
L: (q), a,b = I, ... ,r, as the (elements of the) right and left 
transport matrices in M( G), respectively. One then intro­
duces Lie's (right and left) infinitesimal operators on 
M(G); namely, 

Xa(q) =R~(q)ab' 

Ya(q) =L~(q)Jb' 

Of course, one has R: (e) = L: (e) = D:. 

(A9) 

(A1O) 

Next, we present a series of interesting lemmas. How­
ever, we omit the proofs, for the sake of briefness. 

Lemma A.I: For any given Lie group, one has 

Xb (q')~(q';q) = R: [g(q';q)] , 

Yb (q)~(q';q) = L: [g(q';q)] , 

Xb (q)~(q';q) = Yb (q')~(q';q) . 

(All) 

(AI2) 

(Al3) 

We observe that (All) and (AI2) are nontrivial gener­
alizations of the trivial relations Xb (q)qa = R: (q) and 
Yb (q)qq = L: (q), These are useful results, indeed. By 
means of these formulas one proves immediately the follow­
ing lemma. 
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Lemma A.IL· For any differentiable function t/!(q) de-
fined on M( G), one has 

Xa[g(q';q)]t/![g(q';q)] =Xa(q')t/![(q';q)] , (A14) 

Ya [g(q';q) ]t/![g(q';q)] = Ya (q)t/![g(q';q)] , (AI5) 

Xa (q)t/![g(q';q)] = Ya (q')t/![g(q';q)] . (AI6) 

Recall that g(q';q) = q"EM( G), so these equations are well 
posed indeed. We like to remark that (AI4)-(A16) entail 
the non-Abelian generalizations of the corresponding ele­
mentary results of ordinary (i.e., Abelian) calculus. We 
shall also present a set of converse relations to these equa­
tions. 

Furthermore, Lemma A.I permits us to derive easily the 
Lie algebra of the set of operators {Xa (q)'Yb (q); a,b 
= l, ... ,r}. 

Lemma A.IIL· The infinitesimal operators Xa (q) and 
Ya (q) obey the following algebra: 

[Xa(q),xb(q)] =f~bXc(q), (AI7) 

[Ya(q),Yb(q)] = -f~bYc(g), 

[Xa(q),Yb(q)] =0, 

where the structure constants are given by 

with 

(AI8) 

(AI9) 

(A20) 

d'bc =R~,c(e) =L~,b(e) =Dc(q)R~(q) =Db(q)L~(q). 

(A21) 

One also needs to consider matrices performing inverse 
transport on M( G). These matrices are defined as follows: 

Ii. ~ (q) = lim J ;'~(q';q) , 
q'-q 

1. ~ (q) = lim J ;'~(q;q') ; 
q'-q 

so that 

Ii.~(q)R~(q) =R~(q)Ii.~(q) =8~, 

1.~(q)L~(q) =L~(q)1.~(q) =8~. 

(A22) 

(A23) 

(A24) 

(A25) 

ablesq andq. Let us also observe that from (A29) we obtain 

1. aqa "a 
Im-=Ub' 
q-e Jqb 

(A30) 

as it should be indeed, since e + 8q = e - 8q + 0(2). 
As a remark (referred to in the context of this paper), 

we present a trivial feature. 
Lemma A. v,. The solution of the homogeneous system 

of first-order linear differential equations, 

Xa (q')rp(q';q) = 0, Ya (q)rp(q';q) = 0, 

a = l,oo.,r, with the initial conditions 

rp(e;q) = rp(q;e) = 0, 

for all qEM( G), is 

rp(q';q) =0 

(which is obvious, indeed). 
Lemma A. VL' One has 

det{ [Xa (q') + Xa (q) ]gh(q';q)} #0, 

det{ [Ya (q') + Ya (q)]gh(q';q) }#O, 

for all points q' and q in M( G). 

(A31) 

(A32) 

(A33) 

(A34) 

(A35) 

(Recall that G is connected.) Formally, the proof is an 
immediate consequence of Lemma A.1. 

Now, let us define the following auxiliary functions on 
the group manifold: 

h a(q) = ~(q;q) , (A36) 

fora = l,oo.,r, and for all qEM(G). Clearly, h a(q)EM( G). It 
can be shown that det [Jbh a(q)] #0 holds everywhere. So 
we write 

(A37) 

(say). With this construct one is in position to prove the 
following lemma, which is tantamount to the converse of 
LemmaA.II. 

Lemma A. VII: If either 

(A38) 

or 

Lemma A.Iv'· For any differentiable function t/!(q), the {Xa [g(q';q)] - Xa (q') }rp(q';q) = 0 (A39) 

following relations hold: or 

Xa (q)t/!(q) = - Ya (q)t/!(q) , 

Ya (q)t/!(q) = - Xa (q)t/!(q) . 

(A26) 

(A27) 

[To prove this lemma, consider the middle-point can­
cellation relations 

g[g(q";q);g(q;q')] = g(q";q') , 

g[g(q";q);g(q;q'» =g(q";q') , 

(A28a) 

(A28b) 

which are rather obvious and may be proved easily. Then, by 
taking the limits (1) limq"_e limq'_e J b in (A28a) and (2) 
limq'_ e limq'_e Jb in (A28b), after some manipulations, 
one gets 

aqa = -L~(q)Ii.~(q) = -R~(q)1.~(q), (A29) 
Jqb 

from which Eqs. (A26) and (A27) follow.] 
The result stated in Eq. (A29) is useful because it entails 

two explicit relations between the one-to-one related vari-
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(A40) 

holds for all q' ,qEM ( G), then there exists a function t/! (q ) 
such that 

rp(q';q) = t/![g(q';q)] . 

To prove this assertion, observe that 

det[Xa (q')gh(q';q) 1] 
det[ Ya (q)gh(q';q)] 

#0 
det [Xa (q)gh(q';q)] 

det[ Ya (q')gh(q';q)] 

(A41) 

(A42) 

hold for all q' and q. Of course, Lemma A.VII corresponds 
precisely to the elementary implication 

(Ja - J ~ )rp(q';q) = O-rp(q';q) = t/!(q' + q) , 

valid in the Abelian case. In this sense, (A41) represents the 
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most general integral of either of Eqs. (A38), (A39), or 
(A40). 

We next prove the following important lemma. 
Lemma A. VIIl' The general solutions of the homogen­

eous non-Abelian curl equations, 

are 

Xa(q)rb(q) -Xb(q)ra(q) -f~brc(q) =0, 

Ya (q)lb (q) - Yb (q)/a (q) + f~blc (q) = ° , 
ra (q) = Xa (q)y(q) , 

la(q) = Ya(q)r(q) , 

where y(q) remains arbitrary. 

(A43) 

(A44) 

(A45) 

(A46) 

Proof That (A45) and (A46) imply (A43) and (A44), 
respectively, is trivial. Thus let us assume (A43), and define 
new auxiliary functions 

ua(q) =R~(q)rb(q)· 

Then, because of the Lie algebra (AI7), (A43) becomes 

Xa (q)R ~ (q)uc (q) - Xb (q)R ~ (q)uc (q) 

= Uc (q) [Xa (q)R ~ (q) - Xb (q)R ~ (q)] 

+ [R~(q)R:(q) +R~(q)R:(q)] 

X [Uc,d(q) -ud.c(q)] =f~bR~(q)uc(q)· 

Thus one has 

U a•b (q) - ub•a (q) = ° , 
which yields Ua (q) = y,a (q). Hence (A45) follows. One ob­
tains (A46) from (A44) in a similar way. Thus one proves 
the lemma. 

Let us observe that if one uses the same scalar field y( q) 
in the solutions (A45) and (A46), then one gets 

Yb (q)ra (q) = Xa (q)lb (q) , (A47) 
as a trivial consequence of (A 19). Conversely (and finally), 
we assert the following lemma. 

Lemma A.IX: If the fields ra (q) satisfy (A43) and one 
defines the fields la (q) by means of (A47), then these satisfy 

Ya (q)lb (q) - Yb (q)la (q) + f~blc (q) = Cab' (A48) 

where the Cab's are constants given by 

(A49) 
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In a series of two papers all finite-dimensional irreducible representations of the special linear 
Lie superalgebra sl ( l,n) are written down in a matrix form. This paper develops a background 
for constructing the representations. Expressions for the transformation of the basis under the 
action of the generators are given for all induced and, hence, for all typical sl( l,n) modules. 

J. INTRODUCTION 

In this paper and the one that follows I we study all fin­
ite-dimensional irreducible representations of the special lin­
ear Lie superalgebra (LS) sl(1,n) for any n = 2,3, .... We 
consider sl (1,n) [ = A (O,n - 1) in the notation of Ref. 2] as 
a subalgebra of the general linear Lie superalgebra gl ( l,n ). 
The latter consists of all squared (n + 1 )-dimensional ma­
trices. We label the rows and the columns of these matrices 
with indicesA,B,C,D, ... = 0, 1,2, ... ,n. Assign to each index A 
a degree (A), which is zero for A = 0 and 1 for A = 1, ... ,n. 
Let eAB egl(1,n) be a matrix with 1 on theA th row and the 
B th column and zero elsewhere. The even (resp. the odd) 
part of gl(1,n) is defined to be the linear envelope of all 
matriceseAB , for which (A) + (B) is an even (resp. an odd) 
number. The multiplication (= the supercommutator) 
[ , ] on gl(1,n) is given with the linear extension of the 
relations 

[eAB,ecDJ 
= {jBCeAD - (_l)[(A)+(B»)[(C)+(D)l{jAD eCD ' (1.1) 

The LS sl(1,n) is a subalgebra of gl(1,n) consisting of 
all those matrices aegl( l,n), whose supertrace ( = str) van­
ishes, i.e., 

sl(1,n) = {alaegl(1,n), str(a) = Ato ( - l)(A)aAA = oJ. 
( 1.2) 

The even subalgebra 

sl(l,n)o=linenv{EijIEij =eij + {jijeOO' i,j= 1, ... ,n} 
(1.3 ) 

is isomorphic to the general linear Lie algebra gl (n ). In this 
case the E ij are the Weyl generators of gl( n), 

[Eij,Ekl ] = {jjkEi/ - {j/jEkj , i,j,k,l = 1, ... ,n. (1.4) 

The algebras sl(1,n), n = 2,3, ... , belong to the class of 
the basic Lie superalgebras (LS's) in the classification of 
Kac,2 i.e., each sl(1,n) (1) is simple, (2) has a reductive 
even subalgebra and (3) has a nondegenerate Killing form. 
All simple Lie algebras are basic Lie superalgebras. The ba­
sic LS's, which are not Lie algebras, resolve into four count­
able classes [A(m,n), B(m,n), C(n), and D(m,n), 

aJ Present address: Institute of Nuclear Research and Nuclear Energy, blvd. 
Lenin 72, 1184 Sofia, Bulgaria. 

m,n = 1,2, ... ], one continuous class of 17-dimensional alge­
bras D(2,I;a), and two exceptional LS's G(3) and F( 4). 

The structure of the basic LS's resembles in many re­
spects the structure of the simple Lie algebras. Every such 
algebra A can be represented as a direct-space sum 
A = N - Ell H Ell N + of its Cartan subalgebra H, which is the 
Cartan subalgebra of the even part, and the subalgebras N -
and N + spanned on the negative and the positive root vec­
tors, respectively. The root vectors ea are in one-to-one cor­
respondence with their roots a, which are elements from the 
space of all linear functionals (the dual space) A over H. 
The correspondence ea++a is determined from the relation 

[h,ea 1 = a(h)ea , aeH. (1.5) 

One can always choose a canonical system of 3r elements in 
A (r=dimH) 

( 1.6) 

which generate the algebra and have the following proper­
ties: (a) h" ... ,hr constitute a basis in H; (b) ejeN+ and 
/;eN - are positive and negative root vectors, respectively; 
and (c) the generators (1. 6) satisfy the relations 

lej ,.!] = {jijh j , [hoej ] = aijej , [h j ,.!,;] = - aijij, 
(1. 7) 

where ajj = 0 or 2, i = 1, ... ,r, and, if au = 0, then the first 
nonzero element among aj,j+ k' k = 1,2, ... , is 1. 

The matrix a = (aij) is called a Cartan matrix ofA. Up 
to an isomorphism the algebra A is characterized by its Kac­
Dynkin diagram. The latter consists of r white, gray, and 
black nodes, denoted as 0, ®, and e, respectively. The ith 
node is white, if e j is an even element, and gray or black, if e j 

is an odd element and a jj = 0 or 2, respectively. The ith and 
the jth nodes are joined by laijajj I lines [except for 
D(2,I;a»). 

The Cartan subalgebra H of sl( l,n), which is a Cartan 
subalgebra of glen), is a linear span of the generators 
EII, ... ,Enn [see (1.3) ], 

H = lin env{Ejj Ii = 1, ... ,n}. (1.8) 

We choose E'I, ... ,Enn as a basis in H and denote by E 1 , ••• ,E n 

the dual to it basis in A , i.e., 

Ej(Ejj)={j~, EjeH, i,j=l, ... ,n. (1.9) 

As usual, we accept a lexical ordering in A , assuming that 
A = ~7 ~ 1 Aj E j > 0, if the first nonzero coordinate of this 
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functional is positive. i.e .• 

A>0.if,.t l =A2 =,,·=Ak _ I =0. Ak>O. (1.10) 

Then for any two functionals A '. A "EH one defines 

A ' > A ". if A ' - A " > O. ( 1.11 ) 

Very often we identify A with its coordinates. i.e .• we set 
n 

A = LAjEj= [A I .A2 .... .An]. (1.12) 
;=1 

We say that A = [AI .... .An ] is lexical if 

Aj -Aj+I>O 'r/i= 1 ..... n -1. (1.13) 

From ( 1. 5) one infers thatthe set of all e AB' A < B = 0.1 ... .• n 
(resp. A >B = O.I ..... n) gives the positive (resp. the nega­
tive) root vectors of sl ( l.n). The canonical system of genera­
tors (1. 6) reads 

hI = Ell' e l = eol• II = elO• 

h2 = Ell - E22• e2 = e12• 12 = e21• 

hn =En-l,n_1 -Enn. en =en_l,n' In =en,n_l, 
(1.14 ) 

with e l and II being the only odd generators in it. Since 
[hl.e l] = O. i.e .• all = O. the Kac-Dynkin diagram contains 
one gray and n - 1 white nodes: 

(1.15) 

The structure of the finite-dimensional modules over a 
given basic LS is illustrated in Fig. 1, Apart from the alge­
bras B(0.n).3 every basic LS has indecomposible (i.e .• non­
fully-reducible) finite-dimensional modules, Several exam­
ples of such modules are available. However. at present it is 
not known how to construct all indecomposible representa­
tions. In contrast to this. all finite-dimensional irreducible 
modules (fidirmods) are fully classified.4 Every such fidir-

All Finite-dimensional 
modules 

Nontypical 
modules 

are direct 

Typical 
modules 

FIG. 1. The structure of the finite-dimensional modules over a given basic 
LS. 
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mod W(A) is characterized by its highest weight AEH . In 
particular. let W(A) be the module over the basic LS A. 
induced from the fidirmod Vo (A) of the even subalgebra 
AoCA [see Ref. 4. forsl(1.n) see also Sec. II C). Then either 
( 1) W( A) is a fidirmod of A or (2) W( A) is an indecompo­
sible A module. but the factor module W( A) il( A) with re­
spect to the maximal (nontrivial) invariant subsp~e 7( A) is 
a fidirmod. In case (1) the fidirmod W(A) = W(A) and 
also the representation of A in W( A) is called typical. In case 
(2) the fidirmod W(A) = W(A)il(A) (and the corre­
sponding representation) is said to be nontypical. It is re­
markable that each fidirmod of the basic LS A can be con­
structed in this way. i.e .• it is either typical or nontypical. In 
Ref. 4 a given fidirmod W(A) is characterized by the coordi-
nates a j = A(h j ). i = 1, .... r. of its highest weight A in the 
dual to hl, .... hr basis hI , ... ,h r inA. To visualize theA fidir-
mod W( A) one writes above each, say the ith node 
(i = 1, .... r) of the Kac-Dynkin diagram thecoordinatea j of 
A. For instance, the sl(1,n) fidirmod W(A). 
A = ~7= I ajh j. is denoted as 

at a 2 a_, u n _ + an 

~o----o--... --o---o. (1.16) 

The method of induced representations describes all 
typical representations and in principle shows how one can 
proceed to construct the nontypical modules. In this wayS 
and in other pUblications6--8 several properties of the finite­
dimensional irreducible representations have been estab­
lished. Of interest in this respect is the generalization of the 
Young tableaux technique to the case of LS·s.9 Irrespective 
of the progress. the representation theory of the basic Lie 
superalgebras is still far from being complete. It is. in fact. 
much less worked out in comparison with the corresponding 
level of development of the simple Lie algebras. In particu­
lar. from a physical point of view, the important problem of 
computing the matrix elements of the generators within an 
arbitrary fidirmod has been solved so far only for the low 
rank Lie superalgebras osp(2.1), sI0.2),7 osp(3,2).10 and 
sl ( 1,3). II In the present paper and in Ref. 1 we take a further 
step towards the solution of the general representation prob­
lem. We consider all fidirmods of the Lie superalgebra 
sl(1,n) for any n = 2,3, .... introduce appropriate basis, and 
write down expressions for the transformation of the basis 
under the action of the sl ( l.n) generators. 

II. INDUCED REPRESENTATIONS OF sl(1,n) 

A. Abbreviations, notation, terminology 

We list here some of the abbreviations and the notation 
that will be used throughout the paper: 

LS, LS's-Lie superalgebra. Lie superalgebras. 
LA. LA's-Lie algebra. Lie algebras, 
Fidirmod (s) -finite-dimensional irreducible mod-

ule(s). 
lin env(X)-the linear envelope of X. 
C-the complex numbers. 
l-all integers. 
l+ -all non-negative integers, 
N-all positive integers, 
G Z basis-Gel'fand-Zetlin basis [see (2.13)], 
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/-basis-induced basis [see (2.54)], 
[, ]-product (supercommutator) in the LS, 
[x,y] = xy - yx, 
{x,y} = xy + yx. 
Let mijEc' Then we set 

[ml,n+ I ,m2,n+ I , ... ,mn,n+ I] = [m]n+ I' (2.1) 

[mlk,m2k,· .. ,mkk] = [m]k' k= 1, ... ,n, (2.2) 

[mlk + c,m2k + c, ... ,mkk + c] = [m + ch, CEC, (2.3) 

[mlk ± oli, ... ,mkk ± Oki] = [m]k±i, 

[mlk + SOli + TJ02j,m2k + S02i 

+ TJ02j, ... ,mkk + SOki + TJokj] = [mW'li, 

S,TJ = 0, ± 1, i,jE( 1,2, ... ,k), 

lij = mij - i, 

{
I for i<j, 

S(i,j) = _. 1, 
for i> j. 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

Definition 1: A sequence of n numbers, which are either ° or 1, will be called a O-tuple. 
For any such O-tuple we use three different notations, 
{ot = {OI, .. ·,On} = (i1, ... ,iN ), OI, ... ,On = 0,1, (2.8) 

where (i1, ... ,iN ) is the subset of (1,2, ... ,n), consisting of all 
those kE( 1,2, ... ,n), for which Ok = 1, i.e., 

Ok = 1, if kE(iI, ... ,iN ), 

Ok = 0, if kE(iI, ... ,iN ). 
(2.9) 

Definition 2: The O-tuple {O} n is said to be of degree N, if 
01 + ... + On = N, i.e., 

{O}n = (i1, .. ·,iN )· (2.10) 

B. Fidirmods of gl(n) 

Throughout the paper we use the Gel'fand and Zetlin 
notation for the fidirmods of the Lie algebra gl (n) (see Ref. 
12), accepting also some abbreviations from Ref. 13. Every 
fidirmod of gl (n) is labeled by its signature 

(2.11 ) 

where mln, ... ,mnn are, in general, complex numbers such 
that 

(2.12) 

Let V([m] n) be the fidirmod of gl(n) with a signature 
[m] n' As a basis in V( [m ] n ) we choose the Gel'fand-Zetlin 
basis (GZ basis), 12 

m li ,m2i ,···,mu [m],. (2.13 ) 

m ll m ll 

The numbers mln, ... ,mnnEC are fixed and label the represen­
tation space. The others mijEC distinguish between the basis 
vectors in V( [m] n ) and take all possible values, consistent 
with the "betweenness" condition 

(2.14) 
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The Cartan generators Ell, ... ,Enn are diagonal in this basis, 
i.e., the GZ basis consists of weight vectors. Since 

the correspondence weight vector -+ weight is 

[mh 

[mh_1 

mll 

(2.15 ) 

(2.16 ) 

The highest weight vector x A is the one from (2.13) for 
which 

m .... = mi,i+ I = ... = min' i = 1, ... ,n. (2.17) 

In this case (2.15) yields 

(2.18 ) 

and, therefore, mln, ... ,mnn are the coordinates of the gl(n) 
highest weight A in the dual to EII, ... ,Enn basis E I , ... ,E n, 

n 

A= IminEi=[mln, ... ,mnn] = [m]n' 
i~1 

(2.19) 

In other words, the signature (2.11) of the gl (n) fidirmod 
V( [m ] n ) consists of the coordinates of the highest weight A 
in the basis E i, ... ,E n. 

c. Induced representations 

We now proceed to introduce, following Kac,4 the 
sl( 1,n) module W( [m] n + I ), induced from the gl(n) fidir­
mod Vo( [m]n + I ). We recall that [see (2.1)] 

[m]n+1 = [ml,n+l,m2.n+I, .. ·,mn,n+I]· (2.20) 

The coordinates of the gl( n) highest weight [see (2.19)] 
n 

A = I mi.n + lEi 
i=1 

(2.21 ) 

in Vo( [m] n + I ) satisfy (2.12), which in the present notation 
reads 

mi,n + I - mj,n + I EZ+ Vi <j = 1,2, ... ,n. (2.22) 

Denote by P + the linear envelope of all odd positive root 
vectors of sl ( l,n ) , 

P + = lin env{eOi Ii = 1, ... ,n}. (2.23 ) 

Let P= glen) $p +. Extend Vo( [m]n+ I) to a P module, 
assuming 

(2.24) 

The sl (1,n) module, induced from the gl( n) fidirmod 
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Vo ( [m J " + I ), is defined to be the factor space 

WUmJn+ d = U® Vo( [m],,+ I )II( [mJn+ d, (2.25) 

of the tensor product of the sl( 1,n) universal enveloping al­
gebra U with Vo( [m J n + I ) and subsequently factorized by 
the subspace 

I([m],,+ 1) = lin env{up®v - U®PVIUEU, pePC U, 

VEVo([m]n+l)}' (2.26) 

The linear space W( [m ]" + 1 ) is equipped with a structure 
of an sl( 1,n) module in a natural way: 

g(u®v) =gu®v, gEsI(1,n), U®vEW([m]n+I)' 
(2.27) 

From the Poincare-Birkhoff-Witt theorem4 follows that U 
is a linear span of all elements of the form 

g = (e lO )(I'(e20 )(l2 ... (eno)(I"p, 01,. •• ,0" = 0,1, (2.28) 

where p is a polynomial of elements from P. The restriction 
0i = 0,1 comes from the observation that (e,u)2 = ° in U. 
Since for any g, defined in (2.28), and VE Vo ( [m],. + 1 ), 

g® v = (e lO ) (I. (e20 )(1, ••• (e"o )(I.p ® V 

= (e lO )(I'(e20 )(lz.··(enQ)(ln®pv, 

one concludes that 

W([m]n+l) 

= lin env{(elO)(I,··· (enQ )(1. ® VIVEVo( [m]n+ I)' 

(2.29) 

01, ••• ,0,. = o,l}. (2.30) 

Let X,t EVo( [m]" + I) be a glen) weight vector with a 
weightAeH, i.e., Ei/x,t = A(Ei/ )x,t, i = t, ... ,n. Then 

Eli [(elO)(I···· (enQ ) (In ®X,t] 

= [A(EIi ) - i Ok](elO)(I····(enQ)(I.®x,t. (2.31) 
k ;'i= I 

Therefore, for any 01, ... ,On = 0,1 
(I (I -

(e lO ) ····(enQ) n®x,t =X,t,EW([m],,+I) (2.32) 

is an sl( l,n) weight vector with a weight 

At = ItJA.<Eu ) - k%-=lOk JEieH, (2.33 ) 

which, in the lexical ordering we have accepted [see ( 1.11 ) ], 
is less than A, A t <A. Clearly, the highest weight A [see 
(2.21) J ofthe glen) module Vo( em],. + I ) is also a highest 
weight of the sl(1,n) module W( em],. + 1)' Denoting by 

(2.34) 

the unity in U, one concludes that I ® x A is the sl ( l,n) high­
est weight vector in W( [m],.+ 1)' i.e., 

eo;(l®xA ) =0, Ejk(l®xA ) =0, j<k= l, ... ,n, 
(2.35) 

Eu(l®xA ) =m;.n+l (l®xA ), i= l, ... ,n. 

Thus, to every gl(n) fidirmod Vo([m]n+ I) there corre­
sponds an induced sl (1 ,n) module W( [m] n + I ). Both of 
them have the same ~hest weight A = :I7 = I m;.n + IE;. Ev­
ery induced module W( [m]n + 1) is either irreducible [i.e., 
it is an sl (l,n) fidirmod] orindecomposible. The representa-
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tions of sl ( 1 ,n), realized in the irreducible induced modules 
(and also the modules themselves), are said to be typica1.4 

Each W( [m],. + I)' which is not irreducible, contains a max­
imal sI( 1,n) invariant subspace I( [m]n+ I) ~O. The factor 
module W( [m] n + I );I( [m ] n + I) carries an irreducible 
representation of sl ( 1 ,n). All such factor modules (and also 
the corresponding representations) are called nontypical. 
Since l®xAE/([m]n+I)' the highest weight of 
WUm],. + I )II( [m] .. + I) is the same as the highest weight 
of Vo( [m] .. + I)' i.e., A = :I7= 1m; ... + lEI. Since, moreover, 
the typical and the nontypical representations exhaust all 
finite-dimensional irreducible representations of sl ( 1 ,n), we 
conclude that there exists one-to-one correspondence 
between the fidirmods of gl (n) and the fidirmods of sl ( 1 ,n ), 
namely, 

(2.36) 

where in the typical modules we assume that 
I([m],.+ I) = 0. 

A convenient criterion for the irreducibility of 
W( (m],. + I ) has been proved in Ref. 14. 

Proposition 1: The induced sl(1,n) module 
W( [m],. + I ~ is typical if and only if 

mk,,. + I ~k - 1 Vk = 1,2, ... ,n. (2.37) 

D. Induced basis 

The main difficulty to overcome in constructing the 
nontypical modules is the determination of the maximal 
(nontrivial) invariant subspace I( (m ] n + I) of each 
W( [m],. + I)' To simplify the problem (which will be solved 
in Ref. 1) we introduce a basis in the induced modules in 
such a way that each basis vector is either from I( (m],. + I ) 

or is a vector from a complement to its subspace. To this end 
we decompose W([ m] n + I ) into a direct sum of gl (n) fidir­
mods V(A;), where A;, i = 1, ... ,M, is the highest weight of 
V(A; ), 

M 

W{[m],,+ I) = L Gl VeAl)' (2.38) 
;=1 

and introduce a GZ basis r; within each V(A;). Then as a 
basis in W([m]n+l) we take 

(2.39) 

Since I( [m ] n + I ) is a gl( n) submodule, it is a direct sum of 
some of the gl(n) fidirmods V(A;) i = 1, ... ,M. 

I( [m],,+ I) = V(A I,) Ell V(A;) Ell'" Ell V(AI)' 

(2.40) 

Clearly, each basis vector belongs either to/( [m] n + I ) or to 
the complementary space :I j Gl V(Aj ),/e(il, ... ,ik ), i.e., the 
basis r possesses the required properties. 

Let TC Ube the subalgebra spanned on all polynomials 
of the odd negative root vectors, i.e., 

T = lin env{ (e lO )(I'(e20 )(I,·· . (e,.o) (lnIOI .... ,O" = 0, n. 
(2.41) 

The relation (2.30) shows that the sl(1,n) module 
W( [m]" + I ), considered as a linear space, is a tensor prod-
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uct of Tand Vo( [m]n+ I)' 

W( [m]n + I) = T® Vo( [m]n + I)' (2.42) 

Since [gl (n ), T] C T, T can be viewed as a gl (n) module. 
Moreover, for any aEgl(n) and t® vET® Vo([m]n + I)' 

a(t®v) = [ad(a)]t®v+t®av, ad(a)t= [a,t]. 
(2.43 ) 

Therefore, W( [m] n + I) is a tensor product of the gl(n) 
modules Tand Vo( [m]n + I)' 

Proposition 2: For any integer O<N <n the subspace 

TN = lin env{ (elO)8, •.. (enO ) 8·1 itl ()i = N, 

()I"",()n = 0,1 } (2.44) 

is a gl(n) fidirmod with a highest weight 
N n 

AN = ~ (l-N)Ei+ ~ (_N)Ei. (2.45 ) 
i=1 i=N+I 

Therefore, characterizing TN with the coordinates of its 
highest weight, we write 

1, ... ,N, N + 1, ... ,n 
TN = V([l-N, ... ,l-N, -N, ... , -N]). 

(2.46) 

The proof is straightforward. The subspace To is one­
dimensional, spanned on the unity of U. The subspace 
TI = lin env{e.o Ii = 1, ... ,n} is n dimensional; the correspon­
dence root vector ~ root in this case is 

e.o~ [ - 1 + 8)j' - 1 + 82jo"" - 1 + 8ni ]. (2.47) 

Since T= ~;!.r=o $ TN' we have from (2.42) 
n 

W([m]n+l) = ~ $[TN®VO([m]n+I)]' (2.48) 
N=O 

The decomposition of TN ® Vo ( [m] n + I ) into gl (n) fidir­
mods is easily carried out (a useful prescription for such 
decompositions is given in Ref. 13): 

TN ® Vo ( [m] n + I ) 

2:' 
8" ... ,8. = 0, I 

8, + '" +8.=N 

-N, ... ,mn,n+1 +()n -N]). (2.49) 

As usual, [ml,n + I + ()I - N, ... ,mn,n + I + ()n - N] are the 
coordinates of the highest weight in the basis E 1, ... ,En [see 
( 1. 9) ]. The prime on the sum in (2.49) means that one has 
to delete all nonlexical terms, i.e., those V( [m I,n + I + ()I 
- N, ... ,mn,n + I + ()n - N) for which 

(m i + I,n + I + ()i+ I ) - (mi,n + I + ()i) > 0, (2.50) 

for certain i = 1,2, ... ,n - 1. Combining (2.48) and (2.49) 
we have the following proposition. 

Proposition 3: The induced sl( l,n) module 
W( [m ] n + I ) decomposes into a direct sum of gl (n) fidir­
mods as follows: 

W([m]n+I)= ~' $V([ml,n+1 
8, •...• 8. = 0.1 

2284 

+ ()I - itl()i, ... ,mn.n+ I + ()n - itl()i]). 

(2.51) 
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Observe that the signatures of the gl (n) fidirmods in the 
direct sum decomposition (2.51) are all different, i.e., 
W([m]n+ d is a simply reducible gl(n) module. Let 

n 

min = mi.n + I + ()i - ~ ()k' 
k=1 

As a basis r ([ m ] n ) in each 

(2.52) 

v([m l.n + I + ()J - i ()k , ... ,mn.n + I + ()n - i ()k)) 
k=1 k=1 

= V([mln, ... ,mnn ]) == V( [m]n), (2.53) 

we choose the Gel'fand-Zetlin basis (2.13). To indicate, 
however, that each such vector belongs to W( [m] n + I ) we 
modify the notation setting 

Then the system 

m l.n + I ,m2•n + I , ... ,mn,n + I 

m U ,m2i ,···,mu 

[m] n + I 

[m]n 

[mL 

r = u r([m l.n + I + ()I - i ()k , ... ,mn.n + I 
8, •...• 8 n k = I 

(2.54 ) 

(2.55 ) 

gives a basis in W( [m] n + I ). The union is over all those 
()I'''',()n = 0,1 for which the lexical condition (2.50) holds. 
More precisely, we have the following proposition. 

Proposition 4.' The basis in the induced sl(l,n) module 
W( [m]n+ I) consists of all those patterns (2.54) for which 
the following conditions hold: 

n 

(1) min =mi.n+ 1 +()i - ~ ()k' ()1'()2'''''()n =0,1, 
k=1 

(2.56) 

i<j = 1, ... ,n - 1. (2.57) 

The so-defined basis in W([m]n+l) will be called an in­
duced basis and each vector (2.54 )-an I-pattern. This basis 
is an analog of the Gel'fand and Zetlin basis in the fidirmods 
of the classical Lie algebras. Indeed, consider the chain of 
subalgebras 

sl(1,n) :::>gl(n) :::>gl(n - 1):::>'" :::>g1(2):::> gl(1) 
(2.58) 

and a flag of subspaces 

W( [m] n + I ):::> V( [m] n) :::> V( [m] n - I ) 

:::> ... :::> V( [mb):::> V(m l1 ), 

Tchavdar D. Palev 
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where. for any k = I, ... ,n, V( [m h) is a gl(k) fidirmod with 
a signature [mho Since dim V(m ll ) = 1, the flag (2.59) 
determines a one-dimensional subspace, spanned on the I­
pattern (2.54). 

From (2.56) one concludes that 

" 1" 
2: Ok = -- 2: (mk,,, + 1 - mk,,)· 

k=1 n-lk 1 

(2.60) 

Moreover, 

1 n 

Ok = -- 2: (m i,,, + 1 - min) - (mk,,,+ 1 - m kn ), 
n - 1 1= 1 

k= I, ... ,n. (2.61 ) 

Consider the O-tuple {01'02 .... 'On} = {O}" determined by 
(2.61). 

Proposition 5: The signature [m]" of the gl (n) fidirmod 
V( [m]n) C W([m],,+ I) is uniquely defined [see (2.56)] 
and defines uniquely [see (2.61)] a O-tuple, 

[mh 

[mh_1 

(2.62) 

We use this correspondence to turn W( [m ]" + I) into Z­
graded linear space. 

Definition 3: We say that the glen) fidirmod 
V( [mJn) C W([m]n+ I) is of de greeN, deg V([m],,) = N, 
if the degree of its O-tuple (Definition 2) is N, i.e., 
01 + ... + On = N or [see (2.10)] {O}" = (i1, ... ,iN ). 

If the degree of an I-pattern (2.54) isN, then (2.60) and 
(2.61) yield 

Ok = N - (m k ,,, + 1 - m kn ), k 1, ... ,n. 

III. TRANSFORMATION OF THE I-BASIS 

A. Expressions for the even generators 

(2.63) 

By construction all I-patterns (2.54) with a fixed nth 
row [ml", ... ,m",,] = [m]" constitu~ a gl(n) Gel'fand­
Zetlin basis r( [m],,) in V( [m],,) C W( [m]n+ I ). The ac­
tion of the gl (n) generators, i.e., the even generators EiJ [see 
( 1.3) ], on this basis is known. 12 In terms of our notations 
(2.54) it reads 

(3.1 ) 

(3.2) 

[mh 

[m]k_1 

= k2:1 I TI~=_\(lik -lj,k-I)TI~=f(/i,k 2 -lj,k_1 -I) 1112 
j I TIi¥j=I(/I,k I -lj,k-I)(ll,k I -lj,k_1 -I) 

[mh 

[m]{_1 , 

[mh-2 

(3.3) 

where lij = mij - i. 
The action of the other generators can be obtained from the commutation relations (see, for instance, Ref. 13). Therefore, 

it remains to determine the transformation of the I-basis under the action of the odd generators of sl( l,n). 

B. Application of the Wlgner...,Eckart theorem 

We consider first the odd negative root vectors elO, ... ,ello ' With respect to the adjoint representation ofsl( l,n), restricted 
to the even subalgebra glen), these generators transform among themselves, 

[Eij,ekO ] = 8jk ejQ 8ijekO ' (3.4) 

Therefore, the linear span TI of elO, ... ,e"o is a gl(n) module, which, according to Proposition 2, is a gl(n) fidirmod with a 
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signature [0, - I, ... , - I]n' i.e., 

T I = lin env{epO IF = I, ... ,n} = V( [0, - I, ... , - I]n). 

The link between the generators elO, ... ,e"o and the GZ basis in TI is easily established: 

efIJ = 

[ - I]~ 

[-Il! 

[-I]p_1 

-I 

, p= I, ... ,n, 

where, according to the notation (2.3) and (2.4), 

[-Ih = [-1, ... ,-1]=[ -I, ... ,-I]k' 
~ 

k times 

[-1]l = [0, -I, ... , -1]=[0, -I, ... , -lk 
~ 

k times 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

In the representation space W{ [m ] n + I ) the abstract supercommutation relations (3.4) hold as operator equations 

(3.9) 

For simplicity in (3.9) and everywhere in the paper we use the same notation for the elements of sl(1,n) and for their 
representatives as endomorphisms in W{ [m ]" + I ). From the commutation relations (3.9) one concludes that the endomor­
phismselO, ... ,e"o arecomponentsofagl(n) irreducible tensor operator with a signature [0, -I, ... , - I]". Therefore, apply­
ing the Wigner-Eckart theorem,15 taking into account that V( [ - I] ~ ) ® V [m],,) is a simply reducible gl(n) module [see 
(2.49) for N = 1], and using (3.6) and (2.54), we have 

[

[m]n+ I] 
efIJ [~]" = IR([m]n+p[m]",[m']n) 

mil 

[m']" [- I]~ [m]n 

[- I]; [m]p 

[-I]p_I' [m]p_1 

-I 

[

[m]n+l] 
[m']" 

mil 

(3.10) 

The sum in (3.10) is over all those/-patterns that are allowed from Proposition 4; R( [m]" + I ,[m]", [m' ],,) are the so-called 
reduced matrix elements for the tensor operator (elO, ... ,e"o) and 

are the gl(n) Clebsch-Gordan coefficients, which relate the tensor product of two GZ bases in the decomposition 

V([ - 1]~) ® V( [m],,) = I $ V([m' ],,), 

i.e., 

[ - I]~ 

[ -1]; 

[-I]p_1 

-I 

Taking into account that 

[m'l. 

=I 

V([I]n) ® V([m]n) = V([m + 1],,) 

[m']n [ - l]~ [m]" 

[-1]; . [m]p 

[-I]p_1 ' [m]p_1 

-I 

[m']n 

and multiplying both sides of (3.13) with the basis vector of the one-dimensional module V( [ I ] n ), one derives that 
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[m']n [ - l]! [m]n [OJ! 

[m']p [ - I]! . [m]p [m' + l]p [OJ!. [m]p 

[m']p_1 [- l]p_1 ' [m]p_1 [m' + l]p_1 [O]P_I' [m]p_1 

mil - 1 mil mil + 1 0 mil 
Each such Clebsch-Gordan coefficient can be written as a product of gl(r) scalar factors (r = 2,3, ... ,n), 16 

[m' + l]n [OJ! [m]n 

n [[m'+I1r I [O]~ [m]r] 
r=~+1 [m'+llr_1 [O]~_I;[mlr_1 

[m' + l]p [O]!. [m]p 

[m' + l]p_1 [O]P_I' [m]p_1 

o 

[ 
[m' + l]p [OJ! [m]p] 

X [m'+I]p_1 [O]p_I;[m]p_1 

p-I [ [m' + l]r I [Olr [m lr ] 
X 112 [m'+ Ilr_1 [Olr_l; [mlr_1 . 

The expressions for the scalar factors are availableY The gl(n) scalar factor, 

[ 
[m' + l]r I [O]~ [m]r] 

[m' + l]r_1 [O]~_I' [mlr_1 ' 

may be nonzero only if 

3;= 1, ... ,r such that [m' + IJr = [m]~, 3j= 1, ... ,r-l such that [m' + Ilr_1 = [m]~_I' 

Iffor certain; = 1, ... ,r andj = 1, ... ,r - 1 (3.18) holds, i.e., 

mir = mlr - 1 + OliP .. ,m;r = mrr - 1 + orO 

mi,r_ I = ml,r_ I - 1 + Olj, ... ,m;_I,r_1 = mr_I,r_1 - 1 + 0r_ I,j' 

then 

[ 
[mt I [O]~ . [m]r ] =SC .) I lIk-;'J=I(/k,r-1 -li,r-l)lIk#i=l(/kr-Ij,r-l) 1112 

[m]~_1 [OV_I' [m]r_1 l,j lIk#i= I (/kr -lir)lIk-;'J= I (/k,r-I -lj,r_1 -1) , 

where lij and S(i,j) are defined by (2.6) and (2.7). 
The gl (p) scalar factor 

[ 
[m'+I]p I [OJ! [m]p] 

[m'+I]p_1 [O]p_I'[m]p_1 

may take nonzero values only if 

3j= 1, ... ,r-l such that [m' + l]p = [m]~ and [m' + l]p_1 = [m]p_I' 

i.e., for certainj = 1, ... ,p, 

mip =mlp -1 +olj, ... ,m;p =mpp -1 +opj' mi,p_1 + 1 =ml,p_I, ... ,m;_I,p_1 + 1 =mp_I,p_I' 

Then 

[ 
[m]~ I [OJ! [m]p] I lIt: l (lk,p-I -Ijp - 1) 1112 

[m]p_1 [O]p_I;[m]p_1 = lI~#j=l(/kp-Ijp) 
The gl (r) scalar factor 

[ 
[m'+I]r I [O]r [m lr ] 

[m' + Ilr_1 [0lr_I' [m]r_1 

is nonzero if and only if [m' + l]r = [mJr and [m' + Ilr_1 = [mlr_I' Then 

[ 
[mlr I [ot [m lr ] 

[mlr_1 [Olr_l; [m]r_1 = 1. 
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(3.15) 

(3.16) 

(3.17) 

(3.18 ) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 
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Inserting (3.15) in (3.10) and using (3.18), (3.22), and (3.26), we obtain 

[m]n+1 

[m]n 

n n-l 

L L 
p 

L R([m]n + I ,[m]n,[m - l]~n) 
in = 1 jn- t = 1 jp= I 

x [ [m]~ I [OJ! ; [m]p ] IT [ em]; I [OV [m],] 
[m]p_1 [O]P_I [m]p_1 '=p+1 [m]~-=; [OV_I '[ml._1 

[m]n+1 

[m - 1]~ 

[m - l]~ 
[m -1]p_I 

m ll -l 

. (3.27) 

In a similar way as for TI [Eq. (3.5)] one concludes that the subalgebraP +' defined with (2.23), is a glen) fidirmod with 
respect to the adjoint representation. Its signature is [1] n- n, i.e., 

P + = lin env{eop jp = 1, ... ,n} = V([ 1] n- n). (3.28) 

The relation between the GZ basis in V( [ 1] n- n) and the positive odd root vectors reads 

[1 ]n- n 

, p= 1, ... ,n. (3.29) 

Since V( [ 1 ] n- n) ® Vo ( [m] n ) is a simply reducible gl (n) module, from the Wigner-Eckart theorem we have 

[m]n+ I [m']n [1]n-n [m]n 
[m]n+1 

[m]n [m']n 

[m]p = L S( [m]n+ I ,[m]n,[m']n) 
[m']p [1] -p [m]p 

[m']p eop 
p . (3.30) 

[m']p_I [1]p_1 ' [m]p_1 
[m]p _ I [m']p_I 

mil mll 
mil m l1 

The sum is over all I-patterns (Proposition 4); S( [m]n + I' [m ]n, [m']n) are the reduced matrix elements, corresponding to 
(eOI, ... ,eOn ). The Clebsch-Gordan coefficients can be represented as products of scalar factors 

[m']n [1]n-n [m]n em' - l]n [O]n-n [m]n 

[m']p [1] -p [m]p em' - l]p [0] -p [m]p p . = p . 
[m']p_I [1]p_1 ' [m]p_1 em' - 1]p_1 [O]p_ I ' [m]p_1 

mil m l1 mil -1 0 mll 

p-I[[m'-I], I [Ol. [m l. ] 
X ,U2 em' - 1lr_1 [0)._1; [mlr_1 . 

(3.31 ) 

The scalar factors, appearing in the first multiple, may be different from zero only if 
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3i= 1, ... ,r such that [m' -1]r = [m1.- i, 

3j= 1, ... ,r-l such that [m' -1]r-1 = [m];..!I· 

If (3.32) holds, thenl6 

[ 
[m lr- i 1 [01.- r . [m1. ] = S(i .) 1 llk-;';= 1 Uk.r - 1 - lir )llk i'i= 1 Ukr -Ij,r_ 1 + 1) 1112 

[m1.-..!1 [O]r---'I+ I' [m]r_1 ,J llki'i= 1 Ukr -lir)llk-;'}= 1 (/k,r-I -lj,r_1 + 1) 

The second multiple in (3.31) may take nonzero values only if 

3i= 1, ... ,p such that [m' -1]p = [m];i and [m' -1]p_I = [m]p_I' 

Then 

[ 
[m]p-i 1 [O]p-P [m]p] 1 llt: ~ (/k,P-I -lip) 1112 

[m]p_1 [O]P_I; [m]p_1 = llt,.i=l(/kp -lip) 

The scalar factors, appearing in the last multiple of (3.31), are nonzero if and only if 

[m' -1]r = [m1. and [m' -11._1 = [m1._I' 

In this case 

[ 
[mJr I [01. [m Jr ] = 1. 

[m1._1 [01._1' [m]r_1 

Taking into account (3.31), (3.32), (3.34), and (3.36) we write (3.30) in the following form: 

[m]n+ 1 

[m]n 

c. Reduction of the problem 

p . 

L S( [m]n+ \>[m]n,[m + l]n- Jn
) 

jp= 1 

[m]n+1 

[m+l]n- jn 

m ll +1 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

(3.36) 

(3.37) 

(3.38) 

At this place it is convenient to change to new notation for the reduced matrix elements. According to Proposition 5 and 
the relation (2.8) the signature [m]n of the gl(n) submodule V( [m]n) C W( [m]n + I) is in one-to-one correspondence with 
the set (i I, ... ,i N ) of those indices for which Bi, = Bi2 = ... = BiN = 1. Since [m - 1] ~ and [m + 1] n- i are also determined by 
the same B-tuple (i1, ... ,iN ) and i, we set 

R( [m]n+ \>[m]n,[m - 1]~) =R( [m]n+ 1 ;il, .. ·,iN;i), (3.39) 

S( [m]n+ \>[m]n,[m + 1];i) =S( [m]n+ l;il, ... ,iN;i). 

In the casep = n we obtain from (3.27), and (3.38)-(3.40), 

[m]n+ 1 

[m]n 

enO [m]n_1 
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[m]n+ 1 

[m]n 

[m]n_1 

Proposition 6: In the right-hand side of Eqs. (3.41) and 
(3.42) the coefficients, written below, are nonzero for any 1-
pattern: 

1 

ilk:! (/k,n-I -~n -I) 1 #0, 
ilk#,=I(/kn lin) 

k= 1 k,n-I In #0, i = I, ... ,n. I
W-1(I -/.)1 
ilk #i= 1 Ukn -(n) 

Proof From (2.57) one derives 

min - mjn;;.O Vi <j = 1, ... ,n, 

(3.43) 

(3.44) 

min -mj.n_I;;.O Vi,j=I, ... ,n-l, (3.45) 

mi.n_I-mj+l.n;;'O Vi,j=I, ... ,n-1. (3.46) 

The inequality (3.44) together with the definition (2.6) 
yields 

lin - Ijn > 0 Vi <j = 1, ... ,n, 
and, therefore, 

n 

IT (lkn - lin) #0. 
k#i=1 

( 3.47) 

(3.48 ) 

Suppose that for a certain i = 1, ... ,n there exists an I-pattern 

[m]n+ 1 [m]n+ 1 

[m]n [m - 1]~ 

[m]n_1 = [m-l]n_1 

such that 

1 
ilk:! (lk.n -I - ~n - 1) 1112 

ilk #i = 1 (lkn lin) 

[m]n+1 

[m - 1]~ 

[m-l]n_1 

mll -l 

Then there should exist k = 1, ... ,n - 1 such that 

=0. 

(3.49) 

Ik.n_1 -lin -1 =mk.n_ 1 -min -k+i-l =0, 

i.e., 

m k.n_ 1 - min = k - i + 1. (3.50) 

(a) Suppose that k;;'l. Then k - i + 1> 0, whereas ac­
cording to (3.45) mk.n _ 1 - min ,0. Hence (3.50) is impos­
sible. 

(b) Suppose thatk < i. Then k - i + 1,0, whereas 
(3.46) yields mk.~ _ 1 - min ;;.0. Therefore, (3.50) could be 
fulfilled only if k = i-I, i.e., if 

mi_I,n_1 = min' ( 3.51) 
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(3.42) 

Suppose that (3.51) holds. Then [see (3.49)] 

mi_I,n_1 = mi_I,n_1 - 1, min = min' (3.52) 

Combining (3.51) and (3.52) we obtain mi_I,n_1 <min' 
which contradicts the definition of an I-pattern [see 
(2.57)]. Hence, also in this case (3.50) is impossible. This 
proves that the coefficient from (3.41) cannot be zero. In a 
similar way one concludes that the coefficient from (3.42) is 
different from zero, i.e., (3.43) holds. 

Proposition 7: If 

[

[m]n+ I] 
deg [~]n = N, 

then 

[ 

[m]n+1 ] 
deg [m ~ 1] n± i = N = N ± 1. 

Proof Let [m]n = [m =+ l]n±i, i.e., 

mkn = mkn + 1 ± 0ki' (3.53) 

According to (2.60) the degree N, corresponding to [m] n , is 
_ 1 n _ 

N=-- L (mk,n+1 -mkn ) 
n - 1 k= 1 

1 n 

= --1 L (mk,n+ 1 - mkn) 
n - k=1 

1 n 

± -- L (I-Oki) =N± 1. 
n - 1 k= 1 

Proposition 8: If ie(il, ... ,iN ), then 

• 
R([m]n+I;il, ... ,iN;i) =0. (3.54) 

Proof The vector on the left-hand side of (3.41) is of 
degree N. For the corresponding t9-tuple we have 
t9i , = t9i , = ... = t9iN = 1. Therefore, for each i1, ... ,ip, ... ,iN• 

(3.55) t9i = N - (m i n + 1 - m i n) = 1. 
p P' P' 

Suppose that for a certain ipe(il, ... ,iN), R([m]n+l; 
i1, ... ,iN;ip ) #0. Then in the sum (3.41) there will appear a 

vector with [m]n = [m - 1 ]~, i.e., with mkn = mkn - 1 
+ Ok,' . In particular, mi • = m i n and since (Proposition 

• p po'. P' 

7) 

[ 

[m]n+1 ] 

deg [m ~ l]~ =N=N + 1, 

we conclude from (2.63) that 

8i = N - (m i n + 1 - mi n) 
p P' P' 

= N - (m. + 1 - m· ) + 1 = 19· + 1 = 2, 'p.n 'p.n lp (3.56) 
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which is impossible, since it contradicts the definition of the 
I-basis (Proposition 4). 

(3.57) 

In a similar way one proves the next statement. 
Proposition 9: If ie(iI, ... ,iN ), then 

In thecasesp = n, n - 1 the relations (3.27) and (3.38) 
together with Propositions 8 and 9 yield 

2291 

[m]n+1 

[m]n 

enO [m]n_1 = _" R([m] .,' , .. ,.) 1 n~:n:Uk.n-1 -lin -1) /1/2 
~ n+I,I'''''N, 

iE(i, ..... iNl n k #i= 1 Ukn -I;n) 

[m]n+ I 

[m-l]~ 

[m-l]n_1 

e01l 

m ll 

[m]n+ I 

[m]n 

[m]n_1 

m ll 

[m]n+ I 

[m]n 

en_ l.o [m]n_1 

[m]n+ I 

[m]n 

eo.n - I [m ] n _ I 

n-I 

_ I I R( [m]1I+ dl,· .. ,iN;i)S(i,j) 
iE(i, ..... iNl j = I 

[m]n+ 1 

[m + 1];i 

[m+l]1I_1 

m ll +l 

Xl n~;)=I(lk.n-1 -li1l -1)n~";=I(/kn -lj.1I-I)n~:i(/k.1I-2 -lj.n_l -1) 1112 
n~"i=l(/kn -li1l)n~;)=I(/k.1I-1 -Ij.n-I)(/k.n-I -lj.n_I-1) 

[m]n+ 1 

[m - 1]~ 

[m - 1]~ _ 1 
X 

[m-l]n-2 

n-I 

I I S([m]n + 1 ;i1,· .. ,iN;i)S(i,j) 
iE(i, ..... iNl j= 1 

X/ n~;)= 1 (lk.n-l -lin )n~#i= 1 (/kn -lj.n_ 1 + 1)n~:i (/k.n-2 - Ij.n_ 1) /112 

n~"i= 1 (/kn -I;n )n~;)= 1 (/k.n-l -lj.n_ 1 ) (/k.n-l -lj.n_l + 1) 

[m]n+l 

[m+l]n- i 

X [m+l]n-.!l 

[m+l]n_2 
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In (3.58), (3.60), and throughout the paper a sum over 
ie(iI, ... ,iN ) means a sum over the compliment set 
(1, ... ,n)\.(iI, ... ,iN ), i.e., 

L (3.62) 
i= (l.2 •...• n) 

i#(iIO···.iN ) 

Proposition 10: The endomorphisms enO and eOn of 
W( [m]n+ I)' defined with Eqs. (3.58) and (3.59) satisfy 
the right commutation relations with the even generators Eij 
[which action on W([m]n+ I) follows from (3.1)-(3.3)], 
namely 

[enQ,Eij] = - {)jnejQ + {)ijenO ' i,j = I, ... ,n, 
[eon ,Eij] = {)in eOj - {)ijeon , i,j = I, ... ,n. 

A sketch of the proof is given in Appendix A. 

(3.63) 

(3.64) 

Proposition 11: The endomorphisms ekO and eOk , de­
fined in (3.27) and (3.28), satisfy the commutation rela­
tions with the even generators Eij, i.e., 

[eok,Eij] = {)kieOj - {)ijeOk , i,j,k = I, ... ,n, (3.65) 

[eko,Eij] = - {)jke,'O + ()ijekO ' i,j,k = l, ... ,n. (3.66) 

Proo!' Let i<.,j and k < n. Using Proposition 10 and the 
glen) commutation relations (1.4), we have 

[eok,Eij ] 

= [eOnEnk - EnkeOn ,Eij ] 

= [[ eOn ,Eij ] ,End + [eOn, [ Enk ,Eij ]1 

= [{)ineOj -{)ijeOn,End + [eon'{)kiEnj -{)jnEid 

= {)in [eOj,Enk ] - {)ijeOk + {)ki (eOj - ()jneon) 

- {)jn ({)ineOk - ()ikeOn)' (3.67) 

Since i<.j, 

{)ineOj = {)ineOn and {)ineOk = {)in{)jneOk' (3.68) 

Inserting (3.68) and (3.67) and taking into account that 
[eon,Enk ] = eOk ' we get the desired result 

(3.69) 

To complete the proof we use the relation 

[ eo.n _ 1 ,En.n _ 1 ] = 0, (3.70) 

which is proved in Appendix B. 
Let n > i > j. Then 

[eO.n _ 1 ,Eij] = [[ eOn ,En.n _ 1 ] ,Eij] 

= [eOn' [En.n_ 1 ,Eij]] = {)i.n -I eOj ' (3.71 ) 

From (3.69)-(3.71) we conclude that the eo.n _ 1 fulfill the 
commutation relations with glen): 

[eO.n _ 1 ,Eij] = {)i.n _ 1 eOj - {)ijeo.n _ I' i,j = I, ... ,n. 

Let now k < n - 1 and n > i > j. Then 

[eok,Eij] = [eonEnk -EnkeOn,Eij] 

= [eOn, [ Enk ,Eij ]1 

= {)ik [eon,Enj ] = {)ikeOj, n >i>j. 
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(3.72) 

(3.73) 

If k < n - I and n > j, 

[eok,Enj ] = [eo.n-IEn_l.k - En_l.keO.n_I,Enj] 

= -{)j.n-I [eo.n-I,End =0, n>j. (3.74) 

From (3.69), (3.73), and (3.74) we conclude that 

[eok,Eij] = {)kieOj - ()ijeOk , k < n - I, i,j = I, ... ,n. 
(3.75) 

The last relation together with (3.72) and (3.64) gives 

[eok,Eij] = {)kjeOj - {)ijeOk Vi,j,k = l, ... ,n. (3.76) 

In a similar way one also proves the commutation relation 
(3.66). 

Proposition 12: If {eOn,eon } = ° (i.e., eOneOn = 0) as an 
operator equality in W( [m] n + 1 ), then also 

{eOp,eOq } = ° Vp,q = l, ... ,n. (3.77) 

Proo!' Letp<n. FromEq. (3.76) we have 

{eOn ,eop } = {eon ,eonEnp - Enpeon } = - eOn [eon ,Enp] 

Therefore, 

{eon,eop } = 0, p = I, ... ,n. (3.78) 

Letp<n, q<n. Then 

{eop,eOq} = {eop,eonEnq -Enqeon } 

= - {eon' [eop,Enq]} = 0. • 

In a similar way one proves the following proposition. 
Proposition 13: If {e nO,e nO} = ° in W([ m ] n + 1 ), then 

{epO,eqO} = ° Vp,q = 1, ... ,n. (3.79) 

Proposition 14: If the operator equation 

(3.80) 

holds in W( [m] n + 1 ), then also the anticommutation rela­
tion 

{epO,eoq}=Epq (3.81) 

is fulfilled. 
Proof' Letp<n. Using Eqs. (3.75) and (3.81) one de­

rives 

{eon,epO} = {eon' [Epn,eno ]} = [Epn,{enQ,eon }] 

= [Epn,Enn] = Epn' (3.82) 

Ifp <n and q <n, then we have from (1.4) and (3.82) 

{epO ,eOq} = {epO, [ eOn ,Enq ]} 

= [{epO,eon},Enq ] -{eon,[epO,Enq ]} 

= [Epn,Enq] + ()pq {eon,enO } = Epq. • 

From Propositions 11-14 we conclude. 
Corollary: The operators ekO and eOk ' k = 1, ... ,n, de­

fined with the Eqs. (3.27) and (3.38) tum the linear space 
W([ m] n + 1 ) into an sl (1,n) module if and only if the fol­
lowing relations hold: 

enOenO = 0, 

eOneOn = 0, 

enoeOn + eOnenO = Enn' 
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D. Determination of the reduced matrix elements 

Considering the relations (3.83)-(3.85) as operator 
equations in W([m]n + I) and using the expressions (3.58) 
and (3.59) we arrive at the following equations for the un­
known reduced matrix elements. 

For any i <j = 1, ... ,n and i,jEUI, ... ,iN ), 

R ([m]n + dl,· .. ,iN;i)R ([m]n + I ;il,· .. ,iN,i;j) 

I/j •n + I - Ij •n + I + 111/2 

R ( [m] n + I ;il> ... ,iN;j)R ( [m]n + I ;i1, .. ·,iN,j;i) 
+ 1/2 =0. Ilj •n + 1 - li.n + 1 + 1 I 

(3.86) 

L S([m]n+ dl, .. ·,iN;i)R( [m]n + I ;il, .. ·,iN \i;i) 
iE(i ...... iN ) 

For any i <jeUI, ... ,iN)' 

S( [m]n + I ;il, ... ,iN;i)S( [m]n + I ;il, .. ·,iN \i;j) 

I ~.n + I - li.n + I + 111/2 

S( [m]n + I ;il, .. ·,iN;j)S( [m]n + I ;i1, ... ,iN \j;i) 
+ I 1/2' li.n + I - Ij •n + I + 1 I 

(3.87) 

where i1, ... ,iN \i is the set il, ... ,iN from which the index ihas 
been deleted. 

For any ieUw .. ,iN ) andjEUI, ... ,iN ), 

S( [m]n + dw .. ,iN;i)R ([m]n + I ;il, .. ·,iN \i;j) 

+ R([m]n + I ;i), ... ,iN;j)S( [m]n + dl> ... ,iN,j;i) = 0, 
(3.88) 

\
n-I \\ n \-112 

X JI (I k.n - I - lin) k 111 (I kn - lin) (I kn - lin + 1) 

+ _ L R([m]n+I;iI, .. ·,iN;j)S([m]n+l;il,· .. ,iN,j;j) 
jE(i, ..... iN ) 

(3.89) 

A derivation ofEqs. (3.86)-(3.89) is given in Appendix C. 
A hint of how to solve the equations for the reduced matrix elements give the results from Refs. 18 and 19. There we have 

introduced a concept of I-basis for the LS's sl( 1,2) and sl( 1,3). In particular, for the action of eno,eon (n = 2,3) on the I-basis 
we had [see (2.32) and (2.35) in Ref. 18 and (2.32) in Ref. 19] 

[m]n+ I 

[m]n 

eno [m]n_1 

m l1 

[m]n+1 

[m]n 

eon [m]n_1 

m l1 

[m]n + I 

[m - 1]~ 
sgn(8) I nz:: (lk.n-I -lin -1) 1112 [m - l]n_1 

iE(i~.iN) nz #i= I (h.n + I -li.n + I) 

mll-l 

[m]n+1 

I 
nn-I(I -/.) 11/2 [m+l];i 

~ s (8) (/. + 1) k = I k.n - I In [ ~ go In+1 m+l]n_1 
iE(i, ..... iN) . nz #i = I (lk.n + I - li.n + I ) 

m ll +l 

(3.90) 

(3.91) 

where sgn(8) is a sign function, depending on 81, ... ,8n , i.e., 
sgn(8) = ± 1. Comparing (3.58) with (3.90) and (3.59) 
with (3.91) we conclude that in the cases n = 2,3 the re­
duced matrix elements are of the form 

The solution of Eqs. (3.86)-(3.89) is not unique. One 
possible solution can be given with expressions of the form 
(3.92), (3.93) for any n. More precisely, we have the follow­
ing proposition. 

R( [m]n+ dl, ... ,iN;i) 

Ll 1 nZ#i=l(lkn -lin) 1112 
= sgn(u) , 

nZ#i= I (lk.n+ I -li.n+ I) 
(3.92) 

S( [m]n + I ;i)o ... ,iN;i) 

= sgn(8)(I. + 1) I nk #i= I (lkn -lin) 1
1
/

2
• 

I.n + I nn I I 
k #i = t< k.1I + I - i.1I + I ) 

(3.93 ) 
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Proposition 15: The reduced matrix elements 
R ( [m] n + I ;il, ... ,iN;i) andS( [m] n + I ;iw .. ,iN;i) of the gl(n) 
irreducible tensor operators (elo, ... ,eno ) and (eOI, ... ,eOn ) can 
be chosen to be 

R( [m]1I + I ;i», .. ,iN;i) 

= (1 - OJ)( - 1 )0, + ... + °'_1 

I 
nZ#i=l(/kn-lin) 1112 

X nZ#i=l(lk.n+I-li.n+l) , 
(3.94) 
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S( [m] n + 1 ;i\> ... ,iN;i) 

=Oi( _1)6'+"'+61
-

I(li.n+1 + 1) 

1 

nk#i= 1 (Ikn -lin) 1112 
x nk#i=I(I/c.n+1 -li.n+l) 

(3.95) 

It is not difficult to check that the expressions (3.94) 
and (3.95) satisfy the firstthree equations (3.86)-(3.88). In 
the proof it is convenient to use the following representation 
of the reduced matrix elements: 

R( [m]n + 1 ;il,· .. ,iN;i) 

= (l-Oi)( _1)6'+'''+6;-1 

X II Ilk •n + 1 -li•n + 1 + 1 1
112

, 
iE(i, ..... iN ) Ik.n + 1 - li.n + 1 

(3.96) 

S( [m]n+ 1 ;il, .. ·,iN;i) 

=0.(_1)6'+"'+6'-I(/. +1) 
I l,n+ 1 

X _ II I
I k.n + 1 - li.n + 1 - 1 1112 

iE(i, ..... iN ) Ik.n + 1 - li.n + 1 

( 3.97) 

To prove that the relations (3.94) and (3.95) also satisfy Eq. 
(3.89) we use the following identity. 

Proposition 16: Let A1, ... ,An,B1, ... ,Bn be, in general, 
complex numbers such that 

Ai =/=Aj , if i=/=j = 1, ... ,n, 
Ai - BjEZVi,j, = 1, ... ,n. 

Then 

The proof is given in Appendix D. 
If Bn = 0 then (3.100) reads 

(3.98) 

(3.99) 

(3.100) 

(3.101) 

Suppose that the numbers A 1,. .. ,An,B 1, ... ,Bn _ 1 are such that 

Ai - AkeN Vi < k = 1, ... ,n, 
Ai - BkEZ+ Vi<.k = 1, ... ,n - 1, (3.102) 

Bk -AiEZ+ Vk<i= 1, ... ,n. 

Then 

and, therefore, (3.10 1) takes the form 

~ 1 "k::(Ai-Bk ) 1 ~ n~1 
~ A· = ~ A. - ~ B·. 
i=1 I "k#i=I(Ai-Ak ) i=1 I j=I' 

(3.103) 

Consider an arbitrary I-pattern (2.54) of degree Nand 
let 

{OI, ... ,On} = (i1, ... ,iN ) (3.104) 

be the O-tuple corresponding to it (Proposition 5). From 
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(3.96) and (3.97) one derives 

R( [m]n+ 1 ;il, ... ,iN \i;i) 

= (_1)6'+"'+6,-1 

1 

"k#i=l(lkn-lin+1) 1112 
X llk#i= 1 (lk.n+ 1 -li.n+ I) , 

S( [m]n + 1 ;i1, .. ·,iN,j;j) 

= ( _ 1) 6, + ". + 6j - 1 (lj.n + 1 + 1) 

I 
ll;;#j= 1 (lkn -Ijn - 1) 1112 

X "k#j=l(lk.n+1 -lj.n+l) , 

(3.105) 

(3.106) 

where, we wish to underline, everything in (3.105) and 
(3.106) is expressed in terms of Iln, ... ,lnn and the O-tuple 
( 3.104 ), corresponding to the initial I-pattern. Inserting the 
expressions (3.96), (3.97), (3.105), and (3.106) in the left­
hand side ofEq. (3.89) [ = Ihs(3.89)], we have 
Ihs(3.89) 

= ~ (/. + 1) 1 "k:: (lk.n - I -l;n) I 
£..t l,n + 1 n 

iE(i, ..... iN ) llk #i= I (lk.n + I -li.n + I) 

+ _ L (Ij,n + I + 1) 
je(il,···,iN ) 

1 

ll;;::(Ikn_1 -I"n -1) 1 
X' . 

ll;;h=l(lk.n+I-Ij.n+l) 

The relations (2.63), (2.6), and (2.9) yield 

lin = li.n+ I + 1-N, ie(iI,· .. ,iN ), 

Ijn =lj.n+1 -N, jE(iI, ... ,iN ). 

Combining Eqs. (3.107) and (3.108) we get 

Ihs(3.89) 
n 

= L (li.n + I + 1) 
i=1 

Xl llk::n(lk.n-I -li.HI +N-1) I. 
llk #i = I (lk.n + I - li.n + I) 

Introduce the notation 

Ai =li.n+1 + 1, Bk =Ik.n-I +N, 

i = 1, ... ,n, k = 1, ... ,n - 1. 

In terms of these notation (3.109) reads 

n 1 nn-I (A. - B ) 1 
Ihs(3.89) =.L Ai n k=1 I _ k • 

,=1 llk#i=dAi A k ) 

For i < k, m i•n + I - m k •n + I EZ+. Therefore 

(mi,.ll+ I - i + 1) - (m k.n+ 1- k + l)eN, 

i.e., 

Ai - AkeN Vi < k = 1, ... ,n. 

From (2.63) and (2.6) we have 

(3.107) 

(3.108) 

(3.109) 

(3.110) 

(3.111) 

Ai = lin +N+ 1-0i = min -i+N+ 1-0i· 
(3.112) 

If i<.k = 1, ... ,n - 1, then [see (2.57)] 

Ai -Bk = min - m k.n_ 1 + 1- 0i + k- iEZ+. 
(3.113) 
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If k < i = 1, ... ,n, then 

Bk -Ai =mk,n_1 -min +(Ji -1 +i-kEZ+. 
(3.114) 

Hence, we can apply to (3.110) the identity (3.103): 
n n-l n n-l 

Ihs(3.89) = 2: Ai - 2: Bj = 2: min - 2: mj,n_I' 
i-I 1-1 i-I j-I 

(3.115) 

Thus, the expressions ( 3.94) and ( 3.95) for 

[m]n+1 

[m]n 

efIJ [m]p 

[m]p_I 

m l1 

Xl n~: \ (/k,P-I -iip,P - 1) 1112 

n~ #ip _ I (/k,P - iip'P) 

R ([m] n + 1 ;i1,··.,iN,i) and S( [m] n + I ;i1, ... ,iN,i) satisfy also 
Eq. (3.89) and, therefore, these expressions can be accepted 
as reduced matrix elements of the gl (n) irreducible tensor 
operators (e10, ... ,enO ) and (e01, ... ,eOn )' 

E. Typical representations 

Inserting (3.94), (3.20), and (3.24) in (3.27) we obtain 
the transformation of the I-basis (2.54) under the action of 
the odd positive root vectors: 

[m]n+ I 

[m - 1]; 

[m - 1]/ 

[m-l]p_1 

m l1 -1 

, p= l, ... ,n. (3.116) 

Similarly, inserting (3.33), (3.35), and (3.95) in (3.38), we obtain 

X/ n;:#in_ I (lkn -iin.n) /112 X/ n~: \ (h,P-I -iip'P) /1/2 

n;:#in_ I (lk,n+ I -iin,n+ I) n~#ip_ I (lkp -iip'P) 
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[m]n+l 

[m + 1]n- in 

[m + l]p-ip 

[m+l]p_I 
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The transformations (3.116) and (3.117) [see also (3.58) and (3.59)] take a particularly simple form in the casep = n: 

e..o 

[m]n+1 

[m]n 

[m]n_1 

[m]n+ I 

[m]n 

[m]n_1 

[m]n+ I 

[m - 1]~ 

[m]n+1 

[m+1]n- i 

[m+1]n_1 

(3.118) 

(3.119) 

The transformations (3.118) and (3.119) together with the expressions (3.1 )-( 3.3) for the even generators determine 
uniquely all other generators. In this sense the relations (3.118) and (3.119) determine the representation of the LS sl( 1,n) in 
W([m]n+I)' 

For any n-tuple [ml,n + l>m2,n + l> ... ,mn,n + 1]' mi,n + I - !!!i+ I,n + I eZ+, i = 1, ... ,n - 1, the formulas (3.116), (3.117) 
define completely the induced representation ofsl(1,n) in W([m]n+l) [the transformations (3.1)-(3.3) for the even 
generators follow from (3.116) and (3.117), since Eij = {eiO,eO)]' This representation is irreducible and, hence, typical if 
and only if (Proposition 1) 

mk,n + I #k - 1, k = 1, ... ,n. (3.120) 

Iffor certain k == 1, ... ,n, mk n + I = k - I, the representation is indecomposible. In this case W( [m] n + I ) contains a maximal 
invariant submodule I( [m in + I ) and at the same time there exists no compliment to!( [m ] n + I ) subspace, which is invariant 
with respect to sl( 1,n). The factor module W( [m] n + I )!I( [m ] n + I ) carries an irreducible nontypical representation. The 
maximal invariant subspaces, the factor modules and their transformation under the action of the sl ( 1,n) generators will be 
given in Ref. 1. 
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APPENDIX A: A PROOF OF PROPOSITION 10 

Consider first the commutator 

(Al) 

Acting with the right-hand side of (Al) on an arbitrary I-pattern and using Eqs. (3.2) and (3.58) we have 
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[m]n+ I 

[m]n 

(enoEn,n_, -En,n_,enO ) [m]n_1 

= nil I ll7= I (lin -lj,n_1 + l)ll7~}(li,n_2 -lj,n_l) 1112 e 

j=1 ll7#j!"d/i,n-' -Ijn + 1}(li,n_' -lj,n_l) nO 

[m]n+ I 

[m]n 

[m]n-.:! I 

[m]n_2 

m ll -l 

= nil I (lin -lj,n_1 + 1)ll;;#i=l(lkn -lj,n_1 + l)ll;;:~(lk,n_2 -lj,n_2) 1112 
j= I ll;;;]= I (lk,n-I -lj,n_1 + 1)(lk,n_' -lj,n_l) 

_ L R([m]n+l;il,· .. ,iN;i) 
ie(i" ... ,iN ) 

(lj,n -I -(n - 1)ll;; ;]= I (lk,n - I -lin - 1) 

ll;; #i= I (lkn -lin) 

[m]n+1 

[m-l]~ 

[m - l]n-.:! I 

[m - l]n_2 

m ll -l 

[m],,+1 

[m - 1]~ 

X ~il I (lin -lj'''_I,,~;)ll;;#i=l(lk'' -lj,"_1 + 1)ll;;:~(lk,n-2 -lj,,,_2) 1112 [m-l],,-.:!, =0, (A2) 
J=I "k#j=l(lk,n-1 -lj,"_1 + 1)(lk,,,_, -lj,n_l) [m-l],,_2 

m ll -l 

which is in agreement with (3.63). 
By a straightforward computation one proves also that the following commutation relations hold: 

[enO,Ek,k_l] = 0, k = 1, ... ,n - 1, (A3) 

(A4) 

(AS) 

The rest of the relations (3.63) follow from (A3) - (AS) and the gl (n) commutation relations. The proof of the commutation 
relations (3.64) is similar. 
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APPENDIX B: DERIVATION OF EQ. (3.70) 

Applying twice Eqs. (3.2) and (3.61) we arrive at the expression 

[

[m]n+ I] 
[m] n-In-I 

(B) == [eo,n _ I ,En,n - d : n = .2:. .2: 2: S([m] n + I ;il,,,·,iN;i) 
• lE(zp .••• lN) J= 1 s= 1 

ml1 

x I II~#;= I (lk,n-I -lin - 8kj)II~#i= I (lkn -ls,n_1 + 8sj + l)II~:i (lk,n-2 -ls,n_1 + 8sj ) 1112 

II~ #i= I (lkn -lin )II~ #;= I (lk,n -I -Is,n -I - 8kj + 8sj ) (lk,n _ I -Is,n -I - 8kj + 8sj + 1) 

_I II~#;= I (lk,n-I -l;n )IIZ#i= I (lkn -ls,n_1 + l)II~:i (lk,n-2 -ls,n_l) 1112 

IIZ#i=l(lkn -/i,n+I)II~#;=I(h,n I -ls,n-I)(lk,n_1 -Is,n-I + 1) 

x I II~= I (lkn -lj,n_1 - 8ki + 8js + 1)IIZ:i (lk,n-2 -lj,n_1 + 8js ) 1112} 

II~#]=I(lk,n_1 -lj,n_1 -8ks +8js )(lk,n-1 -lj,n_1 -8ks +8js + 1) 

Denote the expression in the curled brackets in (B 1) as 

F(j,s; [m]n, [m]n _ I' [m]n _ 2;i) 

and represent the sum as 

(B) = 2: S([m] n + I ;il,,,·,iN;i) 
ie(il .. ··.iN ) 

[m]n+1 

[m+l]n- i 

[m + l]n-l'l- s 

[m+l]n_2 

x Ct:SCi,S)F(j,j; [m]n' [m]n _ I> [m]n - 2 ;i) + s~~11 [S(i,s)F(j,s; [m ]n' [m]n - I> [m]n _ 2 ;i) 

[m]n+1 

After some calculations one obtains 

F(j,j;[m]n,[m]n_l>[m]n_d) = 0, 

SCi,j)F( j,s;".) + S(i,j)F(s,j;".) 

G(j,s;[m]n,[m]n -I ;i) 

IIi = I (ls,n _ I - Ij,n _ I + k - 2) 

[m+l]n- i 

[m + 1 ]n-l'l- s 

[m + l]n_2 

X I yf (lk,n -I -lin) 
k#s=1 (h,n-I-Ij,n-I +1)(/k,n-I- Ij,n-I)(/k,n-I- ls,n-1 +1)(lk,n-I- ls,n-l) 

k#j 

X rrn (/kn -Ij,n - I + 1) (/kn -Is,n - I + 1) nrr- 2 (I _ /. ) (/ -I ) 1112 
(I -I.) _ k,n-2 l,n-1 k,n-2 s,n-I 

k#i=1 kn In k-I 

where 

G(j,s; [m]n, [m]n _ I;i) 

= SCi,s) I lin -lj,n-ll(ls,n-1 -lj,n_1 + 1) -SCi,s)l/in -lj,n_1 + II(1s,n_1 -lj,n_I-1) 

+ SCi,j) I lin -Is,n-II(/s,n-I -lj,n_1 -1) -SCi,j) I lin -ls,n_1 + II(/s,n-1 -lj,n_1 + 1). 
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To get rid of the modulus in (B5) consider the following cases. 
(a) i<s. Sinces <j, also i<j and, therefore, SU,j) = S(i,s) = 1. From (2.57) and (2.6) we conclude that lin - Ij,n _ 1 >0, 

lin - Is,n _ 1 >0. Therefore, 

G(j,s; [m ]n' [m]n _ 1 ;i) 

= (lin - Ij.n _ 1 ) (ls,n - 1 - Ij,n - 1 + 1) - (lin - Ij,I! - 1 + 1) (ls,n - 1 - Ij,n _ 1 - 1) 

+ (lin - Is,n _ 1 ) (ls,n - 1 - Ij,n - 1 - 1) - (lin - Is,n - 1 + 1) (ls,n _ 1 - Ij,n _ 1 + 1) = O. 

In a similar way one shows that 

G(j,s;[m]n,[m]n_l;i) = O. 

In the other two cases, 
(b)j<i, 
(c) s<i<j. 
Hence, (B7) holds for arbitrary values of the indices i,j,s. From (B3), (B4), and (B7) we get the desired result 

[ eo,n _ 1 ,En,n _ 1 ] = O. 

APPENDIX C: EQUATIONS FOR THE REDUCED MATRIX ELEMENTS 

Acting with enoenO on an arbitrary I-pattern and using (3.5S) one derives the expression 

[m]n+ 1 

[m]n 

enoenO [m]n-l = _ L _ L R([m]n+ 1 ;i1, .. ·,iN;i)R([m]n+ dl,· .. ,iN,i;j) 
ie(iIo···.iN ) jE(il.···.iN> 

xl II~;:::(lk,n-l -lin -1)(lk,n-l -Ijn -1) 1112 
II~ #i= 1 (lkn -lin )II~ h= 1 (lkn -Ijn + Dik ) 

which can be written also as 

[m]n+l 

[m]n+l 

[m - 2]~j 

[m-2]n_l 

m ll -2 

[m]n _L I II~;::: (lk,n_ ~ -lin - 1)(lk,n-l -Ijn - 1) 1112 
i<jE(i" ...• iN ) (lin -ljn)IIk=l,k#i,j(lkn -lin)(lkn -Ijn ) 

In obtaining (C2) we have used the circumstance that 0i = OJ = 0 and, hence, 

li.n + 1 - ~,n + 1 = f..n - Ijn . 

Since, as a consequence of Proposition 6, 

[m]n+l 

[m-2W 

[m-2]n_l 

(B6) 

(B7) 

(BS) 

(C1 ) 

(C2) 

(C3) 

the operator relation (3.S3) holds if and only if the expression in the curled brackets of (C2) vanishes, i.e., if 
R ([m]n + 1 ,i1,· .. ,iN;i) satisfies Eq. (3.S6). 
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The relation (C3) holds also ifi,jE(il, ... ,iN). Using this one derives from (3.84) and (3.59): 

[m]n+l 

[m]n 

[m]n_l 
= L I IIZ:;: (~k.n - 1 -lin) (lk.n - 1 -ljn) 1112 

i.jE(i, ..... iN ) (lin -ljn )IIk #i= I.k #j (lkn -lin )(lkn -ljn) 
i<j 

Therefore, Eq. (C4) holds for any I-pattern iff the Eq. (3.87) is fulfilled. 

(C4) 

Consider Eq. (3.85). Acting with the right-hand side of it on an arbitrary I-pattern and applying (3.1) for k = n we have 

[m]n+1 [m] n + I 

[m]n 
( n n-I ) 

[m]n 

Enn [m]n_1 = i~1 min - j~1 mj.n_ 1 [m]n_1 (C5) 

m ll mil 

Acting with the left-hand side of (3.85) on an arbitrary I-pattern and taking into account (3.58) and (3.59) we obtain 

2300 

[m]n+1 

[m]n 

C=(enoeOn +eOnenO ) [m]n_l 

L _ L S([m]n+l;ij, ... ,iN;i)R([m]n+l;il, .. ·,iN\i;j) 
ie(i .• ···.;N) je(iIO···.iN'i) 

+ _ L L R([m]n+l;iw .. ,iN;j)S([m]n+dl, .. ·,iN,j;i) 
je(iI.···.iN } iE(iI, .... iN.j) 
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CI = L _L {S([m]n+dl, ... ,iN;i) 
ieU., ...• iN> je(i ••...• iN> 

x j IIZ:: : (lk,n - I -ljn - 1) (lk,n _ I - lin) j1/2} 
IIZ""j=l(lkn -ljn)IIZ""i=l(lkn -lin +Dki ) 

[m]n+1 

[m]n-i,j 

[m]n_1 ' 

The term CI may be written as 

[m]n+1 

[m];i,j 

+ R( [m]n + dl,· .. ,iN;j)S( [m]n + I ;il, .. ·,iN,j;i)} [m]n _ I 

From (C5), (C6), (CS), and (C9) we conclude that the Eq. (3.S5) is fulfilled if and only if 

[

[m]n+l] 
n n-I [m]n 

C2 = (.L min - .L mj,n - I) . . 
1= I J= I : 

mll 

One easily derives that if 

2301 

[m]n+ I 

[m]n 

[m]n_1 

[m]n+1 

[m];i,j 

and [m]n_1 ' i=/=j, 
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are I-patterns, then 

n~: l (lk.n-I -lin )(Ik.n-I -Ijn - 1) #0. (C12) 

(lin -ljn)(lin -Ijn -l)n~"'i=l.k"'j(/kn -lin)(lkn -Ijn ) 

Since, moreover, the right-hand side of (C9) is a linear combination oflinear1y independent/-patterns, Eq. (C1O) holds iff the 
reduced matrix elements satisfy Eq. (3.88). Equation (3.89) is an immediate consequence ofEqs. (C8) and (C11). 

APPENDIX D: A PROOF OF THE IDENTITY (3.100) 

This identity can be derived in different ways. Here we follow a proof, which was suggested to us by D. Pfeil (University of 
Clausthal). In the cases n = 1,2, (3.100) is evident. We prove by induction on n. Suppose (3.100) holds for a given n. 
Consider 2n + 2 numbers Ail Bil i = 1, ... ,n + 1, which satisfy the conditions (3.98) and (3.99). Using the identity 

(Ai -Bn+ I )(An -An+ I) = (Ai -An+ I )(An -Bn+ I) - (Ai -An )(An+ I -Bn+ I)' 

we have 

D:=n±1 n~:!:l (Ai -Bk) = nil (Ai -Bn)(Ai -Bn+1 )n~:l (Ai -Bk) An -An+1 

i=ln~~i=I(Ai-Ak) i=1 (Ai-An)(Ai-An+l)n~;i=I(Ai-Ak) An-An+1 

+ (An -Bn+l)n~=I(An -Bk) + (A n+ 1 -Bn)n~~~=dAn+1 -Bk) 

(An -An+l)n;;:l(An -Ak) (A n+ 1 -An)n~=ldAn+1 -Ak) 

= nil ~~~l(Ai -Bk) . Ai -Bn [An -Bn+1 _ An+1 -Bn+ l ] 

i=1 nk""i=dAi -Ak) An -An+1 A -An A. -An+1 

(An -Bn+l)n~=I(An -Bk) (A n+ 1 -Bn)n~~~=I(An+1 -Bk) 
+ n-I + n-I =DI -D2, 

(An -An+l)nk=dAn -Ak) (A n+ 1 -An)nk=dAn+1 -Ak) 

where 

An-Bn+1 [n~1 n~=I(Ai-Bk) n~=dAn-Bd] 
Dl = £.. + ---'--------

An -Bn+1 i=1 n~"'i=1 (Ai -Ak) n~"'n=1 (An -Ak) . 

The expression in the brackets of (D2) reduces to (3.100) in the case n, which holds by assumption. Therefore, 

Ak=Ak, An=An+I' k=l, ... ,n-1. 

Then D2 reads 

D2=An+I-Bn+1 ± n~=I(Ai-Bk) 
An -An+1 i=1 n~"'i=dAi -Ad' 

(D1) 

(D2) 

(D3) 

(D4) 

(D5) 

and since AI, ... ;in,B1, ... ,Bn satisfy the conditions (3.98) and (3.99) and since, moreover, in this case (3.100) holds by 
assumption, we obtain 

D = An+1 -Bn+1 ~ (A. -B.) = An+1 -Bn+1 [n~1 (A. -B.) +A -B ] 
2 "-' I , ~ I I n+l n+l· 

An-An+1 i=1 An-An+1 i=1 
(D6) 

Inserting (D3) and (D6) in (D 1) we obtain the desired result 

n+1 nn+I(A.-B) n+1 L k=1 I k = L CA. -B.). (D7) 
;=1 n~~i=I(Ai -Ak) i=1 I I 

Hence, if (3.100) holds for certain n, it holds also for n + 1. Since (3.100) is an identity for n = 1, it is an identity for any 
integer nEN. 
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Parastatistics and the Clifford algebra unitary group approach to the many­
electron correlation problem 

M. D. Gould 
Schoolo/Chemistry. University 0/ Western Australia. Nedlands. Western Australia. 6009 

J. Paldus8
) 

Institute/or Advanced Study Berlin. Wallotstrasse 19. D-lOOO Berlin 33. West Germany 

(Received 12 February 1987; accepted for publication 17 June 1987) 

It is shown that the Clifford algebra unitary group approach, which is based on the subgroup 
chain U(2n) ::JSO(2n + 1) ::JSO(2n) ::JU(n), may be described in terms of the para-Fermi 
algebra. Applications to the development of efficient algorithms for the evaluation of matrix 
elements ofU(n) generators and of their products are also briefly discussed. 

I. INTRODUCTION 

The unitary group approach (UGA) to the many-elec­
tron correlation problem 1-3 provides a versatile formalism 
enabling an efficient exploitation of the invariance proper­
ties of a nonrelativistic, clamped-nuclei, electronic Hamilto­
nian in quantum-chemical calculations of the molecular 
electronic structure. It represents an outgrowth of the for­
malism initially laid down by Moshinsky4 in the context of 
the nuclear shell model and is based on the fact that the spin­
independent many-electron Hamiltonian may be expressed 
as a bilinear form in the spin-free (orbital) U (n) generators. 
It enabled the development of efficient methods for the 
evaluation of Hamiltonian matrix elements using the algo­
rithms for matrix elements of U(n) generators l-3 and of 
products of generators5 and proved to be particularly useful 
in large scale quantum-chemical configuration interaction 
(shell model) calculations.6-11 A detailed account of these 
developments can be found in numerous reviews l2- 15 and 
monographs. 16.17 

Thus, from the viewpoint of the many-electron (and, 
generally, many-fermion) problem, it is essential to develop 
efficient and versatile algorithms for the evaluation of matrix 
elements of the U(n) generators and of their products. In the 
UGA formalism it is traditional to adopt the Gel'fand-Tset­
lin basis although it is sometimes more convenient to adopt 
other bases. 18-20 (This is particularly true for the "group" 
function type approaches l9,20 when a molecular wave func­
tion is built from the wave functions of subsystems.) This 
problem dates back to the original work of Gel'fand and 
Tsetlin21 and Baird and Biedenharn22 who developed explic­
it formulas for matrix elements of all U (n) generators in the 
Gel'fand-Tsetlin basis. More recently an alternative alge­
braic approach to this problem was developed.23 The general 
formalism of Refs. 21-23 considerably simplifies for the 
many-electron problem since at most two-column irreps of 
U (n) need be considered. This simplification 1,2 together 
with its graphical representation3 has led to the development 
of numerous computational implementations.6-11 

Recently a new approach to the evaluation of the U (n) 

a) Permanent address: Department of Applied Mathematics. Department 
of Chemistry and (GWC)2, University of Waterloo. Waterloo, Ontario. 
Canada N2L 3G 1. 

generator matrix elements was undertaken,24.25 following an 
earlier work of Nikam and Sarma,26 which exploits the im­
bedding of U(n) in the much larger group U(2n ) via the 
subgroupsSO(2n + 1) andSO(2n). The main advantage of 
this approach,24,25 which is referred to as a Clifford algebra 
UGA (CAUGA) in view of the role played by spin represen­
tations, is that the U(n) generator matrix elements may be 
efficiently evaluated by exploiting the simple action of the 
U (2n 

) generators on the basis states of the totally symmetric 
tensor representations. This approach also enables the treat­
ment of particle-number-nonconserving operators and cou­
pling schemes other than the canonical Gel'fand-Tsetlin 
scheme,20 thus providing a greater flexibility in the construc­
tion of many-electron bases and in the development of perti­
nent computational algorithms in general. 

It is our aim here to investigate this problem from the 
viewpoint of parastatistics, first introduced by Green27 as a 
generalized method of field quantization that includes nor­
mal Fermi and Bose statistics as a special case. (For a de­
tailed account of parastatistics and its applications in quan­
tum field theory see Ref. 28 and references cited therein.) 
We shall demonstrate that, from the viewpoint of the U (n) 
generator matrix element evaluation, it suffices to consider 
the pth spinor representation of SO (2n + 1), which always 
occurs exactly once in the symmetric pth-rank tensor repre­
sentation ofU(2n). This in turn enables the CAUGA for­
malism to be described in terms of the para-Fermi algebra. 
We have previously demonstrated29 that parafermions of or­
der 2 occur naturally in the spin-independent many-electron 
correlation problem, where this approach provides addi­
tional flexibility and convenience. However, it is felt that the 
same should hold for a general many-fermion problem since 
the CAUGA imbedding enables one to reduce the evalua­
tion of U (n) generator matrix elements for any p-column 
irrep to that for the totally symmetric pobox irrep [P,D] of 
U(2n 

). 

II. THE CAUGA FORMALISM 

In the Clifford algebra unitary group approach2o,24,25 
(CAUGA) we exploit a realization of the spinor algebra of 
the rotation group SO(2n + I) in the covering algebra of 
U (2n) to obtain explicit representation matrices for the 
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SO(2n + I) [or SO(2n) or U(n)] generators in the basis 
symmetry adapted to the chain 

U(2n) ::JSO(2n + 1) ::JSO(2n) ::JU(n), 

supplemented, when desired, by the canonical Gel'fand­
Tsetlin chain. 

The above chain has been first employed by Moshinsky 
and Quesne30 in connection with a study of dynamical or 
noninvariance groups for a general n-Ievel many-fermion 
system and of the concept of complementary subgroups 
within a given irrep of a larger group. The SO (2n + 1) part 
of the chain was introduced even earlier by Helmers3l and 
Judd. 32 

To achieve a desired realization of the SO(2n + 1) gen­
erators that also establishes the relationship with parastatis­
tics formulation we employ the second quantization formal­
ism and introduce p sets of fermion annihilation operators af 
(a = I, ... ,p, i = I, ... ,n), which satisfy the commutation and 
anticommutation relations 

(af,of] = [af,a t f] = 0, a =/:/3, 
(1) 

together with relations conjugate to these. Throughout, we 
assume the existence of a unique vacuum state 10) on which 
all the fermion annihilation operators af vanish, Le., 

aflO) = 0, a = I, ... ,p, i = I, ... ,n. 

We shall find it convenient to define fermion operators 
a; (p = 1, ... ,2n), according to the convention 

af=atf, f=i+n U= I, ... ,n). 

With this notation the relations of Eq. (I) may be conve­
niently expressed as 

[a;,a~] = 0, a =/:/3, {a;,a~} = gpa' (2) 

where gpO" is the (symmetric) SO(2n) metric defined by 

{
I, iflp-ul =n, 

gpa = 0, otherwise. 

If gPO" ( = gpO" ) denotes the inverse metric, we may raise and 
lower the indices according to 

(aa)p = gPO"a~, a; = gpO" (aa)O", etc. (3) 

For each a = I, ... ,p the operators H a;,a~] and a;/../2 
(j.t,v = 1, ... ,2n) form the generators of an SO(2n + 1) 
group,23,33 herein denoted as SOa (2n + 1). We let 
SO(2n + I) denote the diagonal subgroup of 

p 

® SOa (2n + 1). 
a=l 

This is, in fact, the SO(2n + I) group considered ear­
lier.24--26 The generators of the U(n) subgroup of 
SO(2n + 1) are then expressible as29 

(4) 

We denote the Hilbert space of all polynomials in the 
fermion creation operators atf (a = l, ... ,p) acting on the 
vacuum state 10) by K. The set of all polynomials in the 
fermion creation operators a tf (of a fixed type a) acting on 
the vacuum state 10), herein denoted Ka, constitutes the 
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2n-dimensional fundamental spinor representation of 
SO a (2n + 1). At the same time, the space K a constitutes 
the vector representation of a U(2n 

) group,24--26 herein de­
noted Ua (2n ). The full space of states Kmay then be iden­
tified as the tensor product space 

K=K1 ®K2 ®"'®Kp , (5) 

with 

dimK= 2np
• 

The space of states K clearly carries a reducible representa­
tion (by tensors of rank p) of the diagonal subgroup U (2 n ) 

of 

The CAUGA formalism exploits the fact that all irreps 
of U (n) with at most p columns in the Young tableau occur 
(at least once) in the pth fundamental symmetric tensor 
rep [P,O] of U(2n). Thus the fully symmetz:ic component 
Ks ofthe tensor product space K, Eq. (5), plays a funda­
mental role in CAUGA. Clearly, the space Ks is spanned by 
all polynomials in the fermion creation operators atf, acting 
on the vacuum state 10), which are totally symmetric in the 
superscripts a, and carries the symmetric pth-rank tensor 
rep [P,O] ofU(r). It should be remarked that we could also 
employ other components of the tensor product space K 
such as, for example, the antisymmetric rep [IP ,0] of 
U(2n). However, we are only guaranteed to get all the U(n) 
irreps with at most p columns in the Young tableau if we 
employ the fully symmetric component Ks of K (cf. Refs. 
20, 24, and 25). 

The space Ks constitutes a reducible rep of the sub­
group SO(2n + 1) of U(2n). The branching rules for the 
reduction of Ks into the irreps of SO(2n + 1) are clearly 
given by the reduction of the symmetrized pth power of the 
fundamental spinor rep (~,!, ... ,~) ofSO(2n + I). In general, 
the U (2n ) ~SO(2n + I) branching rules present a formida­
ble problem, which dates back to the pioneering work of 
Brauer and Weyl,34 Mumagham,35 and Littlewood.36 These 
earlier results have been recently extended by Butler and 
Wyboume37 and King et al.38

,39 

The U(2n )!SO(2n + I) branching rules for the [2,0] 
and [12,0] irreps ofU(2"), which are relevant to CAUGA, 
were shown by Brauer and WeyJ34 (see also Kingetal. 39

) to 
be 

[2,OHSO(2n + 1) 

= (I n ) ED { ED [( I" - 3 - 4',0) ED (1 n - 4 - 4',0)]}, (6) 

[12,0]!SO(2n + I) = ED [(1n-I-4,,0) ED (1"-2-4',0)]. , 

These results are sufficient for the many-electron problem 
where it suffices to consider2o,24 the [2,0] irrep of U(2n 

). 

The process, however, quickly becomes complicated for 
higher tensor reps of U (2 n ) although a general prescription 
for obtaining the U(2n )!SO(2n + 1) branching rules for 
the symmetric reps ofU(2n

) has been outlined by King et 
al.39 
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Although the general U (2" ) tSO(2n + 1) rules ~e 
complicated it can be shown that the symmetric irrep [P,O] 
of U(2") contains precisely one representation of 
SO(2n + 1) with the highest weight (P/2) == (pI2,pI2 •... ,pl 
2). This rep of SO (2n + 1) will be explicitly constructed in 
the subsequent section using the methods of parastatistics. 
Using the representation theory for the para-Fermi algebras 
we shall find that, from the viewpoint of the evaluation of 
U(n) matrix elements, it suffices to restrict ourselves to the 
irreducible SO(2n + 1) subrepresentations (PI2) of the 
(symmetrized) space 7t"'s. 

In this context we should note that the dimension of the 
SO (2n + 1) irrep (P/2) given by Bracken and Green33 (sec­
ond equation on p. 353 of Ref. 33) is, in fact, the dimension 
ofthe totally symmetric p-column irrep [P,O] of U (2" ), 

. ' (2" +p -1) dlm[p,0]U(2") = p' (7) 

The dimension of (P/2) ofSO(2n + 1) cannot be easily ex­
pressed by a simple formula. Designating this dimension by 
Dp we can find, however, the recursion formulas 

Dp = 2"[ e:)(n: 2k) -1]Dp_ 1• 

whenp = 2k + 1 (odd), (8a) 

and 

= _ "[(2(k + n) - 1)(n + k - 1) -l]D 
Dp 2 p-i> n n 

whenp = 2k (even). (8b) 

Since 

Do = Dim(O) = 1, 

we find easily that 

n=3: U(8) :::>SO(7) :::>SO(6) :::>U(3): 

[2,0]lSO(7) = (13) -+ (0) , 
(36) (35) (1) 

[12.0]!SO(7) = (tz) -+ (1) , 
(28) (21) (7) 

(9a) 

(9b) 

(9c) 

(9d) 

(ge) 

It is also instructive to examine the actual subduction 
for the irreps [2,0] and [12,0] ofU(2") tobothSO(2n + 1) 
and U(n) subgroups. [The latter can be easily obtained by 
considering the symmetric and antisymmetric components 
of the second tensor power ([ 0] Ell [1] Ell [12] 
Ell'" Ell [1" ]) .. 2 using the Littlewood-Richardson rules.] 
We note that only in the lowest-dimensional case, i.e., 
U(2) :::>SO(3) :::>SO(2) :::>U(1), are both subductions mul­
tiplicity-free since [2,0]!SO(3) = (1) and [12]lSO(3) 
= (0) with corresponding dimensions 3 and 1, respectively. 

Subducing to the Abelian group U ( 1) we have [2.0] ~ U ( 1 ) 
= [0] -+ [1] -+ [2] and [12]~U(1) = [1]. The case n = 2 

yields already two irreps for the [12,0] ~SO(5) subduction. 
namely (1) -+ (0), while [2,0]!SO(5) = (12). Thus [2,0] 
~U(2) = [0] -+ [1] -+ [12] -+ [2] -+ [2,1] -+ [22] and 
[12,0] = [1] + 2[12] + [2,1]. However, starting with 
n = 3 both subductions yield multiple irreps. We present 
below cases n = 3 and 5 as examples. Note that while the 
symmetric irrep [2,0] of U(2" ) contains all possible two­
columned irreps of U (n), this is not the case for the [1 2,0] 
irrep ofU(2"), which has the irreps of the type [2'] (and 
the scalar irrep [0] ) missing. For simplicity we drop zeros in 
the SO (2n + 1) and U (n) irrep labels. The dimensions of 
the respective irreps are indicated in parentheses. 

[2,0]!U(3) = [0] -+ [1] -+ [12] -+ 2[13] -+ [2] -+ [2,1] -+ [2Y] -+ [22] -+ [22,1] -+ [23] , 
(36) (1) (3) (3) 2X (1) (6) (8) (3) (6) (3) (1) 

[12,0]lU(3) = [1] -+ 2[12] -+ 2[13] -+ [2,1] -+2[2Y] -+ [22,1]. 
(28) (3) 2 X (3) 2 X (1 ) (8) 2 X (3) (3) 

n=5: U(32) :::>SO( 11) :::>S0(10) :::>U(5): 

[2,0]lSO(11) = (15) -+ (e) -+ (1), 
(528) (462) (55) (11) 

[12,0]lS0(11) = (14) -+ (13) -+ (0), 

(496) (330) (165) (1) 
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[2,0]! U (S) = [0] -i- [1] -i- [12] -i- 2 [ 13] -i- 3 [ 14] -i- 3 [ 15] -i- [2] -i- [2,1] -i- [2,12] -i- 2 [2Y] -i- 3 [2,14] 
(S28) (1) (S) (10) 2X(10) 3X(S) 3X(1) (1S) (40) (4S) 2X(24) 3X(S) 

-i- [22] -i- [22,1] -i- [22,n -i- 2[22,13] -i- [23] -i- [23,1] -i- [23,12] -i- [24] -i- [24,1] -i- [25], 
(SO) (7S) (4S) 2X(10) (SO) (40) (10) (1S) (S) (1) 

[12,0]!U(S) = [1] -i- 2[12] -i- 2[13] -i- 2[14] -i- 3[15] -i- [2,1] -i- 2[2,12] -i- 2[2,13] -i- 2[2,14] -i- [22,1] 
(496) (S) 2X(IO) 2X(10) 2X(S) 3X(1) (40) 2X(4S) 2X(24) 2X(S) (7S) 

-i- 2[22,t2] -i- 2[22,13] -i- [23,1] -i- 2[2\12] -i- [2\1]. 
2X (4S) 2X (10) (40) 2X (10) (S) 

Note that the dimension of the irrep (p/2) ofSO(2n + 1) 
for the case p = 2, i.e., of the irrep (In) of SO(2n + 1), 
which is always contained in the irrep [2,0] ofU(2n

) [cf. 
Eq. (6)] and whose dimension is given by Eq. (9c), i.e., 

n = 3, dim(13) = G) = 3S, 

n = S, dim(15) = CSl) = 462, etc., 

equals the sum of the dimensions of all the two-column ir­
reps of U(n), as may be easily verified in the case of the 
examples given above. 

III. PARA-FERMI ALGEBRAS 

Following the ansatz prescribed by Green27 we define 
the operators ap (p = 1, ... ,2n). 

(10) 

which satisfy the relations 

[ap' [aJJ ,av ]1 = 2(gpJJ av - gpvaJJ)' (11a) 

ajajlO) = p8(10), 

i,j = 1, ... ,n, J-L.v,p = 1, ... ,2n, (lIb) 

where we raise indices in accordance with Eq. (3); i.e., 

(12) 

Equations (l1a) and (l1b) are the defining relations for 
parafermions of order p.27.33 We note that parafermions of 
order 1 correspond to normal fermions. 

In the following we denote the space of all polynomials 
in the para-Fermi creation operators a j = fr; (i = l .... ,n) 
acting on the vacuum state 10) (i.e., the para-Fermi Fock 
space) by Yp. Since the para-Fermi creation operators. as 
defined by Eq. (10), are symmetric in superscripts a, it fol­
lows that the para-Fermi Fock space Yp is contained in the 
fully symmetric component Ks of the full space of K. 

Using commutation relations of Eq. (1Ia) it may be 
easily verified that the operators 

aJJv = H aJJ,av ] (13 ) 

satisfy the following commutation relations: 

[aJJV,apu ] = gvpaJJu + gJJuavP - gJJPavu - gvuaJJP' 
(14a) 

(14b) 

The commutation relations ofEq. (14a) show that the oper-
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ators (13) constitute the generators of the group SO (2n) 
while the operators 

aJJv • apl,fi. (IS) 

constitute the generators of the group SO (2n + 1). It thus 
follows that the unirreps (unitary irreps) of the para-Fermi 
algebra are to comprise finite-dimensional irreps of 
SO(2n + 1). The representation carried by the Fock space 
Y P' for parastatistics of order p is uniquely characterized as 
that representation which admits a unique vacuum state sat­
isfying the conditions ofEq. (lIb). We remark that it is also 
possible to introduce the pseudo-orthogonal group 
SO (2n + 1, 1) into the parafermion algebra.29 although this 
will not be done in the present treatment. 

The SO(2n + 1) group with infinitesimal generators 
(1S) constitutes the SO (2n + 1) subgroup of U (2n) em­
ployed by Sarma et al.2

4-26 As a Cartan subalgebra of 
SO(2n + 1) [and ofSO(2n)] we choose the operators 

hj = a;, i = l, ... ,n, (16) 

which serve to uniquely label the weights ofSO(2n + 1). It 
is easily seen33 that the vacuum state 10) constitutes a mini­
mal weight state ofSO(2n + 1) weight 

( - p12, - pI2, ... , - pI2). 

It thus follows that the space of para-Fermi states Yp kKs 
carries the SO(2n + 1) irrep with the highest weight 

(pI2,pI2, ... ,pI2) == (p/2). (17) 

This is precisely the SO(2n + 1) irrep referred to in Sec. II. 
The para-Fermi number-preserving operators 

(18) 

constitute the generators of the unitary subgroup U(n) of 
SO (2n). Following Refs. 29 and 33 we work instead with the 
shifted U(n) generators (cf., also, Refs. 20 and 24) 

E; = H aj,aj ] + !p8;, (19) 

where p is the order of parastatistics. It is easily demonstrat­
ed29 that the U(n) generators (19) agree with the prescrip­
tion of Eq. (4) and hence constitute the generators of the 
U(n) subgroup of U(r) considered in CAUGA,24-26 as 
required. The para-Fermi Fock space Yp possesses the re­
markable property that it decomposes into a direct sum of 
U (n) irreps of the form A. = (..1. 1).2''''). n ) with 

(20) 

and that all such irreps occur exactly once.28.33 In other 
words, all irreps ofU (n) with no more than p columns in the 
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Young tableau occur in Y p with unit multiplicity. 
Since Yp ~J7" .. the above results imply tha~ allp-col­

umned representations of U (n) occur in the [P,D] irrep of 
U(r) at least once, as noted earlier in Refs. 24 and 25. In 
fact, our approach demonstrates an even stronger result, 
namely that from the viewpoint of U(n) matrix element 
evaluation it suffices to work in the subspace Yp ~J7"s cor­
responding to parastatistics of order p. 

IV. CONCLUSIONS 

We have shown that the CA UGA formalism (or its gen­
eralization to fermions with p internal degrees of freedom) 
may be described in terms of the para-Fermi algebra of order 
p. This adds a new insight into the CAUGA and opens up the 
possibility of exploiting the existing extensive work on para­
Fermi algebras (cf., e.g., Ref. 28). It is believed that the 
CAUGA approach is of particular relevance for the spin­
independent many-electron correlation problem where the 
second-order para-Fermi creation and annihilation opera­
tors, corresponding to the creation and annihilation of spin­
averaged paraparticles, occur naturally. 29 

Finally, we remark that from the viewpoint of Clifford 
algebras, an alternative (but equivalent) representation of 
the para-Fermi algebra (11) may be given in terms of the 
elements of a generalized Clifford algebra (cf. Ramakrish­
nan40) 

f3j =a j +ai, f37=i(aj -ai), j=j+n, j=l, ... ,n. 

(21) 

This defines Clifford algebra elements f3p for p = 1, ... ,2n. It 
is easily verified, using the para-Fermi relations (11), that 
the Clifford algebra elements ofEq. (21) satisfy the general­
ized Clifford algebra relations 

(22) 

The relations of Eq. (14) show that the operators 

(23) 

satisfy the relations 

(24) 

[f3 p.v,f3 pu] = 8pvf3 p.u - 8p.uf3 pv - 8pp.f3 vu + 8vuf3 pp.' 

which we recognize as the SO(2n + 1) commutation rela­
tions, with choice ofmetricgRs = 8RS (R,S = 1, ... ,2n + 1). 
The elements of a normal Clifford algebra,40 which corre­
sponds to a generalized Clifford algebra of order 1, satisfy 
the relations of Eqs. (22) and (24), as required. 
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On the initial value problem for a class of nonlinear integral evolution 
equations including the sine-Hilbert equation 
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~ .~ethod for solvin~ a ~lass of nonlinear singular integral evolution equations for decaying 
mltial values on the hne IS presented. The underlying scattering problem is a matrix Riemann­
!lilbert problem. S~atteri~g analysis shows that the spectrum is purely discrete. An application 
IS to the so-called sme-Htlbert equation He, = - c sin e, where c is a constant and H denotes 
the Hilbert transform. 

I. INTRODUCTION 

The inverse scattering (or spectral) transform (1ST) 
method has been shown to be a powerful tool for solving 
suitable initial value problems for certain nonlinear evolu­
tion equations (see, for example, Refs. 1 and 2). All of the 
physically interesting equations solvable by the inverse scat­
tering transform take on a very simple form. Indeed often the 
work of the asymptologist is to derive special, simple equa­
tions in a suitable asymptotic zone. The governing equation 
here [see (5) below] is a particularly simple one. Although 
Eq. (5) has not yet appeared in a concrete physical situation, 
it provides a simple solvable model for a nonlinear evolution 
equation with a dispersion relation w(k) = a sgn(k). Per­
haps publication of this work might motivate asymptologists 
to look for such a system. It should be pointed out that the 
mathematical structure of the direct and inverse scattering 
problem associated with this nonlinear equation is quite dif­
ferent. Given the fact that the inverse scattering transform is 
associated with many physically relevant problems, we feel 
that researchers would want to be knowledgeable about such 
novel features of related problems. Indeed it can be expected 
that such situations would arise in other problems as well. 

II. THEORY 

In this paper we present the 1ST associated with the 
following class of matrix nonlinear evolution equations3

,4: 

Q,=u3P(L)Q, Q=Q(x,t), (1) 

where 

LF=iu3(~1 + Q2HF- !QH([Q,F]I~1 + Q2»), 

~1 + Q2 = ~1 + Q12Q21' 
(2) 

Here F and Q are off-diagonal 2 X 2 matrices, 
U 3 = diag(1, - 1) is the usual Pauli spin matrix, p(y) is an 
arbitrary polynomial in y, [ , ] is the usual commutator, 
and 

1 foo (H/)(x)=-;; -00 dy(y-X)-I/(y) (3) 

is the Hilbert transform. 
Equation (1) is the first known example of a class of 

a) Permanent address: Dipartimento di Fisica. Universita di Roma. La Sa­
pienza. 00185 Roma. Italy. 

nonlinear evolution equations which are purely integral in 
space. It is solvable via a purely local Riemann-Hilbert spec­
tral problem. Its introduction3 was originally motivated by 
the discovery that physically relevant integrodifferential 
equations such as the intermediate long wave equation5- 9 are 
solvable via differential Riemann-Hilbert 1ST schemes. 10-12 

It is known that (1) possesses an infinite family of con­
servation laws. 3 The derivation of this result requires only 
the use of the elementary properties of the associated scatter­
ing problem. 

As alluded to above, this scattering problem is an exam­
ple of a pure (nondifferential) Riemann-Hilbert (RH) 
probleml3 in configurational space x. The solution exhibits, 
as we will see below, a new type (for problems on the infinite 
line) of singularity structure in the spectral variable z, con­
sisting only of polar singularities clustering at finite points of 
thez plane. 

Before describing these properties in detail, we briefly 
discuss the first element of class (1), obtained by choosing 
p(y) = - icy, 

Q12, = c~1 + QI2Q2IHQI2' 

Q21, = c~1 + Q12Q21HQ21' 

(4a) 

(4b) 

which, in the obvious reduction QI2 = Q21 = v, can be writ­
ten in the following suggestive form (taking account of the 
property H 2 = - 1): 

He, = - c sin e, v(x,t) = i sin e(x,t). (5) 

The analogy between Eq. (5) and the sine-Gordon equation 
ex, = sin e led us to refer to it as the sine-Hilbert equation.4 

We also note in pasing the compelling analog with the 
Korteweg-de Vries equation and the Benjamin-Ono equa­
tion whereby going from the KdV equation u + uu + u t x xxx 

= O.to the Benjamin-Ono equation u, + uUx + Huxx = 0 
we SImply replace one of the x derivatives by the Hilbert 
transform H. 

The solution of the initial value problem associated with 
the linearized version 

He, = -ce 

of Eq. (5) is given by 

e(x,t) = eic'A + (x) + e - iC'A - (x), 

whereA ± (x), defined by 

(6) 

(7) 
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A ±(x)= ± (±OO dk O(k,O)eikx, 
Jo 21T 

(8) 

are the boundary values on the line 1m x = 0 of functions 
holomorphic in the upper and, respectively, lower half x 
plane, and O(k,O) is the Fourier transform of the (localized) 
initial condition u(x,O). 

The peculiar time dependence of the general solution 
( 7) corresponds to the dispersion relation 

OJ(k) = - c sgn(k), (9) 

in which the frequency OJ depends only on the sign of the 
wave number k and not on its magnitude. The independence 
of OJ from I k I is, forinstance, a property of the wave propaga­
tion in some fluid dynamical systemsl4 and seems to allow 
the possibility of a physical interpretation of Eq. (9) and, 
perhaps, of the full nonlinear equation (5); these two ques­
tions are still open. 

The Lax pair associated with Eq. (1) is given by the 
following 2 X 2 matrix equations3.4: 

,p- (x,t,z) = G(x,t,z),p+ (x,t,z) , 

G(x,t,z) =1 + zU3 + U(x,t), xER, (10) 

,pt± (x,t,z) = ~ (znu3 + nil zj(P ± V n~j )(X,t)) 
2 j=O 

X,p± (x,t,z). (11) 

In formula (10) I is the identity matrix, Z plays the role of a 
spectral parameter, and U(x,t) is a z-independent 2 X 2 ma­
trix given in the form 

U(X,t) = ,)1 + Q2(X,t) - 1+ Q(x,t), (12) 

where Q, introduced in (1), is the off-diagonal part of U. In 
what follows we take the p(y), introduced in (I), to be 
p(y) = an yn, nEN; this is for convenience only. We have 

V n~j =2L n-j-IQ + (11,)1 + Q2) [Q,L n-j-IQ], 
(13) 

LQ is given by (2), and the P ± are the usual projection 
operators 

(P±f)(x)= ± -. dy(y- (x±iO»)-1(Y). 1 foo 
2m - 00 

(14) 

Given a Holder matrix function U(x), Eq. (10) defines 
a homogeneous matrix RH problem on the line 1m x = 0 of 
the complex x plane, and ,p + (,p - ) is the boundary value of a 
function holomorphic in the upper (lower) half x plane. 
Equations ( 11 ) describe the corresponding time evolution of 
,p±. 

Equation (12) implies that 

det[I +zu3 + U(x,t)] = l-z2, (IS) 

with the following important consequences4: (i) the matrix 
1+ zU3 + U(x,t) is invertible for every XER [this is a neces­
sary condition for the solvability of (10)]; and (ii) the total 
index K of the matrix RH problem (10) is zero, since 

K = (1I21T)[arg(det(I + zU3 + U(x,t»))] ~ 00' (16) 

where [f(x)] ~ 00 =f( 00) - f( - 00). Then an important 
theorem due to Gohberg and Krein 15 shows that "generical-
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ly" the two partial indicesKI,K2 (K = KI + K2 ) are both zero. 
This fact guarantees the existence and uniqueness of the 

fundamental matrix solutions,p± (x,z) of (10) (here and in 
the following we omit the time dependence when not need­
ed), satisfying the following boundary conditions: 

,p+ (x,z) --+ I, ,p- (x,z) --+ 1+ zu3, (17) 
Ixl ~ 00 Ixl ~ 00 

which are a consequence of the requirement that Q(x) van­
ishes as Ix 1--+ 00 sufficiently rapidly. Equations (17) suggest 
the introduction of functions p ± (x,z) defined by 
p+(x,z)=,p+(x,z) and p-(x,z)=,p-(x,z)(I +z(3)-J. 

They obviously satisfy the RH boundary value problem 

p+(x,z) -p-(x,z) + Z(u3p+ (x,z) -p-(x,z)u3) 

+ U(x)p+(x,z) = 0, (18a) 

p ± (x,z) --+ I, (18b) 
Ixl- 00 

and have the following interesting property: 

detp ± (x,z) = 1, (19) 

which is a direct consequence ofEq. (15) (see Proposition 
IV of the Appendix). 

If (18) has a unique solution then it can be given in 
terms of the following matrix integral equations: 

p + (x,z) + (/ + z(3) -Ip + (Up + )(x,z) = I, 

p- (x,z) - P - (Up + )(x,z)(I + z(3) -I = I. 

(20a) 

(20b) 

These equations can have homogeneous matrix solutions 
¢J±(j)(x), j= 1,2, ... (corresponding to the eigenvalues 
Z = Zj) that satisfy the equations 

¢J + (j)(x) + (/ + ZP3) -Ip + (U¢J + (j»(x) = 0, 

¢J- (j)(x) - p -( U¢J+ (j»(x) (/ + Zj(3)-1 = 0, 

with the boundary conditions 

¢J±(j)(x) =O(x- I
), Ixl~l. 

(21a) 

(21b) 

(22) 

Because of (22), the eigenvalues Zj are bound states of 
( 18a); they correspond to the nongeneric case in which the 
partial indices KI and K2 are different from zero 
(KI = - K2 ¥0), when there does not exist a unique solution 
of (18). 

For suitable potentials Q(x) the structure of (20) and 
Fredholm theoryl6 imply that the matrices p ± (x,z) are ho­
lomorphic in the complex Z plane except for possible poles 
that generically cluster at ± 1. A sketch of the proofis given 
in the Appendix (Proposition I and its consequences). The 
poles of p ± (x,z) correspond to the homogeneous solutions 
ofEqs. (20). Here we assume that they are simple (with a 
genericity argument) and that the following representation 
formula holds: 

00 

p ± (x,z) = 1+ L 
j= - 00 

± 1, jEZ. 

(23) 
The first consequence of Eqs. (21) is that the 2 X 2 ma­

trices ¢J ± (I) (x) are singular; precisely 

'f'12 _ ± ± (I) 
(
"'± (I)(X») 
¢J2=j(I)(X) -a, n (x), fEZ, (24) 
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where II ± (I) indicate the first column vectors of the matri­
ces ¢± (I): 

and 

a/- = [(1 +z/)/(1-z/)]a/. 

Equations (21) also imply that 

lim xII 1+ (I) (x) = lim xIII-(l)(x)=c/> 
ixi-oo ixi-oo 

(25) 

(26) 

(27) 

(1 - z/) lim xII2+ (I) (x) = (1 + z/) lim xII2- (I) (x), 
ixi-oo ixi-oo 

(28) 

while Eqs. (19), (23), (24), (25), (26), and (27) imply that 

lim xIIl(l)(x) = -c/la/±. 
ixi-oo 

(29) 

Finally, useful information about U(x) is obtained by ex­
panding Eq.(18a) for largez and by using Eq. (23); 

00 

U(x)= L [¢-(j)(X)0'3-0'3¢+(j)(X)]. (30) 
j= - 00 

Significantly it turns out that the vector solutions 
II ± (I) (x), lE'l, of Eqs. (21) satisfy the following infinite­
dimensional algebraic system: 

lE'l. (31) 

The proof amounts to showing that the right- and left-hand 
sides ofEq. (31) satisfy the same integral equation. Here we 
give a sketch of the prooffor Eq. (31) + [the analogous proof 
for Eq. (31) - is omitted]. 

Using Eq. (21) + and the asymptotic properties (27) + 
and (29) +, one can show that xII + (I) (x) satisfies the fol­
lowing nonhomogeneous vector equations: 

xII + (I) (x) + (l + Z/0'3) -Ip +(U(xII + (/» )(x) 

= c/ ( _ l~a/ ), le'l. (32) 

On the other hand, manipulating Eq. (21) + , one obtains 

v+ (/)(x) + (l + Z/0'3) -Ip + (Uv + (/» (x) 

= c/ (_ l~a/ ) + vo+ (I)(x), 

where 

lE'l, 
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(33) 

(34a) 

XII+(j)(x) +p+ (U(_I~a/)) (X»). 

(34b) 

Since the ( + ) part ofEq. (30) implies that vo+ (/)(x) = 0 
the vector functions xII + (I) (x) and v + (I) (x) satisfy the 
same nonhomogeneous integral equation (32), then their 
difference is proportional to the corresponding homogen­
eous solution 11+ (/) (x); v + (I) (x) - xII + (/) (x) 

= r/II+ (I)(x), which is Eq. (31)+. 
The constant r/± may be evaluated from Eqs. (31) for 

large x and making use of Eqs. (27), 

(35) 

Equations (35) ±, (27), (18a), and (30) finally imply that 
r/ and r/- are connected through the following simple 
expression: 

(36) 

Conversely, one could prove that if the II ± (/) (x) are solu­
tions of the 00 -dimensional algebraic system (31), and (26) 
and (36) hold, then ¢ ± (/) (x) and U (x), defined by Eqs. 
(24), (25), and (30), respectively, satisfy Eq. (18a) [with 

f..L± (x,z) replaced by ¢±(/)(x) when z is replaced by zJ]. 

Moreover the reconstructed potential U(x) satisfies Eq. 
( 15). A sketch of the proof is given in the Appendix (Propo­
sitions II-IV). 

The direct problem is a linear mapping from the poten­
ial Q(x) to the scattering data 

(37) 

More precisely, given Q(x) [and then U(x) through Eq. 
(12)],f..L ± (x,z) and the bound statesz/ are in principle given 
by solving Eqs. (20), and then the ¢ ± (/) (x) are obtained 
taking the limit ¢ ± (I) (x) = limz_ z, (z - z/ )f..L ± (x,z). All 
the scattering data S can be constructed through the follow­
ing sequence of steps: c/ via Eq. (27); a/+ via a/ 
= - cJlimixi_oo xIIt (/)(x) [consequence of Eq. (29+]; 
r/ via Eq. (35) + and the a- and r/-, which are not inde­
pendent data, can be obtained using Eqs. (26) and (36), 
respectively. 

The inverse scattering problem, a linear mapping from 
the scattering data S to the potential Q, if formally per­
formed by solving the infinite-dimensional algebraic system 
(31) and then by making use offormulas (30), (24), and 
(25). 

The time evolution of the scattering data is obtained by 
observing first that the solutions f..L ± of ( 18) evolve in time 
according to the following equations: 
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J-lt± (x,t,z) = a; (z"[ (T3,J-l ± (x,t,z) ] 

+ ~t~ zi(p ± V n~j) (X,t») J-l ± (X,I,z). 

(38) 

The data evolve as follows: 

ZI (I) = ZI (0) = ZI' CI (t) = CI (0) = CI' 

a/ (I) = a/ (O)e°.,zl", (39) 

YI± (I) = YI± (0) - nanclz'i - It. 

In order to obtain the above equations for the time evo­
lution of the scattering data we first substitute Eqs. (23) and 
(30) into (38). This yields ZI = O. The other relationships 
can be found by taking the time derivative of (31) using (38) 
at Z = Z/o with J-l + (X,t,zl) replaced by t/J + (I) when z is re­
placed by ZI and evaluating the results as x -+ 00. 

Equations (39) complete the 1ST scheme 

evolution of 
direct problem scattering data inverse problem 

Q(X,O) - S(O) -S(t) • Q(X,t), 

(40) 

which reduces the solution of the Cauchy problem for Eqs. 
( 1) to a sequence of linear steps. 

The pure soliton solutions associated with the class of 
Eqs. (I) correspond to a finite number N of poles in formula 
(23). IfN= 1 (cj =0, !j!>l), E,qs. (31), (30), and (39) 
yield the following one-soliton solution: 

2Ccflo+ (t) ( + Co) QIZ(X,t) = - x + Yo (t) ---
l-zo 1 +zo 

X [(x + Yo+ (t»)(x + Yo- (t»)] -I, (41a) 

Q21 (x,/) = - 2co (x + Yo+ (t) - ~) 
(1 + zo)ao+ (t) 1 - Zo 

X [(x + Yo+ (t»)(x + Yo- (t»)] -I. (41b) 

It should be mentioned that in the reduction case 
QI2 = Q2\ [which is allowed for all the evolution equations 
(1) corresponding to n odd] the singularities of J-l ± (X,I,z) 
come in pairs z -I = - Zl and, correspondingly, 
a/(O)a~/(O) = 1, C_ I =CI, and Y~I =Y/; if 1=0, 
Zo = 0, and a o+ 2 (0) = 1. 

III. LINEAR LIMIT 

We conclude this paper by noting that the one-soliton 
solution (41) (when n = 1) provides, in an appropriate lim­
it, a particular solution of the linearized sine-Hilbert equa­
tion. The choices Co = iE, Zo = 1 - E, E -( 1 imply that 

Q12= - 2ieO,,(x + Yo- (0»)-1 

and 

Q2\= - iEe-O,,(x + Yo+ (0»)-1 

are particular solutions of the linearized version of (4). Then 
the linear combination 

Q(X,/) = b +e-O,,(x + Yo+ (0»)-1 

+ b -eO,,(x + Yo- (0»)-1, 
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b ± arbitrary constants (42) 

is the particular solution of Eq. (6) coming from (41); it 
coincides with ( 7) and ( 8 ) through the identifications 
A ± (x) = b ±(x + Yo± (0»-1 and C = ia l • 
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APPENDIX: RELEVANT PROPOSITIONS 

In order to prove that the matrices J-l ± (x,z) are holo­
morphic in the complex Z plane C, { ± 1} except for possi­
ble poles that generically cluster at ± 1, we first convert the 
RH problem (10), (17) into the linearintegral equation 

1J(x,z) + (K1J)(x,z) = h(x,z), (AI) 

where 

1J(x,z) =G(x,z){tV (x,z) - I) = G(x,z)(.u+ (x,z) - I), 
(A2a) 

(K/)(x,z) = J KI(x,y,z)G -I(y,z)/(y)dy, 

KI(x,y,z) = (217-;(Y - X»)-I(G(y,z) - G(x,z»), 

h(x,z) = - (211'i)-1 J:"" (y- (x+iO»)-IU(y)dy. 

The procedure is standard. 11 We define 

ij,+ (x,z) =l{I+ (x,z) - I, 

ij,-(x,z)=rp-(x,z) - (I +Z(T3); 

then 

ij,-(x,z) = G(x,z)ij,+(x,z) + U(x), 

ij,±(x,z) -+ 0, 
Ixl- "" 

(A2b) 

(A2c) 

(A2d) 

(A3) 

(A4a) 

(A4b) 

where ij,+ (x,z) and ij,- (x,z) are ( + ) and ( - ) functions, 
respectively, then 

J: "" (y - (x =1= iO»)-lij,± (y,z)dy 

=f"" (y - x) -lij,± (y,z)dy =1= 1I'iij,± (x,z) = O. 

(AS) ± 

Multiplying from the left Eq. (AS) + by G(x,z) and sub­
tracting it from Eq. (AS) _ [in which ij,-is replaced by for­
mula (A4a)], we finally obtain Eq. (AI). 

Proposition I: The hypotheses on U(x), 

U(x),ux (x)eL "", (A6a) 

Santini, Ablowitz, and Fokas 2313 



                                                                                                                                    

tr(u3 U(x») = tr U(x) + det U(x) = 0, 

U(x) = 0, Ixl >M, M>O, 

imply that (a) the operator K2, defined by 

(Kd) (x,z) =G -I (x,z)f(x) , 

is bounded in L 2; (b) the operator K I' defined by 

(Kd)(x,z) = I: '" KI (x,y,z)f(y)dy, 

(A6b) 

(A6c) 

(A7) 

(A8) 

is compact in L 2. In the above Z is fixed. Furthermore, it can 
be shown that (A6) are preserved under the time flow. 

Remarks: Hypotheses (A6a) and (A6b) imply that 
there exist three positive constants bl,b2,b3 such that 

supIG-I(x,z)I<b l , xelR, (A9a) 

IKI(x,y,z) 1 <b2, (x,y)elR, (A9b) 

IG(y,z) - G(x,z) 1 <b3, (x,y)elR2. (A9c) 

Finally, the compact support potential U(x) in (A6c) yields 
a compact support kernel KI (x,y,z): 

KI(x,y) = 0, (x,y)eAo={(x,y)/lxl >M, Iyl >M}. 
(A9d) 

Proof of Proposition I: (a) is a direct consequence of 
(A9a): 

IIKdl12 = (1 dxlG -I(x)f(x) 12)112 

<b l (L dX lf(xW)1I2 

=bdlflb feL
2
. 

(b) follows from the fact that K I (x ,y ) eL 2 (lR 2 ). Indeed 
(A9d) implies that 

I L,IKI (X,y) 12 dx dy = I i IKI (X,y) 12 dx dy, (AlO) 

whereA = U]= IAj' andA2={(x,y)/lxl >M + 1, Iyl <M}, 

It should be observed that since 

(33) is equivalent to 

A 3 ={(x,y)/lxl <M, Iyl >M + 1}, 

Al = lR2 '\A 3 UAo. 

Then (A9) implies ffA, IKI12 dx dy<b~ (M + 1)2 < 00, 
and (A9c) implies 

Ii 
IKl12dxdy< M~ (I'" ly-MI-2dy 

A, 27T JM+ 1 

+ I_-~M+l) IY+MI- 2dY) <00. 

Since an analogous formula holds for the region A 3 , then 
ffR,IKI 1

2 dx dy< 00. 
Consequences: (i) The comp'actness ofKI and the boun­

dedness of K2 in L 2 imply that K = KIK2 is comp'act in L 2 

(Ref. 16); (ii) the compactness of the operator K and the 
particular Z dependence of its kernel 

K(x,y,z) = KI (x,y,z)G -I(y,z) 

= (1_~)-I[PI(X,y) +ZP2(X,y)], 

PI (x,y) = (21Ti(y - x) )-I( U(x) + u 3 U(y)U3 

+ U(x)u3 U(y)U3 ), 

P2(X,y) = (27Ti(y - X»)-I(U(y) - U(x»)u3 , 

imply thatthe solution 17 (x,z) ofEq. (A 1) is holomorphic in 
the complex Z plane C'\ { ± 1}, except for possible poles 
clustering atz = ± 1, which are the singularities of the ker­
nel in the complex z plane. 14 

Proposition II' If the n ± (/) (x) are solutions of Eqs. 
(31) within conditions (26) and (36), then the n±(/)(x) 
also satisfy the equations 

E(/)=(l +z/u3 + U)n+(/) - (l +z/(3 ) 

(A11) 

with U(x) given by 

(AI2) 

(AI3) 

cp+(/) -cp-(/) +z/(u
3
CP+(/) -cp-(/)u

3
) + Ucp+(/) =0, /el. (AI4) 

The above assertion is demonstrated as follows. From (31) we have 
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(
C) c (a + - a·- ) 

(x + r/ ) un + (I) = U / + L / / J 

- c//a/ j#-/ a/ (z/ - Zj) 

Adding (37a)-(37c) yields 

where 

Thus if a ± (I) and r ± (I) satisfy (26) and (36) then d (I) = 0 
and E(I) = 0 for IEZ since it satisfies 

c (a+ -a+) 
(x + r/ )E(I) - L / / J E(j) = 0, (A20) 

j#-/ a/ (z/ - Zj) 

i.e., the homogeneous version of (31).Then (All) follows 
from the assumption that the infinite-dimensional system 
(31) has a unique solution. Proposition II immediately im­
plies that J.L ± (x,z) , defined by Eqs. ( 23 ), satisfy the RH 
boundary value problem (18). 

Proposition III: If the n ± (I) (x) are solutions of Eqs. 
(31 ), then they satisfy the following equations: 

Il)± (I) (x) + a/± Il2± (I) (x) 

00 

+ L 
j= - 00 

d/ 

(A21) 

It should be observed that Eqs. (A21) are equivalent to the 
equation det J.L ± (x,z) = 1. 

In order to demonstrate Proposition III we manipulate 
Eqs. (31): 

2315 

= I c/(a/± -a/) 

fF/ a/± (z/ - Zj) 
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(A22) 

(AI6) 

(AI7) 

(AI8) 

(A19) 

a/± -a·± 
(x + r/±) L J (Il2± (j)(x)Il)± (I)(x) 

j#-/ z/ - Zj 

- Il)± (j)(x)Ill (I)(x») 

c(a±-a.±) 
= L / / J (Il)±(j)(x) + a/±Ill (j)(x») 

j#-/ a/ (Z/ - Zj) 

where 

+ LA l: (I)(x), IEZ, 
j#-/ 
v#-I 

A j~ (I) (x) =~ (a/± - al) (a/± - a v±) 

a/± (z/ -Zj)(z/ -zv) 

X (Il)± (V)(x)Il
2
± (j)(x) 

(A23a) 

- III (v) (x)Il)± (j)(x»), IEZ. (A23b) 

Since A .± (I) (x) = - A ± (I) (x) then 
)V V)' 

L A j~ (I) (x) = 0, 

d/ 
v#-I 

and the difference between Eqs. (A22) and (A23a) gives 
just Eq. (A21). 

Proposition IV: The soutionsJ.L ± (x,z) ofEq. (18) satisfy 
the equation detJ.L ± (x,z) = 1 if and only if the potential ma­
trix U (x) satisfies the following basic constraints: 

tr(u3 U(x») = 0, 

tr(U(x») + det(U(x») = o. 
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The above equations are equivalent to Eq. (15), or to Eq. 
(12). 

In order to prove Proposition IV it is convenient to in­
troduce the functions F+(x,z)==J.L+(x,z) and F-(x,z) 
== (l + ZU3 ) -IJ.L- (x,z) (l + ZU3 ); then the F ± (x,z) satisfy 
the RH boundary value problem 

F-(x,z) = [I + (l +ZU3)-IU(X)]F+(x,z), (A25a) 

F ± (x,z) ..... I, 
Ixl- 00 

(A25b) 

and, obviously, detF ± (x,z) = detJ.L± (x,z). IfEqs. (A24) 
hold, then Eq. (A25a) implies det F - (x,z) = det F + (x,z) 
which, together with Eq. (A25b) implies det F ± (x,z) = 1. 
Conversely, if detF ± (x,z) = 1, then det[I + (l 
+ZU3)-lU(X)] = 1, which is equivalent to Eq. (15), or 
Eq. (12), or Eqs. (A24). 

Recapitulating, we have shown that if the II ± (/) (x) are 
solutionsofEqs. (31) and the matrix functionsJ.L ± (x,z) and 
U (x) are defined in terms of II ± (I) (x) through Eqs. (23), 
(A13), and (30), respectively, then (i) J.L ± (x,z) and U(x) 
satisfy the RH boundary value problem (18) (Proposi­
tion II), (ii) detJ.L± (x,z) = 1 (Proposition III), and then 
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(iii) tr(u3U(x») = tr(U(x») + det(U(x») = 0 
(Proposition IV.) 
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in four-dimensional Euclidean space 

Y. Matsuno 
Department of Physics. Faculty of Liberal Arts. Yamaguchi University. Yamaguchi. 753. Japan 

(Received 24 February 1987; accepted for publication 10 June 1987) 

A systematic method for constructing particular solutions of the nonlinear Klein-Gordon and 
Liouville equations in four-spatial dimensions is developed. The method of solution presented 
here first consists of reducing nonlinear partial differential equations to ordinary differential 
equations (ODE's) by introducing symmetry variables and then seeking exact solutions for 
more tractable ODE's. Various exact solutions are presented, in which new solutions with 
nonspherical symmetries are included. Furthermore, the exact method is applied to the above 
equations in general n-spatial dimensions. Among them, a conformally invariant nonlinear 
Klein-Gordon equation is particularly interesting from the viewpoint of field theories. The 
exact solutions for these equations are generalizations of those for the corresponding equations 
in four-spatial dimensions. 

I. INTRODUCTION 

In this paper, we shall construct exact solutions for the 
following nonlinear Klein-Gordon equation: 

04tP + AtP P = 0, p#O,I, 

and the Liouville equation 

04tP + il 4J = 0, 

(1.1 ) 

( 1.2) 

in four-dimensional Euclidean space. Here, tP = tP(xl-') is a 
scalar function of the Euclidean coordinates xI-' ( Il = 1-4), 
the symbol 0 4 denotes the four-dimensional Laplace opera­
tor defined by 

4 a2 

0 4 = L -2 ' ( 1.3) 
1-'=1 axl-' 

and A and p are real parameters. 
These equations play an important role in various fields 

in physics. l
-4 In particular, Eq. (1.1) with p = 3 is closely 

related to scalar tP4 theory2 as well as the Euclidean Yang­
Mills equation with the t'Hooft ansatz3 while Eq. (1.2) rep­
resents a four-dimensional version of the Poisson equation. 
Therefore the investigation of exact solutions for these im­
portant equations may lead us to a deeper understanding of 
underlying physical phenomena. 

Although various exact methods such as the inverse 
scattering method,5-7 Backlund transformation,8.9 and bilin­
ear transformation method lO

•
11 etc. have been developed for 

analyzing nonlinear wave equations, the applicabilities of 
exact methods available nowadays are mainly restricted to 
lower-dimensional equations, namely those with one- or 
two-spatial variables in addition to one time variable. As for 
the higher-dimensional cases, however, there exists an exact 
method called "symmetry reduction.,,12-15 This method 
consists of reducing partial differential equations (PDE's) 
to ordinary differential equations (ODE's) by considering 
symmetry groups acting on the space of independent and 
dependent variables. The solutions constructed by this 
method are a generalization of so-called similarity solutions. 

Recently, the method of symmetry reduction has been 
applied to Eq. (1.1) withp = 5 and various special solutions 

have been presented. 16 On the other hand, to our knowledge, 
exact solutions for Eq. (1.2) have not been found in the 
literature except for a few works 17 while the Liouville equa­
tion in three-spatial dimensions has received much attention 
in connection with the soliton theory. 18.19 

The purpose of the present paper is to construct exact 
solutions of Eqs. (1.1) and (1.2) by reducing them to non­
linear ODE's. The basic idea is to introduce the following 
elementary symmetric functions of four Euclidean coordi­
nates xI-' as symmetry variables: 

SI =X1 +x2 +x3 +x4 , (1.4a) 

S2 = X 1X 2 + X IX 3 + X IX 4 + X 2X 3 + X~4 + X 3X 4, (l.4b) 

S3 = X1X~3 + X1X~4 + X 1X 3X 4 + X~3X4' (l.4c) 

S4 = X1X~3X4' (l.4d) 

and to rewrite Eqs. (1.1) and (1.2) in terms of these inde­
pendent variables. It should be noted that the symmetry 
variables (1.4) are different from those due to Grundland et 
al. 16 The equations thus obtained are then reduced to nonlin­
ear ODE's by introducing a new independent variable 
y = S2/S~, By solving these ODE's, various exact solutions 
are constructed for Eqs. (1.1) and (1.2). 

In Sec. II, we present exact solutions of the nonlinear 
Klein-Gordon equation in four-spatial dimensions by re­
ducing it to a second-order nonlinear ODE and study the 
properties of solutions. In Sec. III, the same procedure is 
applied to the Liouville equation in four-spatial dimensions 
to construct exact solutions. In Sec. IV, we discuss the non­
linear Klein-Gordon and Liouville equations in general n­
spatial dimensions and present some exact solutions for 
these equations. In particular, a conformally invariant non­
linear Klein-Gordon equation considered here will be quite 
interesting from the viewpoint of field theories. Section V is 
devoted to concluding remarks. 

II. NONLINEAR KLEIN-GORDON EQUATION 

A_ Reduction to ODE 

In this section, we shall consider the nonlinear Klein­
Gordon equation (1.1). Since the operator 0 4 is invariant 
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under all possible permutations of the four coordinates xp.' 
the solutions of Eq. (1.1) may be expressed as functions of 
the elementary symmetric functions defined by relations 
( 1.4). In terms of sl" the operator D4 is written in the form 

a 2 a 2 a 2 
D4 = 4 - + (3si - 2s2) - + (2s~ - 2sls3 - 4s4) -

asi a~ a~ 

a 2 a 2 a 2 
+ (~-2s~4)-+6sI--+4s2--

as~ aSl aS2 aSI aS3 

a2 a2 

+ 2s3 ---+ 2 (2s ls2 - 3S3) ---
aSI aS4 aS2 aS3 

a2 a2 

+ 2(SIS3 - 4s4) ---+ 2(S2S3 - 3SIS4) ---. 
aS2 aS4 aS3 aS4 

(2.1 ) 

Introducing (2.1) into Eq. (1.1), however, yields a quite 
complicated nonlinear PDE and a reduction to an ODE 
seems to be very difficult although the possibility cannot be 
denied. Therefore, in this paper, we shall confine ourselves to 
seeking solutions that are functions of only two independent 
variables S I and S2 and the more general cases will be treated 
elsewhere. Then, Eq. (1.1) takes the following form: 

a~ a~ a~ 4-+ 6s1--+ (3si - 2s2 ) --+..tcpP=O, 
asi as I aS2 a~ 

Pi=O,1. (2.2) 

At this point, one should remark that Eq. (2.2) is invariant 
under the scale transformations, SI-rSI' S2-rS2' and 
cp_r- 2I(P- I)cp (r: constant). Keeping this property ofEq. 
(2.2) in mind, we introduce the ansatz function / of one 
variable y as follows: 

cp = [v'/fsd(y)] - 2/(p - I), y = s2/si. (2.3) 

It then turns out that Eq. (2.2) is transformed into the fol­
lowing nonlinear ODE for f 

(2y - I)(Sy - 3)(ff" - p + 1/,2) 
p-l 

+ [S (3p + 1) y _ ~] ff' 
p-l p-l 

_ 4(p + 1) /2 _ P - 1 = 0 --'01 (2.4) 
p-l 2' Pr , , 

where the prime appended to / means the differentiation 
with respect to the independent variable y. This abbreviation 
will be used throughout the paper. Equation (2.4) is a basic 
equation that we consider in Sec. II B hereafter. 

B. Construction of exact solutions 

Now, let us seek exact solutions ofEq. (2.4). First of all, 
one readily notices that Eq. (2.4) possesses a constant solu­
tion, namely, 

/= ±i(p-1)/~S(p+l), (2.5) 

which, when substituted in (2.3), yields an exact solution of 
Eq. (1.1) in the form 

cp = [± i(p - 1)[..t /S(p + 1)] 1/2sJl -2I(p- I). (2.6) 
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We shall discuss the property of solution (2.6) in a special 
case ofp = 3 later. 

Next, we shall seek solutions of Eq. (2.4) that behave 
like/_ya wheny- - 00. One finds that a is determined by 
the following algebraic equation: 

(a - PIa - (p + 1)/4) = O. (2.7) 

Various possibilities arise according to the values of a andp. 
We first investigate the case of a = !. For this case, we as­
sume the solution in the form 

/= ± (ay + b)1/2, (2.S) 

and substitute (2.S) into (2.4), where a and b are unknown 
constants. Then, it readily follows that a and b are deter­
mined by the following system of algebraic equations: 

a = [(p - 1)/p)( - 4b + (p - 1 )/2), (2.9a) 

(p - 2)(p - 3)b 2 - i(p - 1)2(5p - 12)b 

(2.9b) 

There exist three possible solutions of Eq. (2.9) according to 
the values of p, namely p i= 2,3, P = 3, and p = 2, respective­
ly. 

1. a=J, p~2,3 
In the case of p i= 2,3, we have two pairs of solutions for 

Eq. (2.9). They are given by 

and 

a = - (p - 1)2/(p - 3), 

b=H(p_1)2/(p-3)], 

a = - (p -1)2/2(p - 2), 

b = H (p - 1 )2/(p - 2)], 

(2.1Oa) 

(2.1Ob) 

(2.11a) 

(2.llb) 

respectively. Substitution of (2.S) with (2.10) and (2.11) 
into (2.3) yields exact solutions of Eq. (1.1) in the forms 

cp=[± [v'/f(p-1)/~S(p-3)] 

x (3si - SS2) 1/2] - 2I(p - I) , 

cp = [± [v'/f(p -1)/~4(p - 2)] 

X (si - 2s
2

) 1/2] - 2I(p - 1). 

It follows by the definition of S I and S2 that 
4 

si -2s2 = L X!=X2, 
p.=1 

(2.12) 

(2.13 ) 

(2.14 ) 

and hence, expression (2.13) is the spherically symmetric 
solution of Eq. (1.1). This solution has already been ob­
tained by Burt.4 On the other hand, we obtain 

4 

3si-SS2= L (XI'-xv )2, 
I'.V= 1 

(I' <v) 

(2.15 ) 

and accordingly, expression (2.15) cannot be reduced to the 
form (2.14) by means of any transformation that leaves Eq. 
( 1.1) invariant under four-dimensional Euclidean groups. 
This fact implies that (2.12) represents a new exact solution. 
For p> 1, solution (2.12) is singular at xI' = Xv 

(/-l,v = 1-4) whileforp < 1, it is regular for all values of xI' . 

As already mentioned in the Introduction, Eq. (1.1) with 
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p = 5 has been discussed by Grundland et al. 16 However, it 
should be remarked here thatthesolution (2.12) withp = 5 
does not belong to the category of solutions that they have 
obtained. 

2.a=},p=3 

This special case is of considerable physical interest, 
since Eq. (1.1) with p = 3 becomes the field equation of the 
familiar scalar t/J4 theory.2 It is a well-known fact that Eq. 
( 1.1) with p = 3 is invariant under the following specific 
conformal transformation2: 

x,.. .... x,.. = (x,.. + c,..x2)/0'(x) , 

t/J(x) -¢(x) = t/J(x)/O'(x), 

with 
4 

O'(X) = 1 + 2 L c,..x,.. + C2X2 

,..=1 

where c,.. is a constant four-vector. 

(2.16a) 

(2.16b) 

Now, we shall begin to discuss the solutions. As already 
shown in (2.6), the equation exhibits a solution of the form 

t/J= ±i - LX,.. . {f( 4 )-1 
,.t ,..=1 

(2.17) 

At first sight, this solution seems to be a trivial plane-wave 
type one. However, if we apply both the conformal transfor­
mation (2.16) and the translation of the coordinates x,.. -x,.. 
+ i{:J /2 (J.l = 1 - 4) to (2.17), the solution can be trans­

formed into the form 

t/J = ± (8{:J2/,.t) 1/2 [1I(x2 + {:J2) ], (2.18a) 

where {:J is a real constant related to a four-vector c,.. by the 
relation 

(2.18b) 

The solution (2.18) is nothing but the well-known instanton 
solution first derived by Belavin et al.20 

Another solution of Eq. (1.1) with p = 3 is obtained 
from (2.8) and (2.9). The result is expressed in the form 

t/J = ± [,.t(~ - 1$2)] -1/2 = ± (,.tX2)-1/2. (2.19) 

This solution is spherically symmetric and is called the 
meron solution in gauge theory.3 

3.a=J,p=2 

In this case, an exact solution is given by (2.6) with 
p = 2, namely, 

24 (4 )-2 
t/J= -- LX,.. . 

,.t ,..=1 
(2.20) 

The solution is real, but singular on a four-dimensional 
I 

plane, l:~ I x,.. = o. On the other hand, another solution 
follows from (2.3), (2.8), and (2.9) withp = 2 in the form 

8 [ 4 ]-1 t/J = -- L (x,.. -xv)2 , 
,.t ,..,v=1 

<,..<v) 

(2.21) 

which seems to be a new exact solution. It is interesting to 
observe that spherically symmetric solutions of the form 
(2.13) do not exist for p = 2 in a striking contrast to the 
other cases. 

4. a=(p+1)/4, a: Integer 

In the preceding subsections, we have investigated the 
solutions for the case of a = ~. Here we shall discuss another 
possibility, namely, a = (p + 1)/4 [see Eq. (2.7)]. First, 
consider the case where a is an integer. In this situation, the 
value of the parameter p can be taken to be p = 4m + 3 (m: 
integer) without loss of generality, so that a = m + 1. Now, 
we assume solutions of Eq. (2.4) with p = 4m + 3 in the 
polynomial form 

m+1 

/= L ajym+1 ao#O, (2.22) 
j=O 

which is consistent with the asymptotic behavior of solutions 
/_ym+ I,andsubstitute (2.22) intoEq. (2.4). The resulting 
equation is the algebraic equation in y of order 2m + 2. 
Equating the coefficients of y j (j = 0-2m + 2) to zero, 
respectively, results in 2m + 3 algebraic equations for un­
knowns aj (j = 0 - m + 1). However, the equation that 
stems from the coefficient of y2m + 2 is satisfied identically 
because ofEq. (2.7). Therefore the number of independent 
equations for aj is at most 2m + 2 while the number of un­
knowns is obviously equal to m + 2. Hence, if the inequality 
m + 2;;;.2m + 2 holds, solutions of the form (2.22) would 
exist. The only possible value of m is m = 0, namely, p = 3, 
or equivalently a = 1. Indeed, we have found the following 
exact solution of Eq. (2.4) with p = 3: 

/= ± (-3y+V. (2.23) 

Substituting (2.23) into (2.3) with p = 3, we obtain a new 
exact solution of Eq. (1.1) with p = 3 in the form21 

t/J = ± (l/vA) [4sl/(5~ - 11$2)] 

2 l:!= IX,.. 
= ±-- 2 4 2 

vA X + !l:,...v= 1 (x,.. -xv) 
(2.24 ) 

This solution is regular except for the origin x,.. = 0 

(J.l = 1-4) and decays asymptotically liket/J-4/(5vA x,..) 
when x,.. --+ ± 00. 

Furthermore, if we notice the invariance of Eq. (1.1) 
withp = 3 under the conformal transformation (2.16), an­
other new exact solution can be generated starting from 
(2.24). The explicit form of the solution is written as follows: 

4 CIX
2 + l:!= IX,.. 

¢;= ± vA (5ci -12(2)x4+2(6l:!=tc,..x,.. -CIl:; IX,..)x2+6x2-l:!.v=t x,..xv ' 
(2.25a) 

where 

(2.25b) 
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C2 = L c,..cv • 
,..,v=1 
<,..<v) 

(2.25c) 
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At the present time, solutions of the form (2.22) have not 
been found except for m = 0 although we generally cannot 
deny the possibility of the existence of solutions. 

5. a=( p+I)/4, a: noninteger 

Finally, we shall briefly discuss solutions of Eq. (2.4) 
that correspond to nonintegral values of a. The simplest as­
sumption for possible solutions may be of the form 

/= ± (ay + b)(P+ 1)/4, p#O,l. (2.26) 

Substitution of (2.26) into Eq. (2.4) yields 

[!(p+ 1)(9p-7)a2 +6(p2-l)ab]y- [§(p+ I) 

X(3p-l)a2 +3p(p+ l)ab+4(p+ l)b 2
] 

- ~(p - 1)2(ay + b) - (p- 3)/2 = O. (2.27) 

There exists only one possibility in order for this equation to 
be satisfied for arbitrary values of y; one must choose p = 3. 
However, for p = 3, a becomes 1 and it must be excluded by 
the assumption of nonintegral values of a. Thus we can con­
clude that solutions of the form (2.26) with nonintegral val­
ues of (p + 1 )/4 do not exist for Eq. (2.4). 

III. LIOUVILLE EQUATION 

A. Reduction to ODE 

First, we introduce the dependent variable transforma­
tion 

¢ = (l/A)lng, (3.1 ) 

to recast the Liouville equation (1.2) into the following 
form: 

4 (ag )2 3 gD~- L - +Ag =0. 
Il = 1 aXil 

(3.2) 

Assuming that g is a function of the two variables S I and S2' 

Eq. (3.2) takes the form 

g 4~+6sI---+(3si-2s2)-2-[ 
a2 a

2
g a 2g ] 

asf aSI aS2 aS2 

4 ( ag )2 _ 6s ag ag 
- aSI 1 aSI aS2 

- (3sf -2s2 ) - +Ag3=O. (ag )2 
aS2 

(3.3 ) 

Moreover, we employ, by noting that Eq. (3.3) is invariant 
under the scale transformations, SI-+YSI' S2-+YS2, and 
g-+y-2g, the following ansatz: 

g = [Asf fey)] -I, y = s2/si. (3.4) 

With the aid of this ansatz, Eq. (3.3) is transformed into the 
nonlinear ODE forfas follows: 

(2y - I )(8y - 3)(ff" _/,2) 

+ 12(2y - 1)ff' - 8/2 
- /= O. (3.5) 

One may also observe by introducing a new dependent vari­
able h through the relation 

f=h2, (3.6) 

that Eq. (3.5) is reduced to the form 
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(2y - I)(Sy - 3)(hh" - h '2) 

+ 12(2y - 1)hh' - 4h 2 -! = o. (3.7) 

The resemblance of Eq. (3.7) to Eq. (2.4) should be re­
marked. 

B. Construction of exact solutions 

The simplest solution ofEq. (3.5) is a constant solution 
given by 

/= - A, (3.S) 

which yields an exact solution ofEq. (1.2) in the form 

(3.9) 

Next, we shall seek solutions of Eq. (3.5) with an 
asymptotic formf -+ ya (y -+ - 00 ). As easily confirmed, the 
only possible value of a is given by a = 1. This situation is 
different from that of the nonlinear Klein-Gordon equation 
where there exist two possible values of a [see Eq. (2.7)]. 
Keeping the asymptotic form of the solution in mind, we 
take the solution in the form 

/= ay + b, a#O, (3.10) 

and substitute (3.10) into Eq. (3.5). It turns out that the 
unknown constants a and b are determined by the following 
system of algebraic equations: 

b= -a/4 +l, 
(2a + l)(a + 1) = o. 

(3.lla) 

(3.llb) 

Equations (3.11) have two pairs of solutions, namely 
a = - 1, b = ~ and a = -~, b = 1, respectively. We shall 
treat the two cases separately. 

1. a=-I,b=i 

In this case, it follows from (3.1), (3.4), and (3.10) that 

¢= --In - L (X
Il
-xv )2 . (3.12) 1 [A 4 1 

A 8 ll,v=1 

(Il<V) 

The solution ( 3.12) is regular except for X Il 

= Xv (f.l,v = 1-4). 

2. a=-j,b=J 

In this case, the solution is expressed in the form 

¢= - (l/A)ln(A/4)x2
), (3.13) 

which is spherically symmetric and is regular except for the 
originxil = 0 (f.l = 1-4). 

IV. GENERALIZATION TO n-DIMENSIONAL 
EUCLIDEAN SPACE 

In this section, we shall generalize the solutions present­
ed in the previous sections to those for the nonlinear Klein­
Gordon and Liouville equations in n-dimensional Euclidean 
space. Since the procedure for constructing exact solutions 
for these equations is almost the same as that for correspond­
ing four-dimensional equations, we shall not discuss the de­
tails and present only the main results. 
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A. Nonlinear Kleln-Gordon equation In n-spatlal 
dimensions 

The equation that we consider reads 

On~ +A~P = 0, p#O,I, 

with 

(4.1a) 

n a2 
On = r -2 ' (4.1b) 

#= 1 axl' 
where On is the n-dimensional Laplace operator. Ifwe intro­
duce the dependent variable transformation 

~= [ffsd(Y)] -2/(p-I), Y=S2/sf, (4.2) 

Eq. (4.1) is transformed into the following nonlinear ODE 
forf 

[4ny2 - 2(2n - l)y + n - 1] 

x(jl" - [(p + 1 )/(P - 1) If(2) 

+ [2/(p -1))[n(3p + l)y - 2(n -1)p]ff' 

- [n(p+ 1)/(p-1)]f2- (p-l)/2=0. (4.3) 

An exact solution of Eq. (4.1) that corresponds to a 
constant solution ofEq. (4.3), namely 

f= ±i(p-l)/~2n(p+ 1), (4.4) 

is given by the form 

~ = [ ± i(p - 1)[,1, 12n(p + 1) jI/2sd -2I(p- I), 
(4.Sa) 

with 
n 

s) = 2: xI'" (4.Sb) 
1'=1 

Expression (4.S) is a generalization of (2.6) in n-spatial di­
mensions. 

If we seek solutions of Eq. (4.3) with an asymptotic 
form f - Jf' (y --+ - 00 ), we find two exact solutions. The 
first solution is given by the expression 

p-l 
f= (2n)I/2[(p-1)n-3p+l]I/2 

X ( - 2ny + n _1)1/2, (p - 1)n#3p - 1, (4.6) 

which, substituted in (4.2), yields an exact solution of Eq. 
(4.1), 

{ 
JT(p-1) 

~= ± (2n)I/2[(p-1)n-3p+ 1jI/2 

} 
-2I(p-l) 

X [ (n - 1)si - 2nszl l/2 , 

(p-l)n#3p-l, (4.7a) 

with 
n 

S2 = r xI'XV ' (4.7b) 
1'."= I 
(I' < v) 

and s I given by (4. Sb). It is worthwhile to see that 
n 

(n - l)~ - 2ns2 = 2: (xl' - Xv )2, 
Jl.V= 1 
(1'< v) 

(4.8) 

which is an analog of (2.15) in n-spatial dimensions. One 
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readily notices that the solution (4.7) is a generalization of 
(2.12). 

On the other hand, the second solution of Eq. (4.3) is 
written in the form 

p-1 
f = 21/2 [ (p _ 1) n _ 2p] 1/2 

X ( - 2y + 1)1/2, (p - 1)n#2p. (4.9) 

Substitution of ( 4. 9) into (4.2) yields an exact solution of 
Eq. (4.1), 

"" - + "", P - (S2 _ 1$ ) 1/2 [ 
r:f( 1) ]-2/(P-I) 

"'- -2 1/ 2 [(p_l)n_2pjI/2 I 2 , 

(p - l)n#2p, (4.10) 

which is seen to be the n-dimensional generalization of solu­
tion (2.13). Expression (4.10) represents the spherically 
symmetric solution due to the relation 

n 

si -1$2= 2: X;=X2. (4.11) 
1'=1 

Among tarious exact solutions presented here, a par­
ticularly interesting case arises for a special value of 
p = (n + 2)/(n - 2). In this case, Eq. (4.1) becomes 

On~ + A~(n + 2)/(n - 2) = 0, (4.12) 

which is known as a conformally invariant nonlinear scalar 
field equation in n-spatial dimensions.22 Equation ( 1.1 ) with 
p = 3 is a special case of Eq. (4.12) with n = 4. With this 
choice of the parameter p, the solutions (4.S), (4.7), and 
( 4.1 0) are reduced to the expressions 

~= ±I- -- 2: xI' ' n#2, [ 
.2 {6( n )] -(n-2)/2 

n n-2 1'=1 

(4.13) 

{ 
2JT 

~ = ± -[n-(-n---2~)(-n---4-)]-I/-2 

X r (XI' - Xv) , n#2,4, 
[ 

n 2] 1/2} - (n - 2)/2 

I'.V= I 
( I'<V) 

(4.14) 

~=(± [2.[):I(n_2)]R)-(n-2)/2, n#2, (4.1S) 

respectively. Of course, one can use conformal transforma­
tions in n-spatial dimensions to generate new exact solutions 
ofEq. (4.12) starting from (4.13)-(4.1S). But the details 
will be omitted here. Finally, it should be pointed out that 
Eq. (4.12) never possesses solutions of the form (2.24) ex­
cept for n = 4. This fact may indicate a peculiar aspect of 
four-dimensional Euclidean space. 

B. Liouville equation in n-spatial dimensions 

The equation that we will consider is written 

Dn~ + et; = O. (4.16) 

Introducing a new dependent variablef through the relation 

~ = - (1/A.)ln[A~ f(y)] , y = S21sL (4.17) 

transforms Eq. (4.16) into the nonlinear ODE 
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[4ny2 - 2(2n - l)y + n - 1] (ff" _/,2) 

+ [6ny - 4(n - 1) ]ff' - 2n/2 - /= o. (4.18 ) 

We have found three exact solutions ofEq. (4.18) as follows: 

/= - 1I2n, (4.19) 

/= [lI(n - 3)]( - y + (n -1)/2n), n#3, (4.20) 

/=[1I2(n-2)](-2y+1), n#2, (4.21 ) 

which, substituted in (4.7), yield exact solutions of Eq. 
( 4.16) as follows: 

¢= -1-ln[-~(± XJl)2] , 
A 2n Jl= 1 

¢ = - (lIA)ln[[A /2(n - 2) ]X2], n#2. 

(4.22) 

n#3, 

(4.23) 

(4.24) 

The solutions (4.22)-( 4.24) are generalizations of the solu­
tions (3.9), (3.12), and (3.13) in n-spatial dimensions, re­
spectively. 

v. CONCLUDING REMARKS 

In this paper, we have developed a systematic method 
for constructing exact solutions of the nonlinear Klein-Gor­
don and Liouville equations in four and general n-spatial 
dimensions. These equations are of course physically impor­
tant and various particular solutions obtained here may be 
employed to elucidate the physical phenomena governed by 
the equations. The method of analysis presented here may 
also be applied to other types of nonlinear PDE's of physical 
interest such as the Yang-Mills equation,. the Einstein equa­
tion of general relativity and other gauge field equations. 

From the mathematical point of view, the broader 
classes of solutions may exist if we introduce other symmetry 
variables in addition to s 1 and S2' In this respect, it should be 
remarked that the number of independent variables in Eqs. 
( 1.1) and (1.2), for example, can be reduced to three by 
introducing the new independent variables Yl = S2/~' 
Y2 = S3/ s~ , and Y3 = S4/ s~ . Furthermore, one may pursue the 
possibility of generalizations of our solutions to elliptic func­
tions. For this purpose, it will be useful to refer to several 
works concerning elliptic solutions of Eq. (1.1) with p = 3, 
5.3,16,23,24 

Various problems proposed here will be dealt with in the 
near future. 
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Faithful icosahedral symmetry exists only for tensors of rank higher than 5. The most relevant 
tensor of this type is the one for third-order elastic constants C ijilmn defined by the series 
expansionTij =Cij7ckkl +!CijilmnEkIEmn + ... of the stress tensor Tintermsofthe 
deformation tensor E. A basis for those tensors in (R3) .. 6 that are invariant under a certain 
action of both the icosahedral group S2XAS and the wreath product S2 I S3 of the symmetric 
groups S2 and S3 are evaluated. 

I. INTRODUCTION 

H.-R. Trebin has drawn our attention to the following 
problem concerning the elasticity of quasicrystalline struc­
tures: Faithful icosahedral symmetry exists only for tensors 
of rank higher than 5. The most relevant tensor of this type is 
the one for third-order elastic constants C ijilmn defined by 
the series expansion 

T -C(2)E +lC(3) E E + ... ij - ijkl kl :2 ijklmn kl mn 

of the stress tensor T in terms of the deformation tensor E. 

Hence the question arises of how one can get a basis for those 
tensors in (R3) .. 6 that are invariant under both the icosahe­
dral group S2XAS and the wreath product S21 S3 of the 
symmetric groups S2 and S3' which acts on (R3) .. 6 via per· 
muting in C ijilmn the elements in the pairs (i,j), (k,/), and 
(m,n) as well as the pairs themselves among each other (Le., 
S2 I S3 is canonically imbedded into the S6)' 

This problem can be attacked and solved in the three 
steps we shall describe in this paper. At first we formulate the 
situation in terms of representation theory, so that the space 
of invariant tensors is just the subspace of tensors that afford 
the identity representation. 

II. THE REPRESENTATION THEORETICAL 
FORMULATION 

S2XAS affords on R3 the faithful representations! 

[12]#[3,t2]+ and [12]#[3,12]-. 

The wreath produce S2 I S3 affords on (R3) .. 6 the repre­
sentation! ,..-... 

#3[2] ® [3], 

which induces in S6 the plethysm! [2] 0 [3] . 
Thus in terms of representation theory the desired space 

is the subspace affording the identity representation in the 
representation 

([ 12]#[3,12] ± )0([2]0[3]). (2.1) 

But we can simplify the considerations as follows. 
The restriction of this representation to the subgroup S2 

is the identity representation since S2 acts diagonally on R3 
and the power 6 of R3 is taken, which is even. Therefore the 
factor [ 12] can be neglected. Furthermore it does not matter 
whether we take [3,12] + or [3,12] - since the corresponding 
matrix groups are the same--these representations are con-

jugate! with respect to Ss-and the construction below does 
not need further information. Thus we have obtained the 
following corollary. 

Corollary 2.1: We need only to consider the representa­
tion [3,12] +O( [2]0[3]). 

III. THE SUBSPACE OF INVARIANT TENSORS 

Corollary 2.1 has shown that we have to find a basis of 
the subspace of (R3) .. 6 whose elements are 0 or can afford 
the identity representation. In order to get it we evaluate a 
generating system (in three steps) and finally pick a basis. 
The steps to be peformed use the following lemma. 

Lemma 3.1: If a group G acts on a vector space Vand if 
N is a normal subgroup of G, then we have a natural action of 
G IN on the space VN of vectors invariant under N. Therefore 
the corresponding spaces of invariants satisfy 

(VN )GIN = VG' 

In the present situation we can use the following chain of 
normal subgroups: 

S2XS2XS2<JS2 I S3<JAsXS2 I S3' 

where 

(A s XS21 S3)IS2 I S3~As, S2 I S3/(S2xS2XS2) ~S3' 

IV. PICKING A BASIS 

Let us first describe (R3):, ~ s, . As one of its bases R3 has 
the set of standard unit vectors {e; jl<i<3}. Thus 

(R3
) .. 2 = «e; ® ej jl<i,j<3})R' 

Hence the subspace of tensors invariant under S2 is 

(R3) .. 2)S2 = «!(e; ®ej + ej ®e;)jl<i<j<3»R' (4.1) 

This shows that we may identify the elements of this space 
with the linear combinations ofindeterminatesYk' l<k<6, 
where k = 1, ... ,6 corresponds to the pairs (i,j) 
= (1,1 ),(1,2),(1,3), (2,2),(2,3 ),(3,3). 

Now we form the tensor cube of this space obtaining 
(R3

) .. 6)S,XS, XS, and symmetrize it with S3 getting the de­
sired space 

(R3
)"6)S21 S,. (4.2) 

Thus we have obtained the following corollary. 
Corollary 4.1: This space (4.2) can be considered as be-
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ing the space of homogeneous polynomials (in the indeter­
minates Yk ) of degree 3. 

The representation [3,12] + of A 5 gives in an obvious 
manner a representation in the space V of polynomials in the 
Yk homogeneous of degree 3. By Corollary 4.1 it is sufficient 
to evaluate a basis of the subspace of this representation 
space affording the identity representation. 

Consider a five-cycle 'TEA5 and a 0EA5 such that 
p: = uru- I =1=-1 for all i. This means that p, r are rotations 
corresponding to different axes of symmetry. Hence p and r 
generateA5 : A5 = (p,r). By restricting the representation of 
As to the subgroups (r) and (P), it is easy to evaluate a basis 
of the subspaces VI' V2 that afford the identity representa­
tion of (r) and (P), respectively. The intersection of these 
spaces is just the desired space. 

A generating set of VI will be obtained by applying the 
so-called Reynolds operator 

1 ~ . 
R: V-+ V: Vt--+-- £.. r'v 

l(r)lo<j<4 

corresponding to (r) and V to the standard basis of mono­
mials. A generating set of V2 will result from a base change. 

We chose a realization of the representation [3,12] + 

such that the corresponding matrix representation O-rela­
tive to the ej-has a nice structure2

: 

with 

- (1 + d)/2 - 1I(2b) ) 
(1 +d)/4 1I(4b) , 

- 2ab (1 + 1Id)/4 
a: = COS(21T/S), b: = sin(21T/S), d: = 11../5. 

(4.3 ) 

A computation with the help of the MACSYMA programming 
system gave a basis of VI and V2 and finally we obtained the 
following corollary. 

Corollary 4.2: A basis of the desired space VI n V2 is the 
set {b l ,b2,b3,b4}, where 

b l : = MY~ + 7Y4Y~ + TYI y~ - 4Y;Y6 + 7~Y6 + 42YI Y4Y6 - 4Y~Y6 - 28Y~Y6 + 7yiY6 - 4Y4Y; 

- 28YIY; + 48Y2Y3YS + Y! + 7YIY~ - 28Y~Y4 - 4Y~Y4 + 7yiY4 - 4YIY~ - 4YIY~ + y~), 
b2:=MSy~ +3Y4Y~ +3YIY~ + 12Y;Y6+3~Y6+ 18YIY4Y6+ 12Y~Y6-12Y~Y6+3YiY6+ 12Y4Y; -12YIY; 

+ 48Y2Y3YS + Sy! + 3YIY~ - 12Y~Y4 + 12Y~Y4 + 3yiY4 + 12YIY~ + 12YIY~ + Sy~), 
b3:= -2YIY4Y6+2Y~Y6+2YIY; -4Y2Y3Y5+2Y~Y4' 

b4: = i2(2Y2Y~ + YIY~ + 8Y3Y5Y6 - 4Y2Y4Y6 + 6YIY4Y6 + 4Y~Y6 - 4Y~Y6 - yiY6 - 8Y2Y; - 4YIY; 

-8Y3Y4Y5+ 16Y2Y3Y5+2Y2Y~ +YIY~ -4Y~Y4+4Y~Y4-YiY4-4YIY~ -4YIY~ +yt)· 

In Sec. VI we will be able to give a nicer basis. 

V. A GENERALIZATION 

This method can be applied analogously for any wreath 
product S2 I Sj and icosahedral symmetry. To cover these 
cases we need only to consider the algebra of polynomials in 
theYj, l<i<6. 

In this case the Molien series3 

PA , (T): = I dim(~ ) T jER[ll, (S.I) 
j>O 

where ~ is the space of invariant polynomials of degreej, can 
be evaluated in order to get the dimension of the spaces in­
variant under S2 I Sj and the icosahedral group. We will 
apply Molien's formula3 

1 1 
PA (T) =- I ' (S.2) , IA 51 geA, det(I - Tf-l (g) ) 

where I denotes the identity matrix and f-l a matrix represen­
tation of A5 on the span «yj 11 <)<6»R' We may clearly 
pass to C. Once for each gEA5 the eigenValues of f-l(g) are 
known, we are able to compute (S.2). But f-l has been con­
structed from [3,12] + and the eigenvalues of the matrices 
corresponding to this representation can be easily recon­
structed from the well-known character table l of A5 • The 
first ofthese dimensions (starting withj = 0) are 

1,1,2,4,6,10,17,24,36,53,74,102,141, 

186,246,322,412,S23,661,820. (5.3 ) 
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I 
VI. A NOTE ON· ORTHOGONAL INVARIANTS 

Consider the following polynomials: 

CI : =YI + Y4 + Y6, 

c2: = yi + 2~ + 2~ + y~ + 2y; + y~, 
C3: =y~ + 3YIY~ + 3YIY~ + 3Y~Y4 + 6Y2Y3Y5 

+ 3Y~Y6 + Y! + 3Y4Y; + 3Y;Y6 + y~. 

(6.1 ) 

It should be noted that the Cj are also invariant, if the full 
orthogonal group O( 3) instead of S2 XAs is taken, but b4 is 
not. Furthermore we have 

11 = «CI»R' 12 = «Ci,C2»R' 

13 = «d ,C I C2,c3,b4 »R' 

Hence we obtain the following corollary. 

(6.2) 

Corollary 6.1: Three is the smallest positive integer, 
where the icosahedral case differs from the 0 (3) case. 

Thus Corollary 6.1 shows the importance of the third­
order elastic constants C f;tlmn for icosahedral symmetry. 

'0. D. James and A. Kerber, The Representation Theory o/the Symmetric 
Group (Addison-Wesley, Reading, MA, 1981). 

2p. Kramer, Z. Naturforsch. 4Oa, 775 (1985). 
3R. P. Stanley, Bull. Am. Math. Soc. (New Series) 1,475 (1979). 

A. Kerber and T. Scharf 2324 



                                                                                                                                    

Local Green's function. I 
Renchuan Wang 
Department of Physics, Texas A&M University, College Station, Texas 77843 and Center for Astrophysics, 
USTG, Hefei, Anhui, China 

(Received 25 September 1986; accepted for publication 20 May 1987) 

The local Green's function is used in many physical problems. In this paper, the properties of 
the local Green's function are studied, and it is proved that the N XN local Green's function 
can represent the results of the full NI X NI Green's function, where N is small (or at least 
finite) and NI is large (or infinite). The accuracy of cutting the general Green's function into 
the local Green's function is also discussed. 

I. INTRODUCTION -I (G.-III G.-III") (HII 
G = =EI-

. G.-II"I G.-II"I" HI"I 

where I is the unit matrix 

(
1/1 0) 

1= 0 IJ<[< 

and III is the unit matrix of order N, 
I-+N 

In ~(: 
o 

). 
N+l-+oo 

1,<,< { 0 1 .~J 
(3) 

The Green's function G is an infinite matrix in the repre­
sentation of a complete set. Usually we know G -I of a phys­
ical system from the requirement of satisfying physics. The 
eigenvalues and eigenvectors of the system correspond to the 
condition Det G -I = O. Generally speaking, it is very diffi­
cult to find exact solutions, because the system is infinite. In 
many physical problems, however, we can use the approxi­
mation of cutting the infinite matrix into a finite matrix, i.e., 
let Hmn = 0 when n,m >N, and this is the main idea of the 
subspace Hamiltonian technique. I Here we will prove that 
under a certain restriction, the inverse matrix of the local 
Green's function-i.e., the finite submatrix on the diagonal 
of the whole Green's function matrix-can represent all the 
results of the original Green's function (i.e., it gives all the 
eigenvalues of G -I). (For simplicity, we will say that GIl 
represents G in the rest part of this paper.) Therefore the 
solution of the local Green's function is equivalent to the 
solution of the full Green's function. We will also discuss the 
accuracy of cutting the full Green's function into the local 
Green's functions (later on we will refer to this as the cutting 
approximation) . 

The inverse of the local Green's function is GII .- I, which 

II. LOCAL GREEN'S FUNCTION 

The local Green's function GIl is a submatrix on the 
diagonal of the whole matrix. Suppose that in the representa­
tion of a complete set of orthonormal functions (In), 
n = 1,2, ... ), the Green's function can be expressed as l

-
3 

(
GIl GIl") G= , 
GJ<[ GI"r 

(1) 

where I,Ie C ff, ff = {1,2,3, .. .}, IUr = ff, and Inr 
= 0. Here I is a finite subset of ff. For clarity let us suppose 

that I = {1,2,3, ... ,N}. 
Normally, in physical problems, G is the matrix to be 

solved for and G -I is given by 

[ (
G (E) 

det G -I(E) = det IIO 

satisfies 
G/1'- IG/1 = III . (4) 

Theorem 1: 

det G -I(E) = det G/1~ I(E)det G.- \c[c(E) . (5) 

Proof" First we prove that when EI$.l = J, UJ2, where 
J I = {E,det G .- IN (E) = O} and J2 = {E,det GIl (E) 
= O}, Eq. (5) is true. 

Notice that G(E) G -I (E) = I, we can obtain 

G/1(E)G .-I/I" + GII" (E)G .-II"I" (E) = 0, 

GJ<[(E)G.-IIl" +GI"I'(E)G.- II'I'(E) =11'1" 

Owing to EI$.l, Eq. (6) can be written as follows: 
G/1.-I(E)GII' (E) = -G.- I

/r G.- II'I'.-I(E), 

GJ<[(E)G .-l/rG .-IN .-I(E) + GI<I' (E) 

= G .-11'1"- I(E) . 
Using Eq. (7), we have 

(6) 

(7) 

_ G -I G -I -I(E»)]-I . II" . J<I" 

GI'I'(E) 
-I [ ( III = det G/1. (E) det GI'l (E) 

-I [ (III = det G/1' (E) det GJ<[(E) 
o )]_1 

GJ<[(E)G .-I/I'G .-11'1' .-I(E) + GI'I' (E) 

= det G/1.-I(E) det G .-1/ <1' (E) . 
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Second, when E61, it is not difficult to prove that Eq. (5) 
is still true. In fact, sincedet G ,-Irr (E) anddet GIl (E) are 
a polynomial and a rational function of E, respectively, the J 
would be a numerable set. In the physical sense, it is obvious 
that J is not dense in any subregion of complex plane of E. 
For any Em 61, there is always a small circle U{;o (Em)' which 
is centered at Em and with radius oo( >0), and U{;o (Em) 
nJ = Em . Since det G -I (E) is a polynomial function of E, 
det G -I (E) is an analytical function in the E complex plan. 
For any E> 0, there is a small positive number 0 ( ';;;;00 ), when 
IE - Em I <0, we have 

Idetl G -1(Em ) - det G -I(E)I <E. 

If E #Em, then E,*", according to the above proof, 

det G -I(E) = det GIl,-I(E)det G ,-In (E) . 

So, when IE - Em I < 0, we have 

Idet G -1(Em) - det GIl,-I(E)det G ,-In (E) I <E, 

then 

lim det GII,-I(E)det G ,-In < (E) = det G -1(Em) . 
E-Em 

That is, 

det G -1(Em) = det GII,-I(Em )det G ,-Irr (Em) . 

This is the complete proof of Theorem 1. 
From Theorem 1 we can obtain three important proper­

ties of the local Green's function as the following. 
Remark 1: Since det G ,- I r r (E) is a polynomial func­

tion of E it is always limited by any IE I < 00. When 
det Gu,-I(E) = 0, from Theorem 1, det G -ICE) must be 
zero. The roots of det G -I (E) are real, so the roots of the 
inverse determinant of the local Green's function must be 
real and a part of the roots of the inverse determinant of the 
Green's function. That is, 

{EK,detG/I,-I(EK ) =O}C{EJ,detG-I(EJ ) =O}. 
(8) 

Remark 2: Since 

{Ek , det GII,-I(EK) = O} = {EJ, det G -I(EJ) = O}. 

From the preceding remarks, we can get the sufficient 
and necessary condition to represent G -I by GIl ,- I as fol­
lows: 

{EL , det GII(EL ) = O} = {EJ, det G ,-In (EJ) = O}. 
(10) 

On the other hand, we must find G/I ,- I from G -I, since 
we only know G -I. SO we have Theorem 2, 

G II'- I = G ,- I II - G ,- I/r G ,- I r r ,- IG ,- In. (11) 

Proof' From the equation G' G -I = I we have 

GIIG ,-III + Glr G ,-In = III . 

Multiplying by GII,-I from the left, we have 

GII,-I = G ,- III + GII ,- IGIF G ,-In' (12) 

By using Eq. (7), and substituting GII,-IGIF for 
- G ,-l/r G ,-lrF ,-I, we obtain Eq. (11). 

Equation (11) is an identical equation, with only the 
requirement that Det(G ,-IFF) #0. It looks as if we have 
found GII ,- I from G -I by using Eq. (11), because I is finite. 
We certainly can find GIl as a part of G. But the really diffi­
cult problem has not been solved yet, because fC is infinite, 
and there is a sum over infinite terms in Eq. (11). So the real 
task is to find the exact form or an approximate form of 
GIl ,- I by using Eq. (11). By using the projection operators, 
we can write Eq. (11) in another equivalent form. 

Let us use {I n > , nE/Y} as a set of complete orthonor-
mal functions 

(min) = omn , 

I In)(nl =1. 
nE.ff 

Also define 

P= Iln)(nl, 
nel 

(13) 
0=Iln)(nl· 

nel< 

{EL , det GIl(EL ) = O} = {EL , det GII,-I(EL ) = oo} Thus Pand 0 are projection operators, and they satisfy 

and det G -I(E) is limited, by Theorem 1, we haveJ2 CJI, PP= P, P® = 0, 00 = 0, P+ 0 =1. (14) 
i.e., 

{EL , det G/I(EL ) = O}C{EJ, det G ,-lrF (EJ ) = O} 

so the roots of the determinant of the local Green's function 
are real. 

Remark 3: Since the set of the roots of the inverse deter­
minant of the Green's function is determined, the total num­
ber NI of the roots ofthedet GII ,- I (E) is equal to the dimen­
sion N of the local Green's function G/I (E) plus the roots 
number m of the determinant of the local Green's function 
GIl (E), that is, 

NI=N+m. (9) 

Here, saying that the local Green's function G/I repre­
sents all the solutions of the original general Green's func­
tion just means that all the solutions of the equation 
det GIl ,- I (E) = 0 will be exactly the same as all the solu­
tions of the equation det G -I (E) = 0, i.e., 
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The submatrices of G and G - I can be expressed as 

GII,-I = (PGP)-I , 

G,-III =PG-Ip, 

G ,- I IF = PG - 10 , (15) 

G ,- In = 0G -Ip , 

G ,-Irr ,-I = (0G- 10)-I. 

Equation (11) can be expressed in the form 

(PGP)-I =PG -Ip-PG -10(0G -10)-10G -Ip. 
(16) 

In a more general matrix representation, suppose there 
exists the inverse matrix A -\ of A, and det(0A -10) #0. 
There then is a relation as follows: 

(PAP)-I = PA -Ip_ PA -10(0A -10)-10A -Ip. 
(17) 
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III. THE APPROXIMATION METHOD OF THE LOCAL 
GREEN'S FUNCTION (THE CUTTING APPROXIMATION) 

We have 

Ho = - (fz2!2m)V2 + U(x) , 
A. A. A 

H=Ho+ Vex), Holn} =Enln}, 

(min) ~mn' I/n)(nl=I, 
nE/Y 

and 

Vmn (mlVln) . (18) 

Suppose that 

I Vmn 1.( lEn / (n = 1,2, ... ,N) . 

Then the "cutting approximation" of the previous section is 
given by the matrix representation 

m 

Go I E-Ho , 

G- 1 E-H. 

Using Eq. (18), we obtain 

(19) 

PG 10= -PV0, 0G- 1p= -0VP. (20) 

Substituting into Eq. (16), we have 

(PGP) I=PG- IP-PV0(0G- 10)-10VP. 

By using the above cutting approximation, we get 

so 

PV0 

(PGP) I e;.PG -Ip. 

This is the method used most frequently. When 

det(PGP) 1 e;.det(PG -Ip) 

(21) 

is fulfilled, we can obtain N first-order energy eigenvalues E 
of accuracy Vm,n (m,n<.N). Equation (21) is called the 
first-order approximate equation. We can obtain the second­
order approximate equation by using Eq. (16). 

Lemma 1: We have 

IV m,n I ..... ° (m or n -+ (0) . 

ProoF Clearly, we have 

00 

(k 1V 2 1k ) = I (k IV Is) (slV Ik) 
s= 1 

00 00 

= I V:kV'.k = IVlesVr.. 
$= 1 s= 1 

(22) 

Since (k 1V 21k) is infinite, when s- 00, IVsk I, or 
IVies' ..... 0. 

Roughly speaking, we can always divide V mn into pow­
ers of a small quantity A. Suppose 

N<NI <N2 < .. · , 
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Vll -A, 

Vmn (m,n<.NI ) -A, 

Vmn (NI < m or n<.N2 ) -A 2 , 

Using the projection operators, 
N, 00 

PI = I /n)(nl, 0 1 = I In)(nl, 
n=N+I n=N,+1 

where we have 

PIPI = PI' PIP = 0, P I0 1 = 0, 

0 10 1 = 0 1, PI + 0 1 = 0 . 

The second-order equation is 

(23) 

(24) 

(PGP)-I =PG- IP-PVPI(0G- 10) IPIVp. (25) 

SincePVPI and PI VPare of the order of A, we need only 
take the zero order of PI (0G -10) -IPI. 

Let (0G -10) -I =A. By using Eq. (17), we obtain 

[PI (0G -10) -IPI]-I 

=PIG-IPI-PIV01(01G-101) 101VPI 

=PIGO-IPI-PIVPI 

-PIV01(0IG-101)-10IVPI' 

The zero order of[PI(0G -10)-IPtl I isP1Go-lp). 

(26) 

Lemma 2: If the zero order of matrix B is Bo, then the 
zero order of matrix B -1 is B 0- 1. 

Proof: We have 

B=Bo+ABI +A 2B2 +"', 

B- 1 = Co+ACI +A 2C2 + ... , 

where Co is the zero-order quantity of B -I. By using 
BB -I = Iwe obtain 

CO=B O-
I

, 

C1 =BO-IBIBo-1 (27) 

Using Lemma 2, in PI (0G -10) IP1 the zero-order 
quantity is (PIG O Ip)-l, so the final form of the second­
order equation is 

(PGP)-I = PG -Ip_ PVPt(PtGo-IPI)-IPIVP, (28) 

Since Det[PGP] -I = 0, from the second-order equa­
tion we can obtain N eigenvalues with an accuracy of the 
order of vi I . The advantage of using the Green's function is 
that the number of eigenvalues that we can obtain from the 
determinant is bigger than the order of the determinant. 

Usually the variation of Vm,n is not very obvious, so the 
number of NI is not very accurate. If we write the second­
order equation as 

(PGP)-I =PG-Ip-PVPI(PIG-IPt) IPtVp, (29) 

without distinguishing the quantities of different order in A, 
from Det[PGp}-1 = 0, we can obtain Nt eigenvalues of E, 
which actualy are Nt eigenValUes of the first-order equation 
(P'GP,)-Ie;.P'G -tp', when N is taken as Nt, where 
P'=P+Pt· 
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Since 

:} (30) 

larger values of N) obviously give both more eigenvalues E 
and higher accuracy in the lowest-order eigenvalue, at the 
expense of a more complicated calculation. 

IV. CONCLUSION 

The above cutting approximation is a very simple and 
general method, previously used in many physical applica­
tions to find the approximate solutions. Its biggest weakness 
is that the accuracy cannot be estimated exactly, and the 
number of eigenvalues is the same as the order of the deter­
minant. But there is one important point: We can obtain Eq. 
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(29) by using the local Green's function, in which case we 
will not lose eigenvalues when we solve the high-order deter­
minant by using the low-order determinants. 
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As shown in the preceding paper [J. Math. Phys. 28, 2325 (1987)], the local Green's function 
can represent the results of the original general Green's function. However, it is difficult to find 
the exact local Green's function in the general case. In this paper, a special case-"the chain 
matrix" -is studied, which is a generalization of the tridiagonal matrice. 

I. INTRODUCTION 

In solid state physics, when studying electrons or pho­
nons, one often assumes that each atom interacts with only a 
finite number of neighboring atoms. In this case, one obtains 
a "chain matrix" of the form 

( (1) 

where 

( 

V(K)II,···,V(K)IN ) 
V(K) = ... . 

V(K)NI,···,V(K)NN 

The elements in the overlap of V( k) with V( k - I) or 
V(k + I), are the same, even though their indices are not the 
same. (The total number for overlap matrix elements of each 
of the two matrices are not larger than !N 2

.) In a surface 
problem, the deeper the layer from the surface, the bigger the 
value of k and the smaller the difference between V(k),s 
with different values of k. So in a certain approximation, we 
have V(k l ) = V(k2 ) when k l ,k2>M, where M is a positive 
integer. We will then obtain an equation, which we call the 
chain equation, and by solving the chain equation, we will 
obtain the exact local Green's function. Although we cannot 
prove in general that it will represent the whole general 
Green's function, in principle, we can discuss the exact solu­
tion of the eigenvalues of the original general Green's func­
tion. I

-
3 For convenience, we will treat an N XN matrix as a 

vector of N X N dimensions in the linear space, and the prod­
uct of matrices can be treated by defining the product of basis 
vectors. This approach makes our discussion much simpler 
and clearer. 

II. MATHEMATICAL PREPARATION 

ThenN X Nmatrix is treated as an (N XN)-dimension­
al vector. The basis vectors of the linear space, ei,j 
(i,j = 1, ... N), have components 

(eij)/m =8i/8 jm . (2) 

The multiplication of the basis vectors is defined as the 
multiplication of the basis matrices, so we have 

eijekl = 8 jkei/' (3) 

Generally, an N XN matrix can be written as 

( 

all, .. ·,aIN ) N 

A = . . . = L aijeij' 
iJ= 1 

aN1,···,aNN 

(4) 

Let ff = {1,2, ... ,N} be a set of N integers, and I be 
subsets of ff, 1= {i l ,i2, ... ,i), where i l ,i2, ... ,i, are different 
numbers between I and N. 

Definition J: The dimension of the subset 1= {ii' 
i2,· .. ,i) is defined as n (1) = r. 

If I,JCff, the submatrix of A is 

AlJ = L aijeij' 
ie/,jEJ 

Definition 2: 

A0I =AJ0 = 0, 

where 0 is the empty set. 

(5) 

(6) 

Definition 3: The right inverse matrix of A IJ' if it exists, 
is written as A ~I - 1, which satisfies 

(7) 

The left matrix of A IJ' if it exists, is written as A 71- 1, 

which satisfies 

A7I-IAlJ=Lejj' (8) 
jEJ 

It is not difficult to prove that the following properties 
hold for the submatrices. 

( I) An arbitrary matrix can always be written as the 
sum of the submatrices 

A = "AI J, ~ P. 

where 

Ulp=ff, Vp,p',Ipnlp.=0, 

UJq =ff, Vq,q', JqnJq. =0. 

(2) The product ofthe submatrices is given by 

AlJBLK = AlJnLBJnLK = 8JnLCIK' 

8 _ {I, JnL #0, 
JnL - 0, JnL = 0. 

(9) 

(10) 

(3) The inverse of the submatrixAlJ, supposing the or­
der of the submatrix is min{n(I),n(J)}, satisfies the follow­
ing: if n(1) <n(J), there is no left inverse, and the right 
inverse is not unique; ifn(1) > n(J), there is no right inverse, 
and the left inverse is not unique; if n (1) = n (J), I #J, there 
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exist a unique left inverse and right inverse, which are not 
equal to each other; and if I = J, there exists a unique and 
equal left and right inverse. 

(4) 

A -I A - I A - I A - I - IA - I ( 11 ) II. = . II - . lIe . Ielc. . Icr 

The proof of Eq. (11) is given in Ref. 1, where it is 
supposed that determinant of the matrix A is not zero. The 
inverse of the matrix A isA -1, the inverse of the submatrix of 
A isAII .-

I and A .-III"A.- \e['A .-IICIC all are submatrices 
of the inverse of A. The only condition for Eq. (11) to hold is 
thatdetA -I C c#O, where IUIC =ff, I cnI=0, i.e.,Ic 

. I I 

is called the supplemental set of I, ff = {1,2,3, ... } is the set 
of all natural numbers. 

III. LOCAL GREEN'S FUNCTIONS AND CHAIN 
EQUATION 

A A 

The Green's function satisfies G - I = E - H = E - T 
- V. In the representation where the kinetic energy is diag­

onal, the submatrix of the matrix Tis 

(

T(K)ll 

T(K) = 

o 
(12) 

which is the same as V(k). The overlaps of T(k) with 
T(k + 1) and T(k) with T(k - 1) are the same even 
though the indices are not the same, and the bigger the value 
of k, the smaller the difference between T(k). For k l ,k2>M 
(an integer), T(k l ) = T(k2 ). So G -I also has the chain 
form shown below: 

""'14~---1~---_ ... 00 

""I .. I-----I~ ----.... 00 

I I 
L..----t---t---t---:-----1 -- - - - - -'-- - - ... - (13) 

I 
I 

-I - -
I 

G -'(3) I 

V1,J, __ -~' -...j..-----i 

I 
G ~ 11)1) 

Here all the areas are zeros except the area with shadow. 
The local Green's function can be written as 

G - I - G - I _ G - I G - I - IG - I 
1,/, . - . 1.1, . I,ll . 11/1, . III, ' 

where 

G -IIIC = - VJ I' 
• 1 1 I 2 

G -I - - VI,J" . lil,-

so we obtain 

G -I_G- I -v G- I -IV (14) 
1,1, . - . 1,1, J,I,. 1,1,' I-r1, . 

From Eq. (14) we see that if we substitute GI,I,.- I for 
G.- 11 ,1" the only modification is the lower right corner of 
G .- 11,1" the part in the J I row and J I column. From the 
property of the product of the submatrices, i.e., Eq. (10), for 
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I 
G.- 1

111
,.- I we only need its submatrices G.- \11,'- 11212 , be-

cause 
V G- I -IV -v G- I -I V 

JIlz . lilt' 12J, - J Il 2 . Ill., 1212 /2J ,· 

The inverse of G.- \11,'- 11212 can be obtained by using 
Eq. (11). 

Let 

I~ =I~ -I2=ff -11-12' A =G-\II,.-I, 

G -I -I -I 
· / 11 1, 1212 , 

- G - I _ G - I G - I - IG - I 
- . 1212 . 12I~ . I~I~' . 1'2.12' 

G -IIIC = - VJ1 , G.-IICI = - VI,J" 
• 2 2 2 3 2 2 

G- I -I -I_G- I -V G- I -IV 
· llIf' 1212 , - • 1212 J 21 3 • I~12' I)J2 • 
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For the same reason if we substitute G .- I I~n.- \/,.- I 

for G .- 1/ ,1, , we need only to modify the J2 column and the J2 

row and for G - Icc - I, we only need its submatrix , . 1
2
1

2
, 

G - Icc - I I I • Similarly its inverse can be obtained by using 
· [212' 33 

Eq. (11). 
LetI~ = I~ - 13 , A = G .-1/2/2 .-1. 

We can obtain 
G- I -I -I-G- I -v G- I -IV 

. I~I2' 1313' - • 1313 JJl.. I~I3' I.J3 

(17) 

and we can continue with this procedure. 
We have 

G -I -I -I 
· IkIi' Ik+llk+I' 

where 
k 

I~ =ILI -Ik =JV - L I L , 
L=I 

I~+I =I~ -Ik+l. 
(18) 

Since JV is an infinite set, n(lk) = n(l2)' n(Jk ) 
= n(JI ) (k = 2,3, ... ). From the assumption, when kis large 

enough, G - I/C rC' G - II. r , V J . r , and VI J are not re-
o ~ k • JcAk k"'k + I k + 1 k 

lated to k. If this is satisfied when k>M, then 

G- I -B 
. IM+ IIM+' II' 

V JM + ,IM+2 - V JI , 

VIM+2JM+' - V/J' 

(19) 

Finally we can obtain the equation of XI/> i.e., the chain 
equation 

XI/.-
I = BII - VJIXI/ V/J. 

This can be treated as the natural cutting equation. It 
can also be written as 

VJIXII V/JXII - BIIXII + III = o. (20) 

We also have n (l) = N - n(J), whereN = n(lI),lI/ is 
a unit matrix, andBII , VJI are known matrices. To solve the 
chain equation is actually to solve the set of n(J) xn(l) 
second-order equations and the set of [n(l) - n(J)] xn(l) 
first-order equations. 

After we obtain XII> we substitute it into the equation as 
follows: 
G -I -I-I 

· 1M_11M_I , IMIM · 

-G- I V X V _X-I 
- . IMIM - JMIM+' I/ IM+ ,JM - I/. , 

from which we can obtain the inverse of 
G -I -I 

· I M_
2
I M_

2
, 1M _ 11M _ I ' 

Then we obtain 
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G -I -I 
. 1 M_

2
1M_

2
, IM_1IM _ 1 

- (G -I _ V X V )-1. 
- . IM_,IM_I JM_,I II IJM _ 1 

Continuing with this procedure, we have 
G -I -I 

. [M-21M-2' 1M _ 11M _ I 

=>G.- \~_3/~_3.-I/M-2IM-2 => ... => .. , 
G I -I ->...G-I -I => .- I~I2' 1313 --f' . I~II' 1212 • 

Substituting into Eq. (14), we can obtain the exact form 
of the local Green's function. 

It is difficult to prove mathematically that 

{Ek,det G -1(Ek ) = O} 

n{E ;',det G .-I/~/~ (E;') = O} = 0, 

because we do not know the actual form of the elements of 
the matrix [even though after the 12th columns and the rows 
of G - I and of G - I ClC the matrix elements are exactly the 

. I" 

same, i.e., G - I/CIC = (G - I/CIC )/Clc ]. Roughly speaking, 
• 2 2 • I 1 2 2 

G -I and G.- I/~/~ may represent different surface costruc-

tions of the same crystal in physics, so they will not have the 
same eigenvalues. If this can be proved exactly, then from 
Ref. 1, we can know that the local Green's function reserved 
all the information of the original Green's function. 

IV. CONCLUSION 

In the general case, we can only obtain an approximate 
form of the local Green's function, and the chain potential 
we discussed in this paper is the only case of which we can 
find the exact solution. In addition to requiring the chain 
form of G -I, we also require the following. 

(a) The ring submatrix on the chain of G -I 

has an overlap with its neighbors G -I (k - 1) or 
G -I(k + 1), which is less than one-fourth of the matrix ele­
ments. 

(b) When k is large enough, all the G -I(k) are the 
same. If (a) is not satisfied, then Eq. (14) is not true, and all 
the later derivations are not true. If (b) is not satisfied, then 
we cannot obtain the natural cutting equation, and we can­
not obtain the exact form of the local Green's function. 

A A • 

Suppose H = Ho + V, and in the representation of the 
A 

eigenstates of Ho, Vis a chain potential. Then if (a) is satis-
fied and (b) is not, but we can treat Vasa perturbation term 
and can cut it artifically we can still obtain a good approxi­
mate form of the local Green's function by using a similar 
method. 
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In this paper a way of solving for the local Green's function by means of a projection operator 
method is presented. Both a procedure for attacking the problem and a general formula for 
calculation are obtained. It is also proved that the calculation can be done with a finite number 
of basis functions. A short discussion of the accuracy is also presented. 

I. INTRODUCTION 

Under certain conditions, the local Green's function can 
reproduce the results of the complete Green's function, 
therefore, to solve the local Green's function precisely has 
long been a goal. However, it is very hard to do this except in 
some very special cases (Ref. 1). The most used method is 
the "cutting approximation" (Ref. 2). This method neglects 
the higher-order terms in Vnm (m,n > N). It has the advan­
tage of simplicity, but it is not quite accurate. It also cannot 
reproduce the results of the complete Green's function. The 
method we use here has certain advantages. It avoids the 
summation of an infinite series, and the results can be ob­
tained by an analytical method. Another difference from the 
cutting approximation is that in the approximation method, 
the number of the eigenvalues equals the number of the 
states participated the calculation, but we do not have such a 
restriction in our method. In principle, we can obtain all the 
eigenvalues if we continue to do the calculation. This is also 
very tempting. 

II. SPACE RESOLVE 

Definition 1: DefineR to be a Hilbert space spanned by a 
complete orthonormal state function set /l),/2), ... /N), .... 
Set 

<X> 

(m/n) =om,n' L In)(n/ =1. (1) 
n=) 

Definition 2: Define R Po to the N-dimensional subspace 
spanned by the basis {/O,k ),IO,k) = Ik), k = 1, ... ,N}. 

We have projection operators 
N N 

Po= L /n)(n/ = L /O,n) (O,n/, 
n= I n= I 

a 
(2) 

0 0 = L /n)(n/, Po + 0 0 = 1. 
n N+I 

According to the properties of the projection operators, 
R Po can be rewritten as 

RPo = PoR, ROo = 0oR. (3) 

It is easy to verify that these two subspaces are orthogonal 
and 

R0°+RPo=R. (4) 

Definition 3: Define R P, to be the N-dimensional sub­
space of R spanned by basis {/I,K );/I,K) = 0jI /K), 
K = 1,2, ... ,N}, where H is the Hamiltonian representing a 
certain physical system. 

It is obvious that R p, is also a subspace of R 00 because 
"'-

Vll,K)ERP" HIO,K)ER, 
"'-00n 10,K) = Il,K )eE>oR = ROo, R PI CR 0,. 

It is very easy to find a reciprocal vector in R p, and find 
the projection operator from R to R PI through the reciprocal 
vector. 

Definition 4: Define the reciprocal basis in R P, to be 
_ N 

11,K) = L «(l,m/l,n) )JK 1Il,J). 
J=) 

The dual reciprocal basis is 
N 

{l,K/ = L ({I,m/l,n»K:/(l,J/. 
J=I 

(5) 

According to Definition 4, /1,K)ER P'and (I,K I belongs 
to the dual space of R p'. Evidently we have 

(l,L Il,K) = 0LK' (l,K /1,L) = 0KL' (6) 

The projection operator in R P, is 
N N 

p) = L /l,K){l,K/ = L /1,K)(1,K/. (7) 
K=l K=) 

It is easy to verify the properties of the projection opera-
tor PI: 

PIP) = PI' P)00 = 0oP) = PI' p)PO = PoPl = 0, 

V/l,a)ERPI, Pdt,a) = /l,a). (8) 

ThenRP' can also be written asRP' = PIR. 
Let 0 1 = 0 0 - PI = 1 - Po - PI' One can verify that 

0 1 is also a projection operator, and it satisfies the following 
relationships: 

0 10) = 0 1, 0 10 0 = 0 00) 0}> 
(9) 

Here 0 1R = R 0, CR 00 and R 0, is orthogonal with 
both R PI and R Po, 

R =RPo+RP' +R0,. (10) 

In the same way we define the N-dimensional subspace 
R p, in R 0,, and it is spanned by the basis 

{/2,K); /2,K) = 0JI/1,K), K = 1,2, ... ,N}. 

and we can define the reciprocal vector in the same manner, 
N 

/2,K) = L «2,m/2,n»JK)/2.J) 
J=I 

and its dual form 
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N 

(2,K1 = L «2,mI2,n»i/(2,JI· 
J=I 

The projection operator from R to R p, is 
N N 

P2= L 12,K)(2,K 1 = L 12,K)(2,K1 
k=1 k=1 

satisfying 

P2P2 = P2, P20 1 = 0 1P2 = P2, 

P2P1 = P1P2 = 0, P2PO = PoP2 = O. 

(11 ) 

(12) 

(13) 

Here R p, can also be written as R p, = P2R. We now 
again define O2 = 0 1 - P2 = 1 - Po - PI - P2 and it is 
easy to verify that 

0 20 2 = O2, 0 2P2 = P20 2 = 0, 

0 20 1 = 0 10 2 = O2, 

Also O2 is the projection operator 

0 2R = R 0'CR 0'CR 00
• 

One can see from the preceding that we can define all 
these in a more general way. 

Definition 5: R Pm is the N-dimensional subspace con­
structed by the basis 

{lm,K); Im,K)=0m_ IHlm-I,K), K=I,2, ... ,N}, 

with projection operator 
N N 

Pm = L Im,K)(m,KI = L Im,K)(m,Kl, (14) 
K=I K=I 

reciprocal vector 
N 

Im,K) = L «m,L Im,S»JA}lm,J), 
J=I 

dual reciprocal vector 
N 

(m,K1 = L «m,L Im,S»i/(m,JI, (15) 
J=I 

and 

From Definition 5, if 0 m _ 1 is a projection operator, 
then both Pm and 0 m will satisfy the properties of a projec­
tion operator, and they are orthogonal with each other 
Pm0m = 0 mPm = O. Since we took 0 0 to be a projection 
operator. Using Definition (5), we can get the bases 

m=1 m=2 m=3 
{IO,K)} {11,K)} {12,K)} {13,K)} 

and the projection operators 

Po PI P2 P3 

0 0 0 1 O2 0 3 

with resolving subspaces 

R Po = PoR, R p, = PIR, R p, = P2R,... . (16) 

Theorem 1: The resolved subspaces R Po, R PI, R p', ... 

are orthogonal with each other and R can be expressed as the 
direct summation of these subspaces: 

R = R Po + R p, + R p, + R p, + ", . (17) 

Proof: Using the inductive method, R can be expressed 
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following the direct summation of these subspaces that are 
orthogonal with each other, 

R=RPo+RP'+RP2+ ". +R Pm+R 0m. (18) 

If we prove this for any m, and then set m ..... 00, the theorem 
is true. 

We know that for m = 0,1 the statement is true. Now we 
suppose for m - 1 

R = R Po + R P, + R P2 + '" + RPm - 1 + R 0 m - 1 

=(PO+PI+P2+"'+Pm-1 +0m_ I )R (19) 

is true, wherePo,PI,P2, .. ·,P m -I ,0m _ 1 are projection opera­
tors independent of each other. So, 

P;Pj = PjP; = 8ijPj, 

Pj 0 m _ 1 = 0 m _ 1Pj = 0, O<J,j<m - 1, (20) 
m-I 

0 m _ 1 0 m _ 1 =0m _ 1 =1- L ~. 
j=o 

From Definition 5, 
N N 

Pm= L Im,K)(m,KI= L Im,K)(m,Kl, 
k=1 K=I 

using the definition of the reciprocal vectors, we have 

(m,K Im,L) = 8KL , (m,L Im,K) = 8LK • 

Obviously Pm is a projection operator, 

PmPm =Pm 
and 

N 

0 m- 1Pm = L 0 m_ 1Im,K)(m,KI =Pm· 
K=I 

For the same reason 

Pm0 m- 1 =Pm· 

Also from Definition 5, 

0 m=0m_ I -Pm, 

so 0 m is also a projection operator, 

0 m0 m =0m, 

and 

Now we prove that 

PjPm = PmPj = 8mjPm· 

Whenj = m, it is obvious. Whenj < m we have 

PjPm =Pj0 m- IPm =0, 

PmPj =Pm 0 m _ IPj = O. 

(21a) 

(21b) 

(22a) 

(22b) 

(22c) 

Formulas (21a), (21b), and (20) have been used in the 
preceding proof. We can also prove that 

Pj 0 m = 0 m Pj = O. 

Whenj = m, that is true, whenj <m, using (22c) we get 

Pj0 m = Pj 0 m _ 10 m = 0, 

0 m Pj = 0 m 0 m _ IPj = O. 

Renchuan Wang 2334 



                                                                                                                                    

Combining the preceding together, we have 

PiPj = PjPi = ~ijPj' 
~0m = 0 mPj = 0, O<'i,j<.m, 

m 

0 m0 m =0m =1- L Pj . 
j=O 

So 

PO+PI + ... +Pm +0m =I. 

Therefore 

R = R Po + R P, + R p, + ... + RPm + R em 

is true. 

III. APPLICATIONS OF THE FORMALISM 

(23) 

In the R space constructed by the complete orthonor­
mal function set, the system's Hamiltonian can be expressed 
as 

N 

H= L Hmnlm)(nl, (24) 
m.n=l 

A 

where Hmn = (miH In). When m or n >N, IHmn I can be 
viewed as small compared to IHI1I. 

The inverse of the system's Green's function can be writ­
ten as 

A 

G,-I=E-H 

and the inverse of the local Green's function is 

(PGP) -I = PG ,- Ip _ PG ,- 10( 0G ,- 10) -10G ,- Ip, 

(25) 

where 
N N 

P= L In)(nl = L 10,n)(0,nl = Po, 
n= I n= I 

o = 1 - P = 1 - Po = 0 0, 

and 
A 

PG,-10= -PH00 

N A 

= - L 10,K) (O,K IH00 
K=I 

N 

= - L 1°,K)(1,K1 
K=I 

N A 

= - L 10,K)(1,KIPI = -PHPI· 
K=I 

In the same way, we have 
A 

0G,-lp= -PIHP. 

Formula (25) can be rewritten as 

(26) 

A A 

(PG ,- Ip) -I = PG ,- Ip _ PHPI (0G ,- 10) -IPIHP, 
(27) 

where PI (0G ,- 10) - IPI can be obtained from its inverse 
operator 

[PI (0G ,-10)- IPd-1 

=PIG ,-IPI -PIG ,-101(0IG ,-101)-10IG ,-IPI. 

Again we have 
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I A '" PIG ,- 0 1 = - PIHP2, 0 1G ,- IPI = - P2HPI. 

The preceding formula can be expressed as 

[PI (0G ,-10)- IPd-1 

= PIG ,-IPI - P/IP2(0 IG ,-101)-lp.jIPI. 

Again we have 

[P2(0IG ,-101) -IP
2

] -I = P
2
G ,-IP

2 

- P .jIP3 (02G ,- 102 ) - I pi/P
2

, 

A A A A 

(28) 

(29) 

(30) 

If we regard PHPI, PIHP, PIHP2, PpPI, ... as of the 
same order, then the following is true. 

The biggest contribution of PIG ,- IPI to (PGP) -I is 
second order. 

The biggest contribution of 0 1G ,-101 to (PGP)-I is 
fourth order. 

The biggest contribution of P2G ,- IP2 to (PGP) -I is 
fourth order. 

The biggest contribution of 0 2G ,- 102 to (PGP) -I is 
sixth order. 

The biggest contribution of PkG ,-IPk to (PGP) -I is 
(2k)th order. 

The biggest contribution of Ok G ,- 10k to (PGP) -I is 
(2k + 2)th order. 

If we terminate our accuracy of calculation at (2k)th 
order, then 

[Pd0k_ I G ,-10k_ I )-IPd -1~PkG .-IPk, 

[Pk- I (0k_ 2 G .-10k_ 2 )-IPk_I]-1 

~Pk-I G .-IPk_ 1 

- Pk- JjPk [PkG .-IPk ] -IPkHPk_ l , 

[Pk- 2 (0k_ 3G.- 10k_ 3 )-IPk_ 2]-1 

et,Pk_ 2 G .-IPk_ 2 - Pk- 2HPk_ 1 [Pk- I G .-IPk_ 1 
A 

- Pk_1HPk(PkG ,-IPk)-IPkHPk_I]-1 

XPk_ IHPk_ 2 , 

(31) 

All the calculations areN X N matrix calculations: addi­
tion, subtraction, mUltiplication, and inversion. In principle 
we continue to perform these operations until we get the 
exact expression of (PGP) -I. 

Theorem 2: In the expression of (PGP) -I, all the calcu­
lations can be done in the space R Po = PRo 

Proof: The construction factors in the expression of 
1 A. A A 

(PGP)- are Pk, PkHPk+ \0 Pk+ IHPk' PkHPk, ... 
(k = 0,1,2,3, ... ). 

If the calculation of Pk can be done in R P, then it is 
obvious that the other calculations can be done in R Po. Now 
we use inductive method to prove this. 
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Suppose the calculation of Pm (m<k) is only related to 
the states in space R P., then the calculation of the Pk + I'S is 
only related to them, too. Obviously this is true for k = 0. 

The calculation of PO'P1>""Pk is only related to the 
states in space R P., which means that the calculation of the 

space basis of R PO,R p', ... ,R Pk is only related to the basis of 
'" R Po, also, and the calculation of P L H II,J) (l <K, L <I) is 

only related to the states in R Po, 
A 

IK + I,J) = 0kHIK,J) 

A K A 

=HIK,J) - L PLHIK,J). (32) 
L=O 

It is natural that the calculation of the IK + 1,J )'s is 
only related to the states in R Po. According to the definition 

N _ 

PHI = L IK + 1,J)(K + I,JI 
J=l 

N 

L «K+I,mIK+I,n»JLIIK+I,J) 
J,L=l 

X(K + I,L I. 
Obviously the calculation of Pk + I can be done in R Po. 

If the initial states 10,J) are not orthonormal, then the 
expression of the Po projection operator will be 

N N 

Po= L 10,J) (0]1 = L «O,mIO,n»k:TII0,K)(O,JI· 
J=I J,K=I 

(33) 

According to Theorem 2, it is not required that we know 
A 

all the initial states, but it is required that (O,J IH "I O,K ) 
(n = 0,1,2, ... ) be finite. Otherwise the (PGP) -I factor will 
diverge (which has no physical meaning), so we can get the 
following deduction. 

Deduction: Given N independent state functions 
{IO,J), J = I,2, ... ,N}, if only the (O,K IBnIO,J) 
(n = 0,1, ... ) are all finite, then, in principle, we can get the 
matrix expression of the local Green's function (PGP) -I. 

IV. DETAILED CALCULATION 

The second-order accuracy local Green's function is 

(PGP) 1= PG ,-Ip _ PHP1(PIG .-IPI ) IP1BP. 
(34) 

From the definitions (2) and (7) we have 
A N 

PHPl = L 10,J)(I,JI, 
J=I 

A N 
PIHP= L 11,J)(0,JI, (35) 

J=l 

(PIG, IPI)-I={iG l(l)KJll,K)(1]I}-1 
K,J 

N 

= L G(l)KJll,K)(1,J I, 
K,J 

where 

G -1(l)KJ = (1,K IG, Ill,J) =EB(1)KJ - H(l)KJ' 
N 

B(l)KJ = (I,Kll,J) =HiJ - L HKLHU' 
L=I 

2336 J. Math. Phys., Vol. 28, No. 10, October 1987 

H(1)KJ = (I,KIHII,J) 

N 

N 

=HL - L (HKLHi, +HiLHU) 
L=! 

N 

+ L HKIHILHu, 
I,L= I 

L G(1)KL G l(l)u =8KJ · 
L=I 

(36) 

We have used the following relationship in the proof of 
(36): 

(PIG, IPI)-I(P1G,-IPI ) =PI· 

This is the general expression of the local Green's func­
tion to second order. We have 

(PGP)-I = i {E8KJ -HKJ 
K,J=I 

- Lil B(l)KL G(1)L/B(l)lJ}IO,K)(O,JI. 

(37) 
A A 

A 11 H = Ho + v, and 10,K) is the eigenstate of 
Ho (Hol0,K) = Ek 10,K», 
then 

B(1)KJ=(ViJ- Ltl VKLVU ), 

N 

+ V;o - L (VKL vi, + Vh v u) 
L=I 

N 

+ L VKL VL/ VlJ· 
L,I= I 

(38) 

The local Green's function under the accuracy offourth or­
deris 

A A 

(PGP)-l =PG ,-lp-PHP1(0G .-10)-IPIHP, 

[Pl (0G, 10)-IPd-1 (39) 
A A 

= PIG .-IPI - P1HP2 (P2G ,- IP2)-IPzHPI. 

From the definitions (12) and (7) we have 

N N 
PzHPI = L 12,J){l]I, PIHP2 = L II])(2,J I, 

J=l J=I 

N 

= L G(2)KJ 12,K) (2,J I· 
K,J=I 

Using 

(PzG ,- IP2 ) ,- 1 (P2G .- IP2) = P2 

we deduce that 
N 

L G(2) KL G(2),-IU = 8KJ , 
L=I 

where 

G -1(2)KJ = (2,K IG ,- 112,J) = EB(2)KJ - H(2)KJ' 
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B(2)KJ = (2,K 12,J) 

N 

=H2(1)KJ - L B(l)KLB (1)U 
L~I 

N - L H( 1) KL B -1( 1)LIH(1)/J, 
L,I~ I 

H2(1)KJ = O,KIH 211,J) 

N 

=Hj(J - L (H~LHu +HKLHL) 
L~I 

N 

+ L H KL H 2
LIH/J, 

L,I~ I 

H(2)KJ = (2,KIHI2,J) 
A A 

= (O,K IH(1 - P)H(1 - P - PI) 
A A A 

xH(1- P - PI )H(1 - P)H 10,J). 

By following the previous method we can continue the 
calculation. OnlyatPI does thefactorofB -I( 1) appear. It is 
similar to the last term in the expression of B(2)KJ' 

[PI (0G .-10) -IPl ]-1 

= -£ {EB(1)KJ -H(1)KJ 
K,I~ 1 

- L.~I B(2)KL G(2)LIB (2)/J}1 1.K)O,J1 

N 

= L C- l (2)KJll,l()(I,JI, (41 ) 
K,J~I 

C -1(2)KJ = EB(1)KJ - H(1)KJ 

N 

- L B(2) KL G(2)LIB (2)/J' 
L,I~ I 

Then 
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N 

PI(0G .-10)-IPI = L C(2)KJI1,K )O,J I, (42) 
k,J~ I 

where 
N 

L C(2)KL C - I(2)u =~KJ' 
L~1 

Finally we get the formula for the local Green's function 
under fourth order: 

(PGP)-I = -£ {E~KJ -HKJ 
K.J~ I 

- L.~ I B( 1)KL C(2)LIB/J(1)} 10,K )(O,J I· 

(43) 

V. CONCLUSION 

The method presented above is able to give a solution for 
the local Green's function, though it is a bit complicated. In 
principle, besides the requirement of the finiteness of ,.... 
(O,K IH"I0,J) (K,J = 1, ... ,N, n = 0,1, ... ) for the initial 
states, there is no other restriction imposed. In actual calcu­
lations, we always want higher efficiency, so it is better, of 
course, if we can choose a set of initial states close to the 
eigenstates of the Hamiltonian. 
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The recently introduced "spatial transform" (ST) method for providing solutions to nonlinear 
evolution equations is developed when the basic a equation is the "spectral Schrodinger" 
equation (S). A fundamental tool is the "spectral Wronskian," which allows one to take 
advantage of the structure of a two-dimensional module for some set of solutions of (S). This 
leads easily to the KdV hierarchy. Contrary to the usual spectral transform (or inverse 
scattering transform) method there is no a priori assumption on the long distance behavior of 
the solutions. A recursion operator is exhibited. Local conservation laws and Backlund 
relations are also derived. 

I. INTRODUCTION 

In a previous paper I we introduced the "spatial trans­
form" (ST) method for investigating nonlinear evolution 
equation (NE's). We can summarize the method as follows. 
Let ~ and fJi be sets of complex vector- (or matrix-) valued 
functions whose elements are denoted, respectively, by U(x) 
and R (k); x is the real "space" variable and k is the complex 
"spectral" variable. In the following, S refers to spatial and S 
to spectral and we sometimes point out that a letter occuring 
in an expression plays the role of a parameter by underlining 
it. A "a" (DBAR) problem means any problem that con­
sists of finding a function F(k) in the complex plane from a 
relation called the "a equation" involving F(k) and its "de­
fect of holomorphy" 

~f * ~ (:~ + i :~). k = kI + ik2' (kI,k2 )ER
2

• 

(1) 

Other conditions such as "normalization at 00" [i.e., infor­
mation on the behavior of F(K) as Ik 1-- 00] must be added 
to this a equation in order to obtain the uniqueness of the 
solution. Note that a Riemann-Hilbert problem can be 
viewed formally as a particular a problem, where F(k) is 
analytic everywhere in C except on a contour r where it has a 
jump. 

Then, generally speaking, a ST is a map 

Y: R(k)EfJi-- U(X)E~ 
_ A 

defined through a C-linear a equation Equ{x,k,R (k)} with a 
normalization at 00 (N), where k is the variable, x is a pa­
rameter, and R (k) (kEC), the "spectral potential," fixes the 
equation. The image of R(k) by Y, U(x), is defined from 
the asymptotic behavior as Ik 1-- 00 ofthe solution F(k,x) of 
the a problem [Equ{x,k,R(k)},(N)]. ThenF(k,x) should 
satisfy a linear differential equation Equ{x,k,U(x)}, where 
x is the variable, k is a parameter, and U(x), the "spatial 
potential," fixes the equation. Then, introducing the "time" 
t, we assume a linear evolution (L) for R (k,t). (Note that as 

a) On leave of absence from Pontificia Universidade Cat61ica de Silo Paulo, 
Silo Paulo, Brazil. 

b) Unite Associee au Centre National de la Recherche Scientifique n' 
040768, Recherche Cooperative sur programme n' 080264. 

a general rule we only write the parameter t when we think it 
A 

is necessary.) It is expected that Y transforms (L) into a 
NE in U(x,t) so that we will then conclude that Yprovides 
solutions to this NE. 

We also expect that for some subclass fJi 0 of spectral 
potentials, Y admits a bijective restriction 

Yo: R(k)EfJioCfJi~U(X)E~oC~, 
which allows us not only to provide solutions to NE's but 
also to solve initial value problems according to 

.Yo (L) .Yo 

U(x,O) ~R(k,O) ~R(k,t) ~ U(x,t), 
A A 

where Yo, the "spectral transform" (ST), is the inverse map 
of Yo' In some way Equ{x,k,R (k)} plays the same role for 
theST Y that Equ{x,k,U(x)} plays for theST .Yo. We shall 
refer to such a fact as-an "(x,k)-(x,k) analogy." This imi­
tates what happens for the direct andinverse Fourier trans­
form formulas. 

Thx ST method was suggested in analogy with the well­
known ST (or inverse scattering transform) method [see the 
monographs (Refs. 2-4) and, in order to take into account 
the ever greater importance of the a problem in the field of 
NE's, see the review (Ref. 5)]. There is a connection (see 
Ref. 1) with the direct linearization method (Fokas and 
Ablowitz6 and Ablowitz, Fokas, and Anderson7

). Contrary 
to the ST method there is no a priori assumption on the long 
distance behavior of the obtained solutions. Concerning the 
technique of the proofs to be used in the ST method, a "a 
analysis" has to be (constructed and) used instead of the 
(classical) "differential" analysis of the ST method. Putting 
this aside, the general strategy of the ST method is in our 
opinion much easier than that of the ST method. This should 
appear clearly in the following example. 

In Ref. 1 we began the application of the ST method 
when Equ{~,k, R(k)}, (N), and (L) are, respectively, 

A a 
(S): a"k F(k,x) = R(k)F( - k,x), (2) 

(N): F(k,x)=e- i/cx(1+0(1lk») as Ikl--oo, (3) 

A a 
(L): -R(k,t) =p(k)R(k,t), at (4) 

where xER, kEC, F(k,x), R(k), andp(k) are complex val-
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ued, and p(k) is a given odd polynormial in k, which we 
write in the form 

N 

p(k) = - 2ik O(k 2) with O(K) = L a"K". (5) 
,,=0 

Recall that if a function of k, t/J(k,x) , can be written in 
the form 

t/J(k,x) = e - ikx [P(k,x) + O(1lk)] as Ik 1- 00 

(xER), (6) 

where P(k,x) is a polynomial in k with x-dependent coeffi­
cients, we say that t/J(k,x) admits a "polynomial normaliza­
tion" and we write Nort/J(k,x) =e-ikxP(k,x). Using an 
assumption on R (k) (kEC), which needs a further investiga-

_ A 

tion and is equivalent to demanding that the a problem [ (S), 
(N)] admits a unique solution F(k,x), we have proved in 
Ref. 1 that, for any P the a problem [(8), "Nor t/J(k,x) 
= eikx P(k,x)"] has a unique solution t/J(k,x) and that 
t/J(k,x) admits an asymptotic expansion (AE) 

t/J~ (k,x) = e- ikx f t/J<X) (NEZ). 
,,= -N k 

In particular F( k,x) admits the AE 

00 F (x) 
FOO (k,x) =e- ikx L -" -, with Fo(x) = 1. 

,,=0 k" 
We suppose that F(k,x) and F" (x) (n;;;'O) admit x-deriva­
tives of any order. 

Furthermore, 9 being the commutative ring of even 
polynomials in k and Y being (for fixed x) the set of solu-

A 

tions of (S) that admit a polynomial normalization, we have 
shown that Y forms a 9 -module of dimension 2 and of 
basis {F(k,x),(a lax)F(k,x)}, i.e., for any t/J(k,X)EY there 
exist 9-scalarsA(k,x) andB(k,x) such that 

a 
t/J(k,x) = A (k,x)F(k,X) + B(k,X) ax F(k,x). (7) 

The motivation for introducing Y is that "(a lat - ~p(k») 
XF(k,x,t)" belongs to Y, so that there exist 9-scalars 
A (k,x,t) and B(k,x,t) such that 

(L): ~F(k,x,t) = (~P(k) + A (k,x,t»)F(k,x,t) 
at 2 

a + B(k,x,t) -F(k,x,t). (8) 
ax 

Then, noticing that a I ax acts 9 -linearly in Y, we have 
concluded that it can be characterized by a 2 X 2 9 -matrix. 
This yields that F( ~,x) satisfies the (spatial) Schrodinger 
equation 

with 

(S): [~+ k 2 - U(x) ]F(k,x) = 0, xER, kEC, 
ax2 

(9) 

U(x) =*' - 2iF; (x) 

=~~(fr R(/)eilX F(-I,x)dll\d7), (10) 
'IT dx JR' 

where I = II + il2, (/1,/2)ER2, and a prime means the deri~­
tive with respect to x. This result suggests we name (S) 
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"spectral Schrodinger" equation. ANote the (~,k)-(x,~) 
analogy: the set Y of solutions of (S) forms a 9 -module of 
dimension 2; the set of solutions of (S) forms a C-vector 
space of dimension 2. 

It is well known that a "higher" KdV in U(x,t), corre­
sponding to the given odd polynomial p(k), can then be 
obtained as the "compatibility condition" of the Schro­
dinger equation (S) and the "auxiliary Lax equation" (L). 
Note that no assumption on the behavior of U(x) as Ixl ..... 00 

is needed (at least surely if we do not demand the existence of 
a "recursion" operator). In the logic of our approach an­
other kind of derivation of the KdV hierarchy is needed us­
ing the AE's. We have outlined it in Ref. I and we have 
detailed the casep(k) = 8ik 3

, which corresponds to KdV. 
In this paper we complete our investigation of the ST 

method when the basic a equation is the spectral Schro­
dinger equation (8). In Secs. III-V we prove that the ST 
method provides solutions to a hierarchy of NE's, that this 
hierarchy is purely differential, and that it is the KdV hierar­
chy. A recursion operator (defined in an appropriate space) 
is exhibited and local conservation laws are derived. In Sec. 
VI Backlund relations are investigated. Finally in Sec. VII 
we consider the case where the solutions go to zero for large 
distances, which corresponds to the range of application of 

A 

the usual ST method. 
A fundamental tool in our a analysis is the "spectral 

Wronskian" we introduce in Sec. II. This develops further 
the already mentioned (~,k)-(x,~) analogy;... We recall the 
importance of "Wronskian relations" in the ST method.3 In 
some way we have introduced a "a differential version" of 
the "spectral integral relations" mentioned in Ref. 3. 

II. THE SPECTRAL WRONKIAN TOOL; THE "BILINEAR" 
RELATION (B) 

Asg(k) and h(k) (kEC) are complex functions we de­
fine their "spectral Wronskian" 

W[g(k),h(k)]=*'lg(k) h(k) I (2ik)-1 
g(-k) h(-k) 

= [g(k)h( - k) - g( - k)h(k) ](2ik) -I. 
(11) 

This W is an alternating 9 -bilinear form. We now prove a 
"spectral Wronskian property" for the solutions of (8): if 
G(k,x) andH(k,x) belongtoY, then W[G(k,x),H(k,x)] 
is a .9 -scalar and - - -

W[G(k~),H(k~)] = W[Goo (k,~),HOO (k~)]. 
Note the (x,k)-(x,k) analogy: if g(k,x) and h(k,x) are so­
lutions of (S), - then their - (usual) Wronskian 
W(g(~,x),h(~,x») is a C-scalar and 

W(g(~,x),h(~,x») = W(g(~,oo ),h(~,oo »). 
A 

Using (S), it is easy to verify that 

a A 

-=- W[G(k,X),H(k,x] = 0 
ak - -

so that W[ G (k~ ) ,H (k~) ] is an (even) entire function in k. 
The proof is completed by using the AE of G(k,x) and 
H(~,x) and the Liouville theorem. -
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A direct application of the spectral Wronskian property 
yields 

(B): W[F(k,x), ~F(k,x)] = 1, 
- ax -

i.e., (12) 

W[F(~,x),F( - ~,x)] = 2ik. 

Since (S) implies (a lax) W[F(~,x),F( - ~,x)] = 0, the bi­
linear and first-order (in the x-derivatives) formula (B) can 
be viewed as completing the linear and second-order formula 
(S). Note the (x,k)-(x,k) analogy: {F(k,x),(a I 
ax)F(k,x)} is a basis of the .9'-module Y; {F(k,x), 
F( - ~,x-)} (kEC*) is a basis of the C-vector space ofsolu­
tions of (S). 

The spectral Wronskian tool allows the calculation of 
the .9'-scalarsA(k,x) andB(k,x) inEq. (7): 

A. 

B(k,x) = W [F(k,x),lf(k,x)], 

A (k,x) = - w[! F(k,x),lf(k,x)]. 

(13) 

III.THE FUNCTIONS q>(k,x)'f1"" (k,x),f1n(x); DERIVATION 
OF THE NE [EQ. (17)] 

As an application of formulas (13) we find that the .9'­
scalar B(k,x,t) in Eq. (8) satisfies the relation 

B(k,x,t) = W[F(k,x,t),i.F(k,x,t)] + p(k) ip(k,x,t) , 
at 2ik 

(14) 

whereip(k,x) *F(k,x)F( - k,x). A similar relation can be 
written for A (k,x,t). Since ip(k,x) admits the AE 

ipoo (k,x) = i: ipn ;~) , 
n=O k 

with 
2n 

ipn(x) = L (-1)mFm (x)F2n _ m(x), (15) 
m=O 

we find that B (k,x,t) and A (k,x,t) can be calculated with the 
formulas 

[
p(k) 00 ] B(k,x,t) = Nor 2ik ip (k,x,t) , 

(16) 
1 a 

A(k,x,t) = ---B(k,x,t). 
2 ax 

The equalization of the terms in 1/ k 2 in Eq. (14) gives the 
equation 

U, = ( - 2 n~o an ipn + I t (17) 

[recall the notation (5)], where now lower indices are used 
for indicating the derivatives with respect to x and t. Since 
the an's can be varied freely we have thus obtained a "hierar­
chy" of equations. Now <poo (k,x) can be viewed as the "gen­
erating function" for this hierarchy. It is not yet clear that 
( 17) is a NE in U(x,t). To show this we need to investigate 
the structure of the ipn 'so This will be done in Sec. IV. As a 
consequence we will obtain in Sec. V that (17) is in fact a 
"higher" KdV in U(x,t) and that the operators Land L + 

2340 J. Math. Phys., Vol. 28, No.1 0, October 1987 

(defined in appropriate spaces) exist that "generate" the 
hierarchy according to ipn + I = Lipn, (<Pn + I )x 
= L + (ipn)x' We will also derive local conservation laws. 

IV. PROPERTIES OF THE q>n 's; THE SPACES 15', 15", [§ 

We call'll the C-vector space offunctionsf lR--C that 
are polynomials in the x-derivatives of U-U, Ux , Uxx , ... -
without constant term (this last point is of importance). 
Here 'll' = (d I dx) ( 'l/) is the image of the space 'l/ by the 
mapd Idx: 'll-- 'l/. We also introduce Y = {fE'l/, Ux!E'l/'}. 

We will prove the following properties for the ipn 's: 

(PI): 'o'n>l, ipnE'l/; 

(P2 ): (ipn + I )x = - ~(ipn)xxx + U(ipn)x + ~Ux<Pn 
= -~(ipn)xxx + (Uipn)x -!Uxipn 

(n>O); 

(P3 ): 'o'n>O, 'o'm>O, gm,n *<Pm (<Pn )xE'l/'; 

(P3):'o'n>l, <Pn EY . 

(18) 

Proojoj(p}): We use (15) and the recurrence formula 
for the Fn 's, 

F~+ I (x) = - (i12)F~'(x) + (i12)U(x)Fn (x), (19) 

Fo(x) = 1, 

obtained from (S) and the AE of F( k,x). As a kind of substi­
tute to the knowledge of constants for integrating (19) we 
use the formula 

2n 
i<Pn+dx ) = L (-1)mFm(x)F2n+l_m(X), n>O, 

m=O 
(20) 

obtained from (B) [Eqs. (12)] and theAEofF(k,x). [Note 
that in the standard case where U(x) goes to zero as /x/- 00, 

Eq. (19) can be completed with the boundary condition 
Fn ( 00 ) = 0.] Because of the structure of ( 19) we are led to 
an "inflationist" proof in the order of the derivatives of the 
Fn 's, i.e., in order to prove that ipn E'l/ (n> 1) we prove that 

N 

lfN.q,r * L (- 1)m F;,;) Fjp_ mE'l/, 
m=O 

for N>O, q>O, r>O, (N,q,r) =1= (0,0,0). 

This can be done by induction: introduce the recurrence as­
sumption 

(HN ) (N)O): 'o'q>O, 'o'r>O, 

lfN,q.rE'l/( (N,q,r) =1= (0,0,0»); 

then use the identities lf2n,O,O = ipn [Eq. (15)], lf2N+ 1.0,1 

= iipn + I [Eq. (20)], and the recurrence formula 

lfN+ I.q.r+ I = - 2i lfN,q,r+2 + ± C~ (F; ) (k)lfN.q,r_k, 
k=O 

N>O, q>O, r>O, (21) 

derived from ( 19) and the Leibnitz formula. 
Prooj oj (P2 ): Use the AE of ip(k,x) in the following 

equation derived from (S): 

ipxxx + 4(k 2 - U)ipx - 2Uxip = 0, XElR, kEC. (22) 

Proojoj(P3 ): Use gN,O E'l/' and (gn,m + I - gn+ I,m )E'l/' 
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(n>O, m>O) which is a consequence of rpnE'l? (n>l) and 
(P2). Property (Pi) follows from (P3 ): 

Ux rpn = 2rpn (rpl) x = 2gn., E'l?'. 

V. CONSEQUENCES: EQUATION (17) IS A HIGHER KdV; 
THE OPERATORS S dx, L, AND L +; LOCAL 
CONSERVATION LAWS 

Property (P I) implies that Eq. (17) is a nonlinear par­
tial differential equation in U(x,t) and is therefore a higher 
KdV [the behavior of U(x,t) as Ixl .... 00 does not play any 
role in the form ofEq. (17)]. 

Now we use (P2) for expliciting the dependence of 
rpn+1 [resp. (rpn+l)x] withrespecttorpn [resp. (rpn)x]' 
We have to find some canonical way of choosing primitives. 
[In the standard case where U(x) goes to zero as Ixl .... 00 

this is easily done by introducing SX± 00 dy.] We remark that 
the operator d / dx: 'l? .... 'l?' is a I{::;'linear isomorphism, so that 
we can define the in verse operator S dx * (d / dx) - I: 'l?' .... 'l? 
and the (:-linear operators Land L +, L: [1 .... 'l?, L +: 

'l?' .... 'l?: 

1 d
2 

1 f L= ---+ U-- dx U 
4dx2 2 x' (23) 

L+ = ---+ U+-U dx. 1 d
2 

1 f 
4 dx2 2 x 

HereLandL + are connected by L +o(d /dx) = (d /dx)oL 
(identity on [1). Using (P2 ) and (Pi) it is easy to verify that 

rpn+1 =Lrpn, (rpn+l)x =L+(rpn)x (n>l). (24) 

Therefore using rp I = ! U [set n = 0 in (20)] and recalling 
the notation (5) we find that the higher KdV ( 17) can be put 
into the two equivalent forms: 

Ut +(O(L)U)x =0, Ut +O(L+)Ux =0. (25) 

HereL + is the "recursion" operator. Note that the generat­
ing function rp 00 satisfies the property Lrp 00 = k 2 (rp 00 - 1), 
where we have used (rpoo - 1 )E[1 and we have setL 1 = rp,. 

From (L) [Eq. (8)] we derive the following evolution 
law for rp(k,x): rpt = Brpx - Bx rp, which yields rp;" = Brp ;' 
- Bxrpoo. Inserting (16) we find that (rpn L isalinearcom­

binationoftermsgp •q ' Hence, using (P3 ): (rpn )tE'l?' (n>O), 
i.e., there exists YnE'l? such that (rpn)t = (Yn )x. We have 
obtained for any higher KdV an infinite set oflocal conserva­
tion laws. The densities-the rpn 's-are common to all equa­
tions of the hierarchy. This is not the case for the currents­
the Yn's. 

VI. BACKLUND RELATIONS 

A Now ~e start from two spectral Schrodinger equations 
(SI) and (S2) withspectralpotentialsR,(k,t) andR2(k,t) 
connected by the formula 

R 2(k,t) = R, (k,t)G(k)/G( - k) 

with 

Nt 

g(k2) = L. f3n k2n , 
n~O 
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N, 

h(k 2) = L. Yn k2n , 
n=O 

the f3n's and the Yn's being time-independent coefficients. 
Here R,(k,t) and R2(k,t) satisfy the same time evolution 
<1:). The ST method provides spatial potentials UI (x,t) and 
U2(x,t), which are solutions of the same higher KdV. 

Since F, (k,x) and F2 (k,x) are the solutions of (81,1) 
and (82,1), it -is easy to see that both F2(k,x) and 
G(k)F, (k~) are solutions of (82), From Eq. (7) thi're exist 
&-scalars C(k,x) and D(k,x) such that 

a 
G(k)FI(k,x) = C(k,x)F2(k,x) + D(k,x) -F2(k,x). ax 

(26) 

Then using the spectral Wronskian tool and a procedure 
similar to Sec. III one can find the implicit "Backlund" rela­
tion between U, (x,t) and U2(x,t): 

Nt N2 

i L. f3n qJ 2n + I (x,t) - 2 L. YnqJ2n + 2 (X,t) = 0, (27) 
n=O n=O 

where the qJn's occur in the AE qJoo (k,x) 
= };;; ~O qJn (x)/kn of qJ(k,x) *FI (k,x)F2( - k,x). 

We consider the particular case g(k 2) = 2p, h(k 2) 
= 1. Then Eq. (27) reduces to qJ2 = ipqJI' which can be ex­

plicited in the form 

UI + U2 = - ~ [LX (UI - U2)(y)dy -M] 
X[4P - f (U I -U2 )(y)dY +M], (28) 

where a is a chosen real number and M is a constant deter­
mined from a, R,(k), and R 2(k). 

VII. THE SUBCLASS f!lio AND THE USUAL 
SCHRODINGER ST 

We consider the subclass f!Ii 0 of spectral potentials R (k) 
(kEC) in the form 

i N 
R(k) = - o(k2)r(k) + L. 1To(k - k n )Cn, (29) 

2 n~' 
with r(k) = O( 11k) as Ik I .... 00 (kElR), 1m k n > 0, which 
corresponds to a subclass ~ 0 of spatial potentials U(x) 
(XElR), which go to zero as Ixl .... oo. Then the previously 
define'!. ST Y admits a bijective restriction: Yo: f!Ii 9... .... ~ o. 

Then Yo* (Yo) -I is exactly the usual SchrodingerSTand 
r( k) (kER) is the reflection coefficient, the kn 's and the Cn 's 
correspond to the bound states, and F(k,x) coincides with 
t(k) rp(k,x) for 1m k> 0 and t/J( - k,x) for 1m k<O, where 
t(k) is the transmission coefficient and rp(k,x) and t/J(k,x) 
are the Jost solutions of (S): rp(k,x)_e- ikx (x .... - 00), 

t/J(k,x) _eikx (x .... 00). 

In this case it is easy to find that 

(f dX)f = f~ f(y)dy = f: 00 f(y)dy, for fE'l?'. (30) 

Hence we find the usual expressions for the operators Land 
L +. The local conservation laws can be integrated (the sys­
tem is "closed"), which yields an infinite set of constants of 
motion Cn * S~ 00 rpn (x,t)dx. Since Yo is bijective the 
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Backlund relations now provide Backlund transformations. 
Note that for a = 00 in Eq. (28) we have M = O. 
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Jaffe and Taubes [Vortices and Monopoles (Birkhauser, Boston, 1980)] have shown the 
existence and uniqueness of n-vortex solutions on the complex plane. In this paper, their 
results are generalized to an arbitrary U( 1) bundle over a compact Riemann surface with a 
Hermitian metric. Berger's "nonlinear analysis" [Nonlinearity and Functional Analysis 
(Academic, New York, 1977)] has provided an effective method to prove the existence part of 
the main theorem of this paper. 

I. INTRODUCTION 

Throughout this paper (M,g) will denote a compact 
Riemann surface equipped with a Hermitian metric g and 
(L,h) will denote a complex line bundle with a fiber metric 
h. The Abelian Higgs functional is defined to be 

A(V,tp) = IIVtp II~ + IIEv II~ + fM V(tp)*1 

for each connection-section pair (V,tp) of (L,h), where II' 112 
is a suitable L2 norm, Ev the curvature of V, and 
V( tp) = (A /4)[ 1 - h (tp,tp)] 2 the Higgs potential with a 
constantA, and where * is the Hodge operator of g. Let c 1 (L) 
be the first Chern class of (L,h) and let Vco.l)tp be the (0,1) 
component of Vtp. If one assumes that C1 (L),;;.O and A = 1, 
the Euler-Lagrange equations of A (V,tp) reduce to the fol­
lowing first-order system (the vortex equations) : 

VCO,l)tp = 0, i*Ev = HI - h(tp,tp)]' (1.1) 

and A (V,tp) achieves a topological minimum 217'C 1 (L) at a 
solution (V,tp) to (1.1).1-3 

The solutions to (1.1) are called n-vortex solutions 
when n =cl(L),;;.O, and the group Aut(L) of U(1) auto­
morphisms of L defines an equivalence relation, called gauge 
equivalence, on the set of n-vortex solutions. Jaffe and 
Taubes have shown that on M = C, for each effective divisor 
D, there exists a finite action smooth solution (V,tp) to 
(1,1 ), unique up to gauge equivalence, such that 
A (V,tp) = 217' deg D and tp determines D.2 The purpose of 
this paper is to prove a compact analog of their result. 

In what follows, Div(M) will denote the set of divisors 
on (M,g), [D] theinvertiblesheafofDEDiv(M), deL) the 
sheaf of sections whenever (L,h) is given a holomorphic 
structure, d (U) the sheaf of holomorphic functions on the 
open set Ur;;,(M,g), HO(M,d(L») the global holomorphic 
sections, (tp) the divisor of tpEHO{M,d(L»), and 
d (D) = d ([D]) as commonly written. 

Main Theorem: Let (M,g) be a compact Riemann sur­
face equipped with a Hermitian metric g. Let (L,h) be a 
complex line bundle over (M,g) such that C1 (L) = n,;;.O. 
Under these assumptions, the following statements hold. 

(i) An n-vortex solution (V,tp) exists if and only if 
n < (417') -I Vol(M), where Vol(M) is the volume of (M,g). 
Note that if the Gaussian curvature kg of g is a nonzero 
constant, the above condition is equivalent to 
n < (2kg ) -IX(M), where X(M) is the Euler characteristic 
of (M,g). 

(ii) Let DEDiv(M) be an effective divisor of degree n, 
where n satisfies the condition in (i). There exists an n-vor­
tex solution (V,tp) such that tpEHO(M,d(L») satisfies 
(tp) = D when L is given the holomorphic structure defined 
byV. 

(iii) The solution (V,tp) described in (ii) in unique up 
to gauge equivalence. 

II. PROOF OF MAIN THEOREM 

Let DEDiv(M) be an effective divisor of the form 
D = ~;"= 1 a; 'p;, a; ,;;.0, p; EM, for i = 1,2, ... ,N. Let {fa} be a 
set of local defining functions of D w.r.t. some covering 
{U a } of M. 4 We may define a globally defined distribution 
{jeD) == (217') -I a Inlfa Ion (M,g), where a is the Laplacian 
of g. The entire proof of the Main Theorem depends upon 
solving the following problem. 

Given an effective divisor DEDiv(M), find a function 
UEC"" (M - D) satisfying 

au = !(e2u 
- 1) + 217' {jeD). (2.1) 

We have the following crucial lemmas. 
Lemma 1: A solution to (2.1) is unique. 
Lemma 2: A necessary and sufficient condition for the 

existence of a solution to (2.1) is that 

degD< (417')-1 Vol(M), 

where deg D = ~;"= 1 a;. 
We will prove these lemmas later in the paper. 
Proof of (i) and (if): Suppose we have a smooth solution 

(V,tp) to 

V(O.I)tp = 0, 

i*'E.v =Hl-h(tp,tp)]. 

(2.2a) 

(2.2b) 

Local solutions ofVco·l)s = 0 define a holomorphic structure 
on L. Consequently, (2.2a) simply says tpEHO{M,tJ (L»), 
and V will be the unique metric connection compatible with 
the holomorphic structure. Locally, 'E.v = a a In h 2 when 
we write h(s,s) =h 2

• Writing tp=/'s for somefEd(U), 
(2.2b) becomes 

alnh=!(h2lfI2-1). (2.3) 

Adding a In lf I to both sides, (2.3) becomes 

a In h lfl = !(h 2lfl2 - 1) + a Inlfl, 

which is simply 

a In [h(tp,tp) JII2 = Hh(tp,tp) - 1] + 217'{j(tp»). (2.4) 
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Thus u=ln[h(tp,tp)p12 solves (2.1) for D= (tp), and 
Lemma 2 implies deg D < ( 41T) - I Vol(M). But 
degD=deg(tp) =cl(L) =n, and n«41T)-IVol(M) as 
desired. 

Next, suppose n < (41T)-1 Vol(M). Given an effective 
divisor D of degree n, solve problem (2.1). Since D is effec­
tive, we may choose a global section tp 'ElloM,t},(D») such 
that (tp ') = D. Let s be a local holomorphic frame of [D] 
and writetp I = ft. Define a Hermitian metrich I = eU /lfllo­
cally. Let V' be the canonical connection of h Ion [D]. It 
follows that 

V/(O·I)tp'=O, i*:Sv' =Hl-h ' (tp/,tp')] (2.5) 

holds on ([D],h '). Choose a U(1) isomorphism ct>: 
(L,h) ...... ([D],h ' ) such that ct>*h'=h. Define tp=ct>*tp', 
V = ct>*V/, where ct>* indicates an obvious pullback map. 
Equations (2.5) give 

V(O,I)tp = 0, i*'Ev = HI - h(tp,tp)], 

and the (V,tp) above defines a gauge equivalence class of n­
vortex solutions. 0 

Proof of (iii): Suppose there are two distinct solutions, 
(Vj,tp;), i = 1,2, to (2.2a) and (2.2b). Letsj be a local holo­
morphic frame defined by Vi' Write tpi =J:ei . By our as­
sumption, we have (tpl) = (tpz) =D which implies 
A Inlfll = A lnlfzl = 21T.5(D). Equation (2.2b) becomes 

Alnhi[t;1 =Hh;[t;lz-l) +2m5(D), 

and Lemma says hilfllz=h~lfzI2, or 
h(tpl,tpl) = h(tpz,tpz). Thus we find a smooth function eix : 
M ...... U( 1) such that tpz = eix tp I' Locally, we may define 
glz = eix (fl/h) so thatsz =glzSl' The connection form of 
Vi w.r.t. Si is given by Aj = a In h;. As we change our local 
frame from s 1 to S2' AI = a In h i transforms into 
A ; = a In h i + gl2 Idgl2 . Compute 

A z -A; = a In(h Uh n - aln(fl//z) - i dX' 

But h i lfll z = h ~ lfzlz implies 

aln(h Uh n = a In(fll/z), 

and we obtain V z = V I - i dX as claimed. 

III. PROOF OF LEMMA 1 

o 

Here we prove the uniqueness of a solutionn to the prob­
lem (2.1). In what follows, 1I'lIp will denote the norm in 
Lp (M,g) and II'IL~Y will denote the norm in KwheneverK 
is a Hilbert space. First, consider the Poisson equation 

Auo = - 21Tc- l(degD)F + 21T.5(D), 

where FEC"" (M) such that S M F *1 = c> O. There is a solu­
tion UoEC"" (M - D) uniquely determined up to the addi­
tion of a constant.5

,6 Fix a pair (F,uo) on (M,g). Let 
K=. - 1 + 417" c-I(deg D)F. Equation (2.1) is equivalent 
to 

Av = !(e2uo'e2V + K), (3.1) 

where v = U - UoEC"" (M). Let H be the Sovolev space 
WI,z (M,g) of functions on (M,g). Define a functional a: 
H ...... R by a(v) = !IIVvll~ + !(p,e2V ) + !(K,v), where 
p = e2uo ;;;.0 is smooth, (',.) is the obvious bilinear pairing, 
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and V is the gradient operator ofg. We will prove Lemma 2 
in the following steps. 

Step 1: a (v) is defined for vEll. 
Step 2: a(v)EC I(H,R). 
Step 3: a(v) is strictly convex. 

As a result, a weak solution to (3.1) will be proved unique. 
Proofofstep 1: We have the following inequalities. 

(i) IIVvllz<lIvIlH' 

(ii) I (p,e2V
) I<supp' { e2lvl.l 

M JM 

<sup p{y exp[2liil + (2I1Vvllz)z/4.8 J) 
M 

for some y, P, where 

(see Ref. 7). Note that 

IIvllp <Cpl/Z( IIvll2 + IIVvIl2), for p;;;.1 

(see Ref. 7). 
(iii) I(K,v)I<IIKllzllvIl 2<IIKllzllvIIH. 0 
Proof 0/ step 2.' Write a(v) = al(v) + a2(v) + a3(v), 

where at(v) = !IIVvIIL a2(v) = !(p,eZU ), and a3(v) 
= !(K,v). Obviously, a t ,a3EC I(H,R), and it suffices to 

show a2(v)EC I(H,R). To this end compute the Gauteaux 
derivative at vEll for hEll as 

da2(V,h) =.!!:..-I ~(p,e2(V+th» =~L pe2vh *1, 
dt t=O 4 2 M 

where the last step can be justified by a standard theorem of 
calculus.s 

Next, we show daz (v, ) Ell * is continuous in order to 
guarantee the Frechet derivative a; (v) exists and contin­
uous. 9 Let Vn -+V in H. We have 

II da2(vn ,) -daz(v,)IIH* 

<!sup P' lIe2v• - ezullz' sup Ilh liz, 
M Ilhl/H =1 

and lIe2V
• - e2v1I2-+0 can be found in Ref. 7. 0 

Proof of step 3.' Since at (v) is quadratic, it is strictly 
convex. The linearity of a3 (v) implies that at (v) + a3 (v) is 
strictly convex. az(v) is clearly convex because P;;;.O. 0 

IV. PROOF OF LEMMA 2 

Proof o/necessity: Recall Eq. (3.1) given by 

Av=!(e2Uo'e2v+K), (4.1) 

whereK=. -1 + 41Tc- l (degD)F. Upon integrating (4.1) 
over M, we get 

fM K*1 = - f e2uo'e2u*1 <0, (4.2) 

since e2uo;;;.0. However, (4.2) implies 

deg D < (417") -I Vol(M). 0 
Proof of sufficiency.' For the sufficiency we must show 

the existence of a smooth solution to Eq. (4.1) assuming 
condition (4.2). 

Letting p = e2uo ;;;.0 as before, define operators L,P: 
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H-Hby 

(Lu,u) = fM VU'Vu*l, (Pu,u) = ~ fMpe2Uu*1. 

Note that L is a bounded self-adjoint operator and P makes 
sense because e2u ,ueL2 (M,g) due to the fact that 
XEW1•2 (M,g) implies 

(i) xELp (M,g) , for l<p < 00 (Sobolev inequality), 
(ii) e'"ELp(M,g), for l<p< 00 (see Ref. 7). 

We may consider the following operator equation on H: 

Lu +Pu =/, (4.3) 

where (/,U) = -! S M Ku* 1 for all uEB. 
Now we verify the following claim. 
Claim: If S M K * 1 < 0, then the operator equation 

Lu + Pu = f can be solved for u. 
Note that the claim together with the combined use of 

the Lp and Schauder regularity theorems 7 will complete our 
sufficiency proof. 

Proofoftheclaim: DecomposingHasH = Ker L EBHI , 

we obtain projection operators, 1T 1 and 1T 2' as in the following 
diagram: 

H 

1T1 / \1T2 . 
KerL H t 

Writing uEB as u = c + w, cEKer L, and wEBI , (4.3) be­
comes 

1T1P(C + w) = 1Tl/' 

Lw + 1T2P(C + w) = 1Tz! 
Note that (4.4a) simply says 

e
2c 

fM pe2w*1 = - fM K*l, 

since Ker L consists of constant functions. 

(4.4a) 

(4.4b) 

(4.5) 

Let A == - f M K * 1 which is positive by our hypothesis. 
Regarding C in (4.5) as a function of w, we have 

We will complete the proof in the following steps. 
Step 1: PEC I (H,H). 
Step 2: c: HI - Ker L is of class C I. 

Consider the map T: HI-HI defined by 

Steps 1 and 2 together with the chain rule implies 
TEC 1(H1,HI )· 

Step 3: (T'(w)u,u»lIuIl1,. 
By the Lax-Milgram lemma, step 3 implies that 

T'(w)EL(H1,Hl) is an invertible linear operator and 
II [T'(w)] -IIIL(H,.H,) <1. Hadamard's theorem applied to T 
concludes T is a homeomorphism of H I onto H 1•

9 This com­
pletes the proof of our claim. 

Proofofstep 1: Compute the Gauteaux derivative 

dP(xo,h) = ~ I P(xo + th) 
dt t=O 
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at xoEB, for hEB. For uEB, we have 

(dP(xo,h),u)=.!!..-1 J.. f pe2(Xo+thlu*1 
dt t=O 2 JM 

= fM pe2x.hu* 1, 

and the last step can be justified using a standard theorem of 
calculus.s We must showdP(x, )EL(H,H) is continuous in 
order to guarantee the Frechet derivative P'(x) exists and 
continuous.9 To this end let Xn -x in H. We have 

II dP(xn ,' ) - dP(x, . ) IIL(H.H) 

<sup plle2x• - e2x1l2 sup sup IIh 11411ull4 
M IIh lie = 1 IIvlle = I 

and lIe2x· - e2x1l 2_O can be found in Ref. 7. o 
Proof of step 2: As in step 1 we compute 

dc(w,u) = - (fMpe2w*1) -If pe2wu*1. 

One only needs to show dc(w,') is continuous in w. To this 
end, let Wn -w in H1CH. Compute 

Note that Ile2w
• - e2wllz_0, and 

since x - S Me'" is continuous w .r. t. the weak convergence in 
H W 0 

Proof of step 3: We compute 

(T'(w)u,u) 

= fM IVu1 2*1 + (1T2P' [c(w) + w] [c'(w)u + u],u) 

= fM IVu1 2*1 + e2C(Wl(fMpe2W*1) - I 

Moreover, 

f)Vv I2*1 = lI ull1, 

(see Ref. 11). 
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This paper demonstrates that the classical Cartan form 0 1 is not adequate for the 
determination of all the natural symmetries and conservation laws for a Lagrangian L. It is 
shown that the various extensions 0 i , ... , 0 ~ of the classical Cartan form, introduced in recent 
papers, give larger symmetry groups: GI C G2 C ... C Gr. This paper also introduces the notion 
of contact equivalent Lagrangians, which serves to clarify the idea that different Lagrangians 
can give rise to the same variational and symmetry theories. 

I. INTRODUCTION 

The standard geometric formulation of the variational 
theory for first-order Lagrangians L: J IE -+ R uses the classi­
cal Cartan form 01, a certain differential p-form on the jet 
bundle J1E associated with a fiber bundle E-+N [dim(N) 
= p, dim (E) = p + q]. I Recent papers2,3 have discussed 
various improved versions OL ... ,O~, r = min(p,q), of the 
classical Cartan form and have argued that 0 ~ is the most 
suitable of these forms for use in the variational theory. In 
this paper we examine the symmetry theory connected with 
each of these forms and show that the Cartan form 0 ~ deter­
mines a larger group of symmetries of L than the classical 
one. 

Specifically, we first show (Sec. III) that the Cartan 
forms 01, k = l, ... ,r are globally defined forms on J IE and 
have the mapping properties 

These properties prove useful in the ensuing symmetry the­
ory, and curiously enough seem indigenous to first-order 
field theories: the analogs of the forms 01 for higher-order 
Lagrangians L: J mE -+ R are local p-forms on J mE but fail to 
extend to global forms. 

The Cartan forms 0 1 differ from one another by contact 
element terms and so each gives the same global differential 
geometric formulation of the Euler-Lagrange equations: 
c/* (X I J dO 1) = O. However, it is shown (Sec. IV) that the 

natural symmetry groups Gk = {flf*(do1> =dOU as­
sociated with each Cartan form are in general distinct: 
G1 CG2 C"·CGr • This demonstrates the extent to which 
the symmetry group G I determined by the classical Cartan 
form fails to encompass all the natural symmetries of the 
Lagrangian L. The mapping properties (1.1) serve to sim­
plify the computation of the symmetry groups (and alge­
bras) as well as the corresponding conservation laws. Final­
ly we introduce (Sec. V) the concept of contact equivalence, 
two Lagrangian K,L being contact equivalent if their Cartan 
forms are related by dO ~ = h 1*(dO L ).It is shown that the 
extremals, symmetry groups, and conservation laws for K 
and L are the same (up to isomorphism) and thus the phys­
ics connected with either Lagrangian is the same. 

II. PRELIMINARY DEFINITIONS AND NOTATION 

The natural setting for Lagrangian field theories in­
volves a (smooth) fiber bundle 1T: E -+ N over a base manifold 
Nwith standard fiber F~1T-I{x}[dim(N) = p and dim (F) 
= q]. The sections u: N -+ E are the classical fields of interest 
[1TOU(X) = x] and we denote the collection of all such sec­
tions by r (E). Each pair of charts (U,x i) and (V,yQ) on N 
and Fgives rise to a fibered chart (C,x;,yQ) onE (i = l, ... ,p 
and a = 1, ... ,q). The first-order variational theory is based 
on the geometry of the bundle of one-jets J IE, This bundle is 
the collection of all equivalence classes [u] x of sections of E: 
two sections u, u being equivalent at x, N if u(x) = u(x) and 
a( yQou) (x)/ax; = a( yQou) (x)/ax; in some (hence ev­
ery) fibered chart. Then J I E is endowed with a natural dif­
ferentiable structure and surjections 1T~ ( [u] x) = u(x) and 
1T1 ( [u] x) = x on E and N which make it into a fiber bundle 
over E (with standard fiber Rpq) and a fiber bundle over N 
(in the extended sense that 1T1 is a submersion). In the sequel 
we adopt the standard practice of not distinguishing nota­
tionally between the differential forms and functions l/J on E 
and tP on N and their pullbacks 1T~*(l/J), 1T

1*(tP) to J IE. The 
fibered chart (C,x;, yQ) on E extends to a fibered chart 
(W,x;. yQ, yf) onJ IE, with the coordinate functions given by 
x;([uL) =x;(x),yQ([u]x) =yQou(x), and yf([u]x) 
= a( yQou) (x)/ax;. 

We let B(E) denote the group of bundle maps of E. 
These are the fiber preserving diffeomorphisms f E -+ E. 
Each bundle map induces a diffeomorphism!: N -+ N on the 
base space ( 1Tof = j 0 1T). The corresponding algebra of infini­
tesimal bundle maps is denoted by !B(E). These are the 
projectiblevector fields X: E-+ TE onE (d1TlzXz = X1T(Z) for 
some unique vector field X on N). There is a natural action of 
the group B(E) on the set of sections reEl. This is given by 
feu) = fouoj-I and is basic to the entire symmetry theory. 

The geometric objects associated with the bundle E pro­
long in a functorial way to corresponding ones on J IE: each 
section u: N -+ E prolongs to a section u l 

: N -+ J IE defined by 
u l (x) = [u] x; each bundle map f E -+ E prolongs to a bun­
dle map fI: JiE -+J IE defined by p ([u]x ) = [f(u) l./tX); 
and each infinitesimal bundle map X: E -+ TE prolongs to a 
vector field X I on J IE defined by X ~ (l/J ) 
= d [l/Jof:(m) ]ldt 1,=0' where mEJlE, l/JEC "'(JIE), and 

/, is the flow generated by X (thusf: is the flow generated by 
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X I ). The functorial properties of these prolongations are ex­
pressed by the identities 

(fog)1 =flogl, (2.1) 

[X,Y]1 = [XI,yl], (2.2) 

(2.3 ) 

For the variational theory we assume that N is a semi­
Riemannian, orientable manifold with metric g and volume 
form a. A (first-order) Lagrangian is a (smooth) map L: 
J IE --. R, and the associated Lagrangian form on J lEis La. 
Each bundle mapfEB(E) induces a map (transformation on 
the set of Lagrangians according to 

feLl = (Lofl)J(f), (2.4) 

where J( f) denotes the Jacobian off From this definition it 
follows thatf 1*(La) = f( L)a (here and in thesequelthe * 
denotes the pullback operation induced on the differential 
forms by a map between manifolds). The corresponding in­
finitesimal transformation on the set of Lagrangians [in­
duced by an infinitesimal bundle map XEIB(E)] is defined 
by 

(2.5 ) 

where .Y x' denotes the Lie derivative. From this it follows 
that.Y x' (La) =X(L)a. 

III. THE CARTAN FORMS 

We review here the definitions of the various Cartan 
forms () L () i, ... ,() ~, r = min ( p,q), and prove several map­
ping properties of these forms which will be ofimportance in 
the symmetry theory. We take a simple direct approach of 
defining these forms in local coordinates on J IE and show in 
Theorem I that these coordinate expressions agree on the 
overlap of any two fibered charts, thus giving rise to global 
Cartan forms. In general one can use the Tulczyjew bicom­
plex4 to naturally construct local Cartan forms () 1 , ... ,() ~ for 
any mth order LagrangianL: J mE--.R.5 For m = 1 this con­
struction gives the Cartan forms introduced below, and thus 
gives a different perspective on the origin and naturality of 
these forms. Regrettably, for m > 1 the construction does not 
give rise to global Cartan forms on J mE, and therefore one 
must proceed along different avenues.6 

Definition: Suppose that l.;;;n.;;;r = mine p,q), il> ... ,in 

E{l, ... ,p} and that al , ... ,an E{l, ... ,q}. For a fibered chart 
(W,xi> ya, y~) on J IE define the following differential forms 
on W: 

B B a
j

-___ 
j 
=-- J ... J -- J a, 

, n Bx- Bx. 
in '. 

M n(W) 1 BnL a 
L = --2 (cua, . . ·cu n) a j ... j • 

(n!) B"a, .. 'B"an ' n 
.TIl J"n 

(3.1 ) 

(3.2) 

(3.3 ) 

Here and in the sequel there is implied summation over re­
peated indices and the wedge symbol /\ has been omitted 
from the exterior products. Also J denotes contraction of a 
vector field with a differential form. We denote the basic 
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Lagrangian form La by () ~ = M ~ = La. 
Theorem 1: There is a globally defined form M 1 on J IE 

whose coordinate expression on each fibered chart W is 
M 1 ( W). This form has the mapping property 

f 1*(M1) = Mf(L)' (3.4 ) 

Consequently the Cartan forms, defined by 

()1 =M~ +Ml + "'Ml (3.5) 

(k = 1, ... ,r), are global forms on J IE with the mapping 
property 

f l
*«()l) = ()J(L)' (3.6) 

Proof: Suppose that! E--.E is a bundle map and that 
(W, Xi> ya, y~), (W, Xi> ya, y~) are two fibered charts on J IE 
with f I ( W) n W nonempty. Restricting to these charts f I: 

wn (fl) -I( W> --.fl( W) n W, and to prove the theorem it 
I -suffices to prove thatf *(M 1 (W») = M ftL) (W). To prove 

this introduce the notation Cij = B(xjOf)IBxj , C;; 1 

= [B(xjOf-I)IBxj]o}; fa=ya0j, and J=J(f). Then 
the coordinate representation off I on the above charts is 
xiofl =xjo}; yaof l =fa, and 

Y-aol'l = [Bfa +yb Bfa] C .-:-1. (3.7) 
I J a J B b JI Xj :Y 

From this it follows that f I*(dx j ) = Cij dxj , f I*(dya) 

= (BfaIBxj)dxj + (BfaIByb)dyb, fl*<Yn =y~ofI, and 
consequently 

f l*(-a) -fl*(d-a -ad-) - Bfa b (3.8) CU - Y - Yj Xj - Byb CU , 

I -
f *(a j ... j ) = (CJ.! I .. 'CJI I)Ja

J
. "'J' . (3.9) 

I nil If n I n 

Thus 

f 1*(M1 (W» = _1_ ( BnL ofl) (Bfa, ... Bf
an

) 
(n!)2 ay~,'" 'ilY:: Byb, Bln 

X (CUb, . . 'cubn ) (C .-: I ••• C .-: 1 )Ja . ..... 
JII, In',. '1. 1,. 

(3.10) 

However, using the chain rule on B"j(L)/(ByJ,'" 'By;'n) to­
getherwithEq. (3.7) onefindsthatEq. (3.10) is the same as 
Mf(L) (W), and this completes the proof. 

Corollary 1: Suppose that XEIB(E) is an infinitesimal 
bundle map. Then 

.Y x' (M1) = M~(L» 

and consequently 

.Y x' «() 1 ) = () ~(L) 

for each n = 1, ... ,r. 

(3.11 ) 

(3.12) 

Proof: Let/, be the flow generated by X, so thatf: is the 
flow generated by Xl. Then sincef~*(La) =/,(L)a, and 
.Y x' (La) = X(L)a, it follows that 

X(L) = ~/,(L) I . (3.13) 
dt t~O 

Thus using Eq. (3.4), one finds that 
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2' x' (Ml) =!!.- U:"(Ml »)/ 
dt 1=0 

= !!.-Mi,(L) / = M~(L)' 
dt 1=0 

Comments: The differential ideal Crff of contact forms on 
J lEis the set of all differential forms'" such that 0.1 .. ("') = 0 
for every section uer(E). The forms 0)0 in Eq. (3.1) are the 
basic contact one-forms and the forms (0)0, ••• O)0n) 1:.;, ... ;. 

constitute a basis for the contact ideal. Thus the p-forms M 1 
(n = I, ... ,r) are contact forms, and from this one can show, 
using basic properties of contractions and pullbacks, that 

(3.14) 

u l 
.. (X I J01) =UI"(XIJOl), (3.15) 

o.l"(XIJdOl> = (,.I.(XIJ dOl), (3.16) 

for every u, X, and k = 1, ... ,r. The identity (3.16) shows that 
each of the Cartan forms is equally suitable for formulating 
the global version of the Euler-Lagrange equations on J IE 
(rather than on J 2E). 

Definition: [cf. Ref. 1 (e) ] A section uer (E) is an extre­
mal of L if 

VXEIB(E), UI"(X I J dOl) =0. (ELI) 

We let Ext(L) denote the set of all extremals of L. Several 
useful alternative versions of the Euler-Lagrange equations 
(ELl) arise from the following observations. First since 

X I J dO 1 = 2' x' (01) - d (X I J 0 l) 

=01-(L) -d(x1J01), 

one sees that (ELl) is equivalent to 

VXEIB(E), d [UI"(X I J Ol)] = [X(L)Oul ]1:.. 

(EL2) 

Next observe that there exists a vector field W = W(u,x,L) 

on N such that W J 1:. = ul .. (X I J (1), and thus (EL2) is 
equivalent to 

VXEIB(E), div(W(u,x,L») =X(L)oul
• (EL3) 

These global equations give the classical Euler-Lagrange 
equati03!.s locally on each chart. Namely suppose that 
10callyX=s;(x)(alax;) and X=s;(x)(alax;) 
+ 1Jo (x, y) (a I ayO). Then the local expression for X I is 

where 

/-0 _ a1Jo + a1Jo b aSj ° 
~; --a -a bY; --a Yr 

X; ~ X; 

Then since 

(3.17) 

(3.18 ) 

X I J 01 = Ls;1:.; + aL (1J0 - yj Sj) 1:.; - aL O)°X I J 1:.;. 
ayf ayf 

one finds for the components of W (suppressing the u on the 
right-hand side) 

. aLo 
W'(u,x,L) = Ls; + - (1J0 - yj Sj)' (3.19) 

ay; 

2349 J. Math. Phys., Vol. 28, No.1 0, October 1987 

Thus, in particular, for X = a layo, the local version of 
(EL3) is 

(3.20) 

IV. THE LAGRANGIAN SYMMETRY THEORY 

Various treatments of the Lagrangian symmetry theory 
have been developed using either the classical Cartan form 
01 or, more generally, Lepagian equivalents of it. 7 Indeed by 
abstracting the essential structure of the Euler-Lagrange 
equations to u l 

.. (X I J d",) = 0, one can develop a general 
symmetry theory based on any differential form '" on J IE. 
However, the real substance of the theory comes from the 
Cartan forms 0 1, since the association L ...... B 1 together with 
the mapping properties (1.1) allow one to reduce the analy­
sis from working with differential forms to working with 
Lagrangians. 

Definition: For a Lagrangian L and for kE{O,I, ... , r} let 
Gk and [1 k be the subsets ofB(E) and IB(E) defined by 

Gk =Gk(L) = {flf
l
"(dBl) =dB1}, (4.1) 

[1 k = [1 k (L) = {X 12' x' (dBl> = a}. (4.2) 

Using the functorial properties (2.1) and (2.2) of the pro­
longation operation together with properties of * and 2' one 
can easily show that Gk is a group and that [1 k is a Lie 
algebra. Now on the most general level the symmetries of L 
are those bundle maps! E ...... E which permute the extremals 
of L around ueExt(L) ¢:? f(u)EExt(L); that is, u is a solu­
tion of the field equations if and only if f( u) = fOuo) - I is 
also a solution. Thus the complete symmetry group of L is 
defined by 

S = SeLl = {flf(Ext(L») = Ext(L)}. (4.3) 

The following proposition shows that each Gk is a group of 
symmetries of L (with [1 k the corresponding algebra of in­
finitesimal symmetries). 

Proposition 1: For any f, u, and X the following identity 
holds: 

f(U)I"(X1JdOl> = c)-I)*oul.[(f*X)IJf"d01]. 

( 4.4) 

Consequently, Gk (L) is a subgroup of the complete symmetry 
group SeLl. 

Proot Identity (4.4) follows from Eq. (2.3) since 

f(u) I .. = (fIOUlo)-I)* = ()-l)*oul"of I., 

fl"(X I J "') =fl"X I Jf l.", = (f*X)IJf I .. ",. 

One can now use identity ( 4.4 ) to easily prove that 
Gk(L)CS(L). 

Comments: The above definition describes the symmetry 
subgroup Gk as the group of isometries of dOl and the Lie 
algebra [1 k as the corresponding algebra of Killing vectors of 
dB 1. However, the mapping properties of the Cartan forms 
reduce these descriptions to ones involving trivial Lagrangians, 
By a trivial Lagrangian we mean a Lagrangian L whose Euler­
Lagrange equations vanish identically; more precisely, every 
section is an extremal of L. We denote the set of trivial Lagran-
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gians by Z. In a previous paper it was shown that Z is deter­
mined by the Cartan form () i -this being one of the reasons 
for wanting an improved version of the classical Cartan form. 
The other Cartan forms determine subsets of Z. Since this is 
central to our presentation of the symmetry theory we summa­
rize the results on trivial Lagrangians. 

(Tl) d() 1 = 0 if and only if L is trivial and has nullity k 

(i.e. a k + IL la,,!,· . ·allak + I = 0 on each chart). Consequently , '.J'i J Jlk+J 

d() 1 = 0 implies that d() 1 + 1 = O. 
(T2) Every trivial Lagrangian has nullity r = min ( p,q). 

Consequently Z = {L Id()i = O}. 
(T3) Letting Zk = {L Id()1 = a}, one has that 

( 4.5) 

In general the containments in ( 4. 5) are proper since if LEZ, 
then the nullity condition forces L to locally have the form 

L -F( ) F a( ) a ' .. (11 ')Fa""a,( ) a,"'a, - x,y + i x,Y Yi + r. i,"'i, X,Y Yi''''i,' 

(4.6) 

Furthermore, the coefficients F:'.·.·.tk (k;>2) must be anti-
, k 

symmetric in the upper and lower indices separately. Be-
cause of this 

The remaining conditions for the triviality of L are just the 
partial differential equations that arise from d() i = O. From 
this one sees that the subset Zk of Z is characterized locally 

by F:' ... ·.tn = 0 (n = k + 1, ... ,r). 
Coni'bining the results (Tl )-(T3) with the mapping 

properties of the Cartan form, one obtains the following 
theorem. 

Theorem 2: Alternative characterizations ofthe symme­
try groups and algebras of L are 

S(L) = {fIExt(j(L») = Ext(L)}, 

Gk(L) = {flf(L) -LEZk }, 

f§ k (L) = {X IX(L)EZk }. 

(4.8) 

(4.9) 

(4.10) 

Consequently because of the containments in (4.6) it follows 
that 

GOOCGOCGI"'CGrCS, 

f§ ooC f§ oC f§ I'" C f§ r' 

Here Goo and f§ 00 are defined by 

(4.11 ) 

Goo = {flf(L) - L = O} and f§ 00 = {X IX(L) = O}. 

The theorem exhibits the distinctions among the sym­
metry theories determined by the various Cartan forms and 
shows the extent to which the improved version () i of the 
Cartan form is more suitable than the classical version. In 
general, the containments in (4.11) are proper, although for 
particular Lagrangians there is always the possibility that 
some of the groups and algebras in these chains coincide. 
The subgroup Goo consists of those symmetries which leave 
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L invariant, f(L) = L, and is the one most commonly en­
countered in the literature, primarily because these symme­
tries are the easiest to determine. Previous works, based on 
the classical Cartan form () 1, led to the symmetry subgroup 
GI , which is now seen to be unnecessarily restrictive. The 
natural symmetry group is Gr , which consists of those bun­
dle mapsfwhich leave L invariant modulo the addition of 
trivial Lagrangians:f(L) =L +L'. To illustrate the new 
aspects of the theory we offer the following examples. 

Example 1: For the sake of simplicity assume that 
N = R2 and let E = R2 X R2 be the trivial bundle over N. 
Then one can identify J IE with R2 X R2 X R4. Consider the 
Lagrangian L defined by 

L = L(x,y,y) =yl,lt - y~ ~ + cxl(yl ~ - y~,It), 

(4.12) 

where c is a constant. To see that the containments GOCG I 

C G2 CS are proper, letf ,g,h be the following bundle maps of 
E: 

f(x,y) = (X I,X2,yl + mXI,y2), 

g(x,y) = (XI + m,x2,yl,y2), 

h(x,y) = (x l,x2,my!,my2), 

where m#O is a constant. One finds that (1) f(L) = L 
+ m,lt + mcxI~ = L + L' andL 'istrivial with nullity 1; so 

fEGI \,Go;(2)g(L) =L + mc(yl ~ - y~,It) =L +L 'and 
L' is trivial with nullity 2; SOgEG2 \,GI; (3) h(L) = m 2L, so 
that hES \, G2• Note also that the Euler-Lagrange equations for 
the extremals q = (ql,a2) are ifx,x, - ifx,..., + ( - l)acifx, 
= 0, a = 1,2. Thus one sees thatf(q), g(q), and h(q) are also 

extrema1s, which gives an alternative verification thatf, g, and 
h are symmetries of L. The example demonstrates the necessity 
of using the extended Cartan form () i to determine the natural 
symmetries of L: in the previous theory which uses () 1 the 
bundle map g does not classify as a symmetry, 

gl*(d() 1) #d() L when in fact it should be so classified. 
Example 2: The Lagrangians of interest in elementary 

particle theory are quadratic Lagrangians. To keep things 
simple we just consider a trivial bundle E = R P X R q over 
N = R p. A quadratic Lagrangian L: R P X R q X R pq ..... R then 
has the form 

L(x, y, y') = A (x, y) + A ~(x, y) y~ + A ijb(X, y) y~ yJ, 

(4.13 ) 

where we assume, without loss of generality, thatA ijb = A tao 
The determination of the infinitesimal symmetries X of L 
proceeds as follows. Using the notation in Eqs. (3.17) and 
(3.18) one finds that 

X(L) =!/ x' (L) + div(t)L =!/ x(L) +;~ aL 
ay~ 

+ div(t)L = F + Ff yf + Fijb yf yJ, 

where 
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F = .? x (A) + div(s)A + A k ih]c , aXk 
F~ =.? x(A~) + div(s)A ~ + 2A k~ art aXk 

+A C ih]Q -A a as; 
I ay k aXk ' 

F~/ = .? x (A el/) + div(s)A el/ 

+2[A~ba1t _AQb as; ]. 
IJ By' kJ aX

k 

Now X is an infinitesimal symmetry of L if and only if X(L) is a 
trivial Lagrangian, and so substituting the above expression for 
X(L) into the Euler-Lagrange equations gives a very explicit 
(yet complex) system of partial differential equations which 
the components 5;. rl of X must satisfy. In the simplest case, for 
XEf§ 00 [i.e., X(L) = 0], this system reduces to the first-order 
system, F = 0, F~ = 0, F~/ = O. For the cases XEf§ 0 or XEf§ 1 

the system is simplified by the auxiliary equations F~ = 0, 
F':/ = 0, or F':/ = 0, respectively. Also note that since X(L) 
has nullity 2 for any X. it follows that f§ 2 = f§ 3 = ... = f§ r' 

The example illustrates the distinctions among the various 
types of infinitesimal symmetries for quadratic Lagrangians. 

Conseroation laws: The conservation laws associated with 
the infinitesimal symmetries of L (Noether's theorem and its 
generaIizations) are easily derived from the Euler-Lagrange 
equations as we have formulated them in (EL2) or (EL3). 

Theorem 3: For XEf§ oo(L) the associated conservation 
law is 

Equivalently, 

div(W(O',x,L») = O. (4.14 ) 

More generally, for XEf§ k (L) the associated (local) conser­
vation law is 

d [ 0'1. (X I J 01 - w>] = O. 

Equivalently, 

Cartan form 01 have been used extensively in the literature 
[cf. Refs. 1 (e) and 1 (g)] but Theorem 3 shows that for 
more general symmetries XEf§ dL)\ f§ 1 (L), the corre­
spondingconservedcurrentA. = (X 1 J (1) - w depends on 
the extended Cartan form 01 via the solution of dw = 0 ~(L) 
for w. Also note that dA. = - (X 1 J dO 1) and so the divi­
sion of A. into the parts X I J Oland w, while serving to illus­
trate the connection with the classical Noether theorem 
[Eqs. (4.14)], is in some respects rather artificial. 

V. CONTACT EQUIVALENCE 

A simplification of the symmetry theory is afforded by the 
notion of contact equivalent Lagrangians. The idea is that dif­
ferent Lagrangians can lead to isomorphic extremal sets and 
symmetry theories, and thus either Lagrangian (preferably the 
simpler one) can be used to model the physics. Various notions 
of equivalence have been studied in the literature, but since the 
Cartan forms playa prominent role in the variational theory, it 
is natural to base the equivalence on these forms. 

Definition: Two Lagrangians K and L are called contact 
equivalent if there exists a bundle map h:E --E such that 

dO';c =h '·(dO~). (5.1) 

Using the mapping property in Theorem 1 together with the 
characterization of trivial Lagrangians, one easily sees that 
condition (5.1) is equivalent to 

K = h(L) + Lo (5.2) 

for some trivial Lagrangian Lo. 
Theorem 4: Suppose that K and L are contact equivalent 

Lagrangians with h as in Eq. (5.1). Then h induces an isomor­
phism between the respective extremal sets, symmetry groups, 
and conservation laws for K and L. Specifically, 

(i) h - '(Ext (L») = Ext(K); 

(ii) h - IS(L)h = S(K), 

h -'Gr(L)h =Gr(K), 

h*(f§r(L») = f§r(K); 

and (iii) the identity O'I.(A.) =h -I.o[h _'(0')]1. 

div(W(O',x,L) - 0) = o. ( 4.15) X [h '. (A.) ] , which holds for all 0' and A., establishes the rela­
tionship between the conservation laws for K and L, i.e., 

These equations [( 4.14) and (4.15)] hold for every extre­
mal 0' ofL. In Eq. (4.15) w isa (local) (p - 1 )-form onJ 'E 
such that dw = 0 ~(L) and 0 = 0 (0' ,x,L) is a (local) vector 

field on N such that 0 J A = O'I*W [and consequently 
div(O) =X(L)oO'I]. 

Proof: If X(L) = 0 then Eqs. (4.14) clearly follow from 
the Euler-Lagrange equations (EL2) and (EL3). More 
generally if X(L) is any trivial Lagrangian of nullity k, then 
Eqs. (4.15) follow from the fact that any trivial Lagrangian 
can be expressed as a "divergence." More precisely, since 
dO ~(L) = 0 Poincare's lemma gives the local existence of a 
form w such that dw = 0 }(L)' Taking pullbacks gives 
[X(L) 00'1 ]A = dO'I*W = d(O J A) = div(O)A. Using this 
to rewrite (EL2) and (EL3), one obtains Eqs. (4.15). 

Versions of Noether's theorem based on the classical 
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, 
h *(Cons(L») = Cons(K). 

Proof: The proof of (i) follows from identity (4.4) with 
j= h and k = r. Next, by (i) (h -lojoh)(Ext(K») 
= h -1[j(Ext(L»)]; hence jES(L)iff h -Iojoh ES(K). 

Similarly, by (5.1) (h - 'ojoh) l*(dO ';c) 

=h I*o!'*o(h 1*)-I(dO';c) =h 1.ojl*(dO'L); hence j 
E Gr (L) iff h - lojoh E Gr (K). The corresponding result at the 
infinitesimal level follows from looking at flows; namely, if/, is 
the flow for X, then it is well known that h - lo/, oh is the flow 
for h *(X). Hence h *(X) E f§ r (K) iff h -Io/,oh E Gr (K) for 
every tiff/, EGr(L) for every tiffXEf§r(L). This proves 
(ii). Finally the proof of (iii) follows from the various functor­
ial properties, 
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u l.= [h(h-l(u»)]I.= [hIO(h -1(uWOh -1]* 

= h -I"o[h -I(U)] I.oh I •. 

Comments: The theorem shows that the complete symme­
try groups S(K), S(L), and the natural symmetry groups 
Gr(K), Gr(L) are conjugate subgroups ofB(E). The same is 
not necessarily true for Gk (K), Gk (L), k = 00,0,1, ... ,r - 1. 
Indeed suppose that Lo = K - h (L) has nullity s (take s = 00 
if Lo = 0). Then it is easy to show that 
h -IGk(L)h =Gk(K -Lo). Furthermore Gk(K -Lo) 
= Gk (K) for k = s + 1, ... ,r. These results again illustrate that 

() r is the best choice for the Cartan form, the other Cartan 
forms giving unnatural and incomplete symmetry theories. 

Ideally one would wish to classify the set of Lagrangians 
on J IE by exhibiting a set of canonical (representative) La­
grangians, one from each contact equivalence class, and per­
haps also to have a procedure for reducing a given La­
grangian to its canonical form by a sequence of operations 
consisting of bundle transformations and subtraction of triv­
ial Lagrangians. At present it seems unlikely that such ambi­
tious goals can be achieved in general. We offer the following 
example to illustrate the difficulties involved for the impor­
tant restricted class of quadratic Lagrangians. 

Example 3: We return to the trivial bundle case in example 
2, and for notational convenience consider y' = {Y;'} as a point 
in RJ"l and let ( , ) denote the standard inner product on lRpq

• 

Then suppressing the x, y dependence, we rewrite the quadratic 
Lagrangian L in (4.13) as 

L =A + (AI,y') + (A 2y',y'), 

where Al = {A f}ElRPq and A2 = {A f/} is apqXpq matrix. 
Using the notation from the proof of Theorem 1, the prolon­
gation of a bundle map h(x,y) = (h(x), ¢(x,y») is 
h I(X,y,y') = (h(x), ¢(x,y), M + Hy'), where M~ 
= (a¢o/ax)c j, I and H':/ = (a¢o/ayb)c jl I. With this 

notation the transformation h (L) = (Loh I)J is given by 

h(L) =(A + «AI +A#),M) 

+ (Ht[AI + (A2+A~)M],y') 
+ (H tA 2Hy',y'»)J. (5.3) 

This identity illustrates an avenue for constructing a proce­
dure to reduce L to canonical form. At present this proce­
dure is incomplete, and so we limit the discussion to the 
following remarks. 

Restricting attention to the case where A2 is constant 
(independent of x and y), one can further assume without 
loss of generality that A2 is symmetric [otherwise, by sub­
tracting the trivial Lagrangian (~(A2 - A ~ )y', y') from L, 
one obtains an equivalent Lagrangian with this property]. 
Now A2 can always be diagonalized by an orthogonal ma­
trix, Q tA2Q = D, and ifit is possible to do this by means of a 
bundle map h [say, h(x,y) = (Cx,Sy) with the matrices C 
and S chosen so that H tA2H = D] then L reduces to an 
equivalent Lagrangian of the form h (L) = B + B ~ y~ 
+ D~ (yf)2. Further reductions can then proceed from 

here. One can characterize the Lagrangians for which such a 
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diagonalization is possible. For brevity here we just present 
the following examples of this. 

(J) Classical dynamical systems ( p= 1): L = A 
+ A ob yO Yb. The choice of C = 1 and S = Q diagonalizes A2 

and gives an equivalent Lagrangian of the form 
h(L) =B +D°(jo)2. 

(2)Singleparticlejield(q=1):L =A +A;I.,pX .,px' This 
, , J 

also diagonalizes to an equivalent Lagrangian of the form 
h(L) =B +D;(.,pxY' 

(3) The scalar mesonjield: L = .,pt 1/1' -.,px t/I: - .,py .,p; 
- .,pz .,p: + J.L2#* involving two scalar fields .,p, .,p*. This 

diagonalizes with C equal to the 4 X 4 identity matrix and 

s=rlnf11 1] l - 1 . 

VI. CONCLUSION 

The purpose of the paper was to exhibit the utility of the 
extended Cartan form () r in the Lagrangian symmetry theory. 
Since there are alternative approaches to this, and indeed since 
it is a special case of the general geometric theory of partial 
differential equations (PDE's), we should perhaps include 
here a few additional comments for the sake of a broader per­
spective. 

The basic geometric object for formulating an mth-order 
system ofPDE's with q functions and p variables is the contact 
element manifold C mE, where E is an appropriate manifold 
with dim (E) = p + q [cf. Ref. 1(e)]. Here cmE is construct­
ed as a fiber bundle over E, a point (contact element) in the 
fiber above zEE being an equivalence class [(N,u, x) ] z of sub­
manifolds of E, u:N ..... E, u(x) = z, all of which have the same 
mth-order contact at z. As in the jet bundle theory, each sub­
manifold u: N ..... E prolongs to a smooth map~: N .... CmE, 
and each diffeomorphism f: E ..... E prolongs to a diffeomor­
phismfm: CmE ..... CmE. A system ofPDE's is modeled by a 
collection H = {Ha}~ = I of smooth maps Ha: C mE ..... lR. The 
solutions Ext (H) of this system are thus submanifolds u: N .... E 
for which Ha (~(x») = 0, that is, for which u(N) is contained 
in the variety nH = {wECmE IHa (w) = 0 Va}. The com­
plete symmetry group S(H) of H consists of those diffeomor­
phismsf for whichfoOEExt(H) for every aEExt(H). Because 
of the identity (jou)m = fmo~,S(H) isaltematively given by 
the geometrically preferable characterization S(H) 
= {flfm(nH)CnH}. By the famous Lie-Backlund 
theoremS each contact transformation h: C mE ..... C mE is actu­
ally (when q> 1) the prolongation h = fm of some f: E ..... E. 
Thus S(H) is represented as precisely those contact transfor­
mations that leave n H invariant. One can specialize to the case 
where E .... N is a fiber bundle and H is comprised of smooth 
functions on the subbundle J mE C C mE. We recommend the 
new text9 by Olver as an excellent reference for a wealth of 
details and history on this subject. In particular Olver presents 
a method for the explicit computation of S(H) (at the infini­
tesimallevel and for E = N XQ, NC1IF, QClRq

). 

For the Lagrangian theory, one notes that each Lagran­
gianL: J mE .... R has its Euler-Lagrange equations expressed as 
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a system H of PDE's on J 2mE. Then S(H) is the complete 
symmetry group for L. Olver shows (at least the infinitesimal 
level) that G(L) = {flf(L) -LeZ} is a subgroup of the 
complete symmetry group. Others (cf. Refs. 8 and 10) have 
discussed G(L) as well. However, one should note that histori­
cally there has been some confusion in the literature as to the 
nature of Z. One (correct, but local) characterization of Z is as 
a set of divergences (cf. Ref. 9). The characterization here (and 
in Refs. 2 and 3) is preferable since it is global. [For compari­
son, note that the generalization of ()' to a form on J mE men­
tioned in Sec. III gives Z = {L Id()~ = O}. Thus LeZ implies 
that () ~ = d{j) for some locally defined (p - 1 )-form (j) on 
JmE (constructed say, using the Poincare homotopy opera­

tor). Taking pullbacks gives LoU" = dU*{j) for every 
OEr{E). Thus locally L = Dx , ~ (on JCC E) where the ~'s 

are certain functions on J mE and the D x,'s are the total deriva­
tive operators. ] 

In summary, while the variational theory can be formulat­
ed without the use of the Cartan forms, we have stressed here 
the naturality of the Cartan form approach, and in particular 
the benefit of the extended Cartan form () '. 

'The Cartan fonn for classical dynamical systems ( p = I) can be traced back 
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In the present paper the most general type of group action introducing some relevant exact 
sequences for the dimensional reduction of invariant fields and differential operators is studied. 

I. INTRODUCTION 

An action of a group G on a vector bundle S by bundle 
morphisms induces naturally an action of G on the sets of 
sections, differential operators, etc. When the G action is 
"good," there is a natural one-to-one correspondence 
between all G-invariant sections of S and all sections of an­
other "reduced" vector bundle SG' In principle, the G-invar­
iant structures on S (like G-invariant sections of some tensor 
power of S, differential operators, the action of another 
group, etc.) define the corresponding reduced structures on 
S G' In the present paper we study the reduction procedure 
for the most general type of group action introducing some 
relevant exact sequences. In Sec. II the reduced bundle S G is 
described by means of a set of coordinate realizations and 
transition bundle isomorphisms. In Sec. III the bundle S is 
specified to be the tangent bundle or its tensor powers. The 
symmetric second tensor power of the exact sequence (3.5) 
reproduces the "reduction theorem" in Ref. 1. The relevant 
basic notions and notations about differential operators on 
vector bundles in terms of the jet bundles are summarized in 
Sec. IV. Section V deals with a crucial detail-a restriction of 
a differential operator on a submanifold. This is not a natural 
operation and the problem reduces to a splitting of the exact 
sequence (5.1) of jet bundles. The major problem-the di­
mensional reduction of a differential operator D-is consid­
ered in Sec. VI. In each coordinate bundle of the reduced 
bundle SG we have the situation of Sec. V. Here the group 
action and the G invariance of D provide a splitting of the 
corresponding exact sequences and Propositions 6.1-6.4 as­
sure that the restricted differential operators are compatible 
with the cocycle of S G' The application of the general con­
struction of S G to Hom(Jk (S), 7J) leads to a description of the 
G-invariant linear differential operators (or intertwining 
differential operators) as a section of a bundle with a typical 
fiber-all intertwining operators between two finite-dimen­
sional representations of the isotropy group. As a conse­
quence we have a description in this language of all G-invar­
iant (linear) connections on S. A dimensional reduction of a 
group action is considered in Sec. VII. As an example illus­
trating the discussed constructions we reexamine2 in Sec. 
VIII the dimensional reduction of the SU(2) Yang-Mills 
equation by means ofa reduction group SL(2,C). In Sec. IX 
we show that the dimensional reduction of the six-dimen­
sional Maxwell equation, followed by a restriction on the 
projected six-dimensional light cone by means of a 
SOo(2,4 )-invariant splitting of the corresponding exact se­
quence of the type (5.1) leads to the discussed in the litera­
ture "conformal electrodynamics." 

II. DIMENSIONAL REDUCTION OF A G-VECTOR 
BUNDLE. REDUCED VECTOR BUNDLE 

Consider a connected Lie group G (not necessarily com­
pact) acting from the left on a (real or complex) vector 
bundle S = (E,1T,B) by bundle morphisms. We shall assume 
that all manifolds, bundles, and maps are (C"'" ) smooth. 
Denote this action by (T,t) or by (Tg,tg ), geG, where T: 
G XE--E is the action of G on E and t: G XB--B is the 
projected action on B. By definition, 1ToTg = tg0 1T and Tg: 
Sb -+Stglb) ' Sb = 1T- 1(b), beB, is a linear isomorphism. The 
action of G on S induces naturally an action on C"'" (s)-the 
space of all sections of S ("the linear matter fields") by the 
equation 

(2.1 ) 

¢E.G'''' (S), beB. A section I/JEC"" (S) is G invariant (in other 
terminology "G equivariant") if it is a stable point for the 
action (2.1), 

g(I/J) = I/J=.TgI/J(b) = I/J(tg(b»), geG. (2.2) 

Denote by COO (S) G C c"" (S) the subspace of all G-invariant 
sections of S. Our first goal is to describe COO (S) G' In the 
general case this is a complicated problem. One may impose 
here some simplifying conditions, assuming that all orbits of 
the action tare of the same type (say G 1Ho) and that they 
form a locally trivial bundle (B,p,M) 

p:B-BIG=.M, (2.3) 

where BIG is naturally a manifold and p is the natural pro­
jection. Let Gb C G be the isotropy group of beB for the G 
action t on B. The restriction T: G b X S b -+ S b is a linear rep­
resentation. Denote by st Sb CSb the subspace of all stable 
vectors. We shall assume that the family oflinear subspaces 
Sb is a (smooth) vector subbundle st SCS' In this case 
Coo (S) G has the structure of the set of all sections of another 
vector bundle. That is to say, one can construct a reduced 
vector bundle SG over the base M ( = BIG), and a natural 
one-to-one correspondence between all sections of SG and 
the G-invariant sections of S. Let 0: COO (S G) -- c"" (S) G give 
this correspondence. We shall only work in this case and 
shall briefly say that S is a reducible G-vector bundle. The 
most convenient construction of S G for our study is the fol­
lowing: Let {Ua}, aeA, be a sufficiently fine open covering 
of M and for each Ua we fix a section transversal to the fibers 
of the bundle (2.3), (Ta: Ua -+B. Denote by Ua = (Ta (Ua ) 

the graph of (T a' Sa = st S u the restriction of st S on U a , 

~~=~(~n~) ~·~n~#~ ~~=~~ 
( = st S u •. 

fJ
)· Let fPa~: Ua n Up -+ G define a local action of 
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G (over Ua n Up #0), mapping Up,a on Ua,/J: 

t",aP(X) {O"p (x») = O"a (x), XEUa n Up. (2.4) 

The pairs (T"'ap(xl' t",aP(X»' XEUa nup , define an isomor­
phism 'ip ap: 5p,a -+ 5 a,/J' This isomorphism does not depend 
on the freedom of choice of q; ap from (2.4) and so it is 
uniquely defined for a pair (a,/3)EA xA if Ua n Up #0. It is 
crucial here that 5p is a restriction of the stable subbundle 
st 5' The set of bundle isomorphisms 'ipap forms a cocycle 

'ipaP = 'ip p~ 1 , (2.5) 

'ipa{3°'ippr = 'ipar (2.6) 

over Ua n Up n Ur #0. [We shall not emphasize hereafter 
that equations like (2.6) are considered when they are cor­
rectly defined.] The cocycle 'ip ap defines the reduced bundle 
Sa gluing the "coordinate bundles" Sa' (For a general treat­
ment of the gluing procedure in category language see Ref. 
3.) A section SEC"" (Sa) corresponds to a set of sections 
SaEC"" (Sa) compatible with the cocycle 

Sa = 'ipa{3 (Sp) . (2.7) 

Now the correspondence (): C"" (Sa) -+C'X> (5)a is evident. 
Here Sa EC"" (st SUa) and there is only one G-invariant sec­
tion ()(S) == t/JEC"" (5) a such that ,p{0" a (x») = Sa (O" a (X»), 
XEUa . For bEB we can take ,pCb) = TgSa{O"a (x»), where 
x = p(b)EUa forsomeaEA andgEGsatisfies tg{O"a (x») = b. 
Due to (2.7) the definition of,pis correct.lf,pis G invariant, 
from (2.2) t/JEC"" (st 5) and the restrictions Sa = ,pu

a 
satis­

fy (2.7). 
In coordinates (b,u) of the bundle 5, the group action is 

Tg(b,u) = (tg(b),T(g,b)u) , (2.8) 

where T(g,b)EGL(n) (n = dim 5) and satisfies 

T(glg2,b) = T(gl,tg2 (b»oT(g2,b) . (2.9) 

Sometimes the G action ton B is given and it is a problem 
to lift it to a bundle morphism action ( T,t) on 5' Throughout 
this paper we shall assume that this problem is solved and is a 
part of the initial condition. 

When the bundle morphism action on 5 is of a special 
kind, some structures arise in the reduced bundle. 

III. DIMENSIONAL REDUCTION OF THE TANGENT AND 
COTANGENT BUNDLES AND THEIR TENSOR POWERS 

We specify here that 5 is the tangent bundle T(B) or the 
cotangent bundle T*(B) or ®kT(B), SkT(B), AkT(B) 
[the k th tensor, symmetric, and antisymmetric tensor power 
of T(B) ]. The manifold B is equipped with a G action t 
satisfying the usual assumptions for the orbits plus a more 
specific one, namely, we want that for each point bEB there is 
a local cross section U of the bundle (2.3) such that bE fJ and 
for each b lEU, Gb , = Gb • When Gis compact, this is always 
the case because the bundle (2.3) has a Lie structure group.4 

The lifted bundle morphism action (t* ,t) of G on T(B) 
makes T(B) a reducible G-vector bundle. The major feature 
of this case is that T(B) a and T(M) are involved in an exact 
sequence. 

Lemma 3.1 5: There is a natural exact sequence 
i j 

0-+1'-+ T(B)a -+ T(M) -+0, (3.1 ) 
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where l' = {TV (B»a, TV (B) C T(B) is the subbundle of 
the vertical vectors. 

We have the following theorem. 
Theorem 3.25

: There is a natural one-to-one correspon­
dence between all splittings of (3.1) and the G-in varian t con­

nections on the bundle (2.3). 
The space of all splittings of (3.1) is an affine space with 

a linear group Hom{T(M) ,1') = C"" (T*(M) ® 1'). The G-in­
variant connections of the bundle (2.3) are the equipments 
of T(B) with a G-invariant "horizontal" subbundle 
Th (B) C T(B), complementary to the vertical one, 
T(B) = TV (B) $ Th (B). Because (B,p,M) is a locally 
trivial bundle with a given structure on the fibers (the struc­
ture of a homogeneous space G I H 0)' it can be considered as 
a bundle associated with a principal bundleP(K,M) over M 
with a structure group K = Aut(G 1Ho) = N(Ho)IHo, 
where N(Ho) is the normalizer of Ho in G. The parallel 
transport of the G-invariant connections preserves the struc­
ture in the fibers and so they correspond to connections on 
the principal bundle P(K,M) (see, for example, Ref. 1). 

If we choose a splitting of (3.1), 

T(B)a = 1'$ T(M) , (3.2) 

then one can say that the G-invariant vector fields on B [the 
sections of T(B)a] correspond to pairs of a scalar field (a 
section of 1') and a vector field on M. 

For a free G action t the calculation of { ® k T(B»)a, 
{Sk T(B)la. (Ak T(B»)a is purely algebraic. For example, 
after a splitting of (3.1) we have 

(SkT(B»a = Sk{T(B)a) = Sk{nll T(M») 

k 

= $ SI1'®Sk- 1T(M). (3.3 ) 
1=0 

Equation (3.3) can be interpreted as a correspondence 
between all G-invariant k-fold symmetric tensor fields and 
the (k + 1 )-ples consisting of a scalar field (a section of 
Sk 1'), a vector field on M with coefficients in Sk - 1 1', ... , a k­
fold symmetric tensor field on M. 

If the G action t is not free, in principle, we only have an 
inclusionSk (T(B)a )-+{Sk T(B) la. but then Eq. (3.3) reads 

k r-.J 
(SkT(B»a = $ SI1'®Sk-IT(M) , (3.4) 

1=0 
r-.J 

whereSl 1' = W TV (B»a (#SI1'). 
For the cotangent bundle T * (B) we have the dual exact 

sequence 
,.- j* 

0+-1'* +- T*(B)a +- T*(M) +-0, (3.5) 

where 1'* = (T V (B»)* a, and, respectively, the dual theorem 
(Theorem 3.2) states that there is a natural one-to-one cor­
respondence between all splittings of (3.5) and the G-invar­
iant connections on the bundle (2.3). 

Finally we consider in this language the dimensional 
reduction of S 2T * (B) because this case contains the dimen­
sional reduction of G-invariant metrics discussed in the liter­
ature l and is' in some sense degenerate. After splitting of 
(3.5) we have 

r-.J 
(S2T*(B»)a = S21'* $1'* ® T*(M) $S2T*(M) , 

(3.6) 
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rv 
where S21"* = (S2TV (B»)*G' This is a correspondence 
between all G-invariant symmetric bilinear forms tP on T(B) 
and the triple~i2.0, tPI.I' tPO.2)' where tP2.0 is a scalar field 

[a section of S 21"*; tP2.0 (x) is a G-invariant bilinear symmet­
ricformon T(P-I(X»),xEM), tPI.I is a one-form on Mwith 
coefficients in 1"*, and tPo.'J. is a symmetric bilinear form on 
T(M). We need a condition on (tP'J..o, tPl,l' tPO.2) assuring 
that tP is nondegenerate. In the Euclidean case this condition 
is simple. Here tP2.0 and tPO.2 are always nondegenerate 
if tP is nondegenerate. Here tP2.0 provides an isomor­
phism 1"* = 1" and hence an isomorphism 
C"" (1"* ® T*(M)} = Coo (1"® T*(M» = Hom(1"*,T*(M»). 
But Coo (1" ® T * (M») parametrizes all the splittings of (3.5) 
and according to the dual Theorem 3.2, all the G-invariant 
connections on the bundle (B,p,M). We obtain the reduc­
tion theorem l

; in the Euclidean case there is a one-to-one 
correspondence between all G-invariant metrics on Band 

the triples (tP2.0' tP 1.1 , tPO.2 ), where tP2.0 is a scalar field (non 
rv 

degenerate section of S21"*), tPl.IEC'" (1"® T*(M») is a G-
invariant connection on (B,p,M) and tPO.2 is a metric on M. 

In the pseudo-Euclidean case the same conditions on 
(tP2.0, tPl,I , tPO.2 ) do not describe all the G-invariant metrics 
on B. For example, let us consider B = R 2\ {O}, 
G = R * = R \ {O} acting by multiplications. Then tP = [11 
(x 2 + y2») (dx ® dx - dy ® dy) is R * invariant but the cor­
responding field tP'J..o on PR 2 is degenerate. 

IV. DIFFERENTIAL OPERATORS ON VECTOR 
BUNDLES 

We summarize here, following Refs. 6 and 7, the basic 
notions and notations about the differential operators on 
vector bundles, which we shall need. 

Let 5, 17 be vector bundles over B. Denote by 
f (5) = (Ek,11"< ,B) the k-jet bundle of S. The fiber off (5) 
over a point bEE is the quotient of the space of germs of 
sections of 5 at b by the subspace of germs vanishing to order 
k + 1 at b. So the elements off (5) b are the coordinate free 
notion of "the field tP and its derivatives up to order k at the 
point b." Denote EO = E, E -I = B and let 11"<.1 : 
f (5) -+f (5), k> 1";;.0, be the natural projections, and Jk: 
C'" (5) --+ Coo (f (5») be the k-jet lifting of the sections of S. 
Coordinates (x'" ,z" ), /-l = 1,2, ... ,dim B, a = 1,2, ... ,dim 5, of 
5 induce coordinates (x,z".z:." ... .z:.' ... ",k) of f(s), 
I </-ll < ... </-li <dim B, i = 1,2, ... ,k, where 

ai 

~", ... ",(Jk(tP)b) = tP(b) . (4.1) 
'2 , ax'"' ax""" .ax' 

So dimf (5) = dims (dik'B+k) . 
There is a natural morphism 

i: SkT*(B) ®s --+Jk(s) , (4.2) 

and the sequences 
i -o".k-I 

O-+SkT*(B)®s-+Jk(s) -+ Jk-I(S)-+O, (4.3) 

k = 1,2, ... , are exact. 
A linear differential operator D: Coo (5) -+ C'" (17) of or­

der k may be identified with a vector bundle morphism D: 
f (5) -+17 or, equivalently, with a section of L (f (5),17). So 
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we have the isomorphisms LDiffk (5,17) 
= Hom(Jk (5),17) = Coo (L(f (5)17») [LDiffk (5,17) de­
notes the space of all linear differential operators D: 
C'" (5) - Coo (17) oforderuptok). The main symbol u(D) 
is the composition 

u(D) = DOi: SkT*(B) ® 5 -17 . (4.4) 

Because Hom(Sk T*(B) ®S,17) = COO (F(T*(B), 
L(S,17»)), we can consider u(D) at bElJ as a homogeneous 
polynomialofdegreek fromT*(Bh toL(sb,17b)' Tocalcu­
late u(D)(b,p)(e), (b,p)ET*(Bh, eESb, one must take 
tf;EC'" (5), tP(b) = e, f B-R with d/b = p and then 

u(D)(b,p)(e) =D«lIk!)(f-/(b»)k· tP )(b). (4.5) 

For k = I from (4.3) we have 

i ,"1,0 

O-+T*(B) ®S -+ JI(s) -+ 5-+ 0 . (4.6) 

Any splitting of (4.6) is equivalent to a linear connection on 
s.Asplittingmorphism V:JiCs) -+ T*(B) ®s, VOi = idcor­
responds to a linear differential operator C a covariant deriva­
tive) V: Coo (5) -+C'X> (T*(B) ®S) satisfying 

V(/,tP) = d/®tP + /'V(tP), /EC "'(B) . (4.7) 

A splitting of (4.6) can also be given by a morphism S: 
5 -+J I (5) satisfying 11'0.1 oS = id. So the set of all linear con­
nections on 5 coincides with the set of all linear differential 
operators in LDiffl(s,T*(B) ®s) with a main symbol 
u(V)(b,p)(e) =p®e, or with the set of all sections of 
5 * ® J I (5) satisfying 11'0.1 oS = id and is an affine space with 
a linear group Hom(s,T*(B) ®s) = C'" (T*(B) ®L(s,s)). 

We can differentiate simultaneously both sides of the 
equation D ( tP) = qJ. In the coordinate free language this is a 
prolongation of D. The I th prolongation/ (D) of a differen­
tial operator D: C"" (5) - c'" (17) is the unique morphism 
/ CD): f + 1 (5) -+/ (17) such that the following diagram is 
commutative: 

C"'(Jk+ 1Cs») /(D). C"'(J 1(17)) 

t r+ 1 t Jf 
C '" (5) D. C 00 ( 17) 

C 4.8) 

We set R k•1 = ker/ (D). In the general case R k
•
1 is a 

family of linear subspaces of the bundle f + I (5). One says 
that a linear differential operator D: COO (5) - Coo (17) is/or­
mally integrable if for 1";;.0, R k.1 CJk + I (5) is a vector sub­
bundle and 11"< + 1+ I.k + I : Rk.l + I ..... R k.l is an epimorphism. 
For formally integrable operators the subbundle 
Rk.O = ker D is called its equation. 

A nonlinear differential operator of order k 
[DEDiffds,17)], will be identified with a fiber preserving 
mapD: f (5) -+17. 

Comment 4.1: A differential operator may be used as an 
equation or as a field. The operators D and/,D,JECoo (B), 
/ #0, have the same equations. A typical example for the 
second role is the gauge field (the linear connections). It will 
be convenient for the dimensional reduction of the gauge 
field (in Sec. VIII) to consider the linear connections on as 
sections SEC'" (5 * ® J 1(5'») satisfying 11'1.0 oS = id. 

P. A. Nikolov 2356 



                                                                                                                                    

V. RESTRICTION OF A DIFFERENTIAL OPERATOR 

Let 5,17, ... be vector bundles over B,D: Co<> (s) -+Co<> (17) 
be a differential operator (not necessarily linear), and NCB 
be a submanifold. Denote by i: N -+ M the natural embedding 
and by SN, 17N ( = i*s, i*17), ... the restrictions on N. The 
operator D does not define naturally an operator 
C"" (SN) -+ Co<> (17N). One needs additional information. Let 
1';. cJ'< (S) N be the subbundle of all jets of sections of 5 
vanishing on Nand i: 1';. -+J'< (S) N be the natural embed­
ding. There is a natural bundle morphism j: 
Jk (S)N -+Jk (SN) determined by the restriction on N 
j(J'< ( t/J) (b») = J'< ( t/Jo i) (b), bEN. The following sequence is 
exact: 

i j 

0-+1';. -+Jk(S)N -+Jk(SN)-+O. (5.1 ) 

A differential operator D is internal for N if the map D: 
Jk (S)N -+17N may go throughj, i.e., there is a fiber preserv­
ing map 'ijJ: J'< (SN) -+17N such that 

(5.2) 

In this case the value D(t/J)(b), bEN, depends only on the 
restriction of t/J on N and we have a correctly defined differ­
ential operator Coo (SN) -+ Co<> (17N) with a total symbol 'ijJ: 
Jk (5 N ) -+ 17 N. If the operator is not internal for N, we do not 
have a natural restriction. Actually we need a bundle pre­
serving map S: J'< (SN) -+J'< (S)N satisfying Soj = id. As a 
restricted operator we can take 

- - k DN = DoS: J (SN) -+17N . (5.3) 

The case when S is a bundle morphism is equivalent to a 
splitting of (5.1) and so any splitting of (5.1) defines a re­
stricted operator D N: C"" (s N ) -+ Co<> (17 N) by means of 
(5.3 ). 

VI. DIMENSIONAL REDUCTION OF INVARIANT 
DIFFERENTIAL OPERATORS 

Let S,17, ... be reducible G-vector bundles over Band 
have the same G action ton B. A differential operator D: 
Co<> (s) -+ COO (17) is G invariant if 

D(g(t/J») =g(D(t/J»), (6.1) 

t/JECo<> (5), gEG [g denotes the action on Coo (s) and on 
CO<> (17) ]. The G invariance of D provides, by means of the 
correspondence 0: Coo (so) -+co<> (5)0, an operator Do: 
Coo (So) -+Co<> (170)' the reduced operator. We want an ex­
plicit form of Do on the coordinate bundles Sa of 50 or, 
more exactly, for any two coordinate bundles Sa' 17a a differ­
ential operator D a : Co<> (Sa) -+ C "" ( 17 a ) compatible with the 
cocycles'ijJafJ (of so and 170)· Because Sa = st SUa' we have 
the situation described in Sec. V and must consider the corre­
sponding exact sequence 

(6.2) 

where Jk (S)a = J'< (st S)u . Now the G action on 5 pro­
vides a natural splitting Sa :Jk (Sa) -+Jk (5) a of (6.2) corre­
sponding to the unique extension of a section of Sa to a G­
invariant section ofS. ThenDa =DoSa:J'«Sa)-+17a. The 
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following propositions rule the calculation and the proper­
ties of Da • 

Let L: Coo (5) -+ g* ® R Coo (5) be the Lie derivative of 
the G action on 5. Here g* is the dual Lie algebra of G. For 
aEg and t/JEC"" (5) we have 

L(t/J)(a) =La(t/J), (6.3) 

where 

(6.4) 

Proposition 6.1: The first-order differential operator L is 
formally integrable for st 5. [L: Coo (st 5) -+g* ® R C"" (st s) 
is correctly defined because st 5 is a G-invariant subbundle.] 

Let {a j } be a basis in g and Zj be the corresponding 
fundamental vector fields on the total space of st 5. In co­
ordinates (xl' ,Z" ) of st 5 they have the form 

The equations 

i = 1,2, ... ,dim G, a = 1,2, ... ,dim st 5, have a constant rank 
with respect to the variables z" in a neighborhood of each 
point bEE due to the assumptions for the G action on 5, and 
this assures the formal integrability of L on st 5. 

Let R1,k-l =ker pk-l (L), [CJ'«sts)] and R! 
=R1,k-1 U · 

Proposition 6.2: R! is a transversal to I! [and hence 
defines a splitting of (6.2) or, equivalently, a bundle mor­
phism Sa: J'< (Sa) -+J'< (S)a satisfying Sa oja = id]. 

In a neighborhood of each point bEUa there are coordi­
nates (xI',Z") of st 5 adapted to the G action t on B; 
xl' = (xv,x"),v= 1,2, ... ,dimM,p=dimM + 1, ... ,dimB, 
x" (b') = Of orb 'EUa,XV(tg (b '») = xV(b '),gEG.Duetothe 
transversality of (Fa: Ua -+B, Eq. (6.6) can be solved with 
respect to z;, : 

(6.7) 

The (k - 1) -jet lifting of (6.7) defines a bundle morphism 

(6.8) 

giving a splitting of (6.2). Here Sa (J'< (Sa») = R! is trans­
versal to 1! . 

Proposition 6.3: For a G-invariant section t/J of 5, 
(D(t/J)}a =D(Sa(Jk(t/Ja»)) [=Da(t/Ja»)· 

We must show that Jk(t/J)(b) = Sa(J'< (t/Ja )(b»), 
beUa. But from the G invariance of t/J, pk - 1 (L) (t/J) = 0, 
J'«t/J)(b)E(R!)b' R! =Sa(Jk(Sa)} and so J'«t/J)(b) 
= Sa (Jk(t/Ja )(b»). 

Proposition 6.4: Let S,17 be reducible G-vector bundles 
over B with the same G action t on B and let D: 
Coo (s) --+ Coo (17) be a G-invariant differential operator. 
Then 

(6.9) 
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Indeed for each bEUa , Va (1/!a) (b) = D(1/!) (b), 

(ifJapDpifJ ~I) (1/!a) (b) 
= (ifJapDp(1/!p»)(b) = Tg(Dp(1/!p»)(tg-. (b») 
= TgD(1/!)(tg-' (b») =D(1/!)(b), 

g = epaP (X)EG, X = pCb) . 

That is, the operators D a' aEA, are compatible with the co­
cycles of 5G and 1/G and define the reduced operator DG: 

C'" (5G)-+C'" (1/G)' 
Comment 6.1: Description of all G-invariant linear dif­

ferential operators. 
It may happen that two different G-invariant operators 

D i andD2 havethesamereducedoperator, (DI)G = (D2 )G' 
The set LDiffk (5G ,5 G) does not describe all G-invariant lin­
ear differential operators. To do this we must consider 
LDiffk (5,1/) = C'" (Jk (5)* ® 1/) as a reducible G-vector 
bundle. There is a one-to-one correspondence between all G­
invariant linear differential operators of order k, 
C'" (5) -+ c'" (1/), and the sections of the bundle 
(J" (5»)* ® 1/) G with a fiber isomorphic to 
st «(J" (5) )* ® 1/) b = all intertwining linear operators 
J" (5h -+1/b between the two finite-dimensional representa­
tions of the isotropy group Gb , bED. [The representation of 
Gb on Jk (5) b comes from the jet-lifted action of G on 5'] 

Comment 6.2: Description of the G-invariant linear con­
nections on a reducible G-vector bundle. 

Comments 4.1 and 6.1 lead to a description (in this lan­
guage) of all G-invariant linear connections on 5. They are in 
one-to-one correspondence with the sections 
epEC'" (5 * ® J I (5»)G, satisfying 1T

I
•
O o()( ep) = id. In other 

words, the reduced bundle for the G-invariant linear connec­
tions has as a typical fiber all the linear maps A: 5 b -+J I (5) b 

intertwining the two finite-dimensional representations of 
Gb on 5b and J 1(5) b' right inverse to 1TI,o; 1TI,o oA = id. 

VII. DIMENSIONAL REDUCTION OF A GROUP ACTION 

Let 5 be a reducible G-vector bundle. We call G a reduc­
tion group because we shall consider another group 0, also 
acting on 5 by bundle morphisms (F,J). When the two ac­
tions commute; Fo 0 Tg = Tg 0 F o, gEG, OEO, the group 0 has 
a natural bundle morphism action on 5 G' In terms of the 
sections of 5G we have 

o(ep) = (}-I(O((}(ep»)), OEO, epECoo(5G)' (7.1) 

The induced representations are a special case of a re­
duced action. Let G be a group and He G a close subgroup, 
L a finite-dimensional vector space and Vh a linear represen­
tation of H on L. One takes for 5 the trivial bundle G XL -+ G 
with a G action 

Fg(gl'u) = (glg-I,U), g,glEG, uEL. (7.2) 

The reduction group is H with an action on 5 

Th (gl'U) = (hgl,vhu), hER. (7.3) 

The both actions commute and the reduced action of G on 
C'" (5 G ) is just the representation of G induced by Hand Vh • 

When 5 is the cotangent bundle, as in Sec. III, the re­
duced action of 0 on COO (T*(B)G) has an invariant sub­
space. This is c'" (T*(M») because the reduced action of 0 
preserves the exact sequence (3.5). Such a reduced action of 
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the group SOo(2,4) will appear in Sec. IX and it will be 
nondecomposable. 

The dimensional reduction preserves the "symmetry 
properties" of the differential operators. Let, as usual, 5, 1/ be 
two reducible G-vector bundles and D: COO (5) -+ C'" (1/) a 
G-invariant differential operator. Let 0 be another group 
acting on 5, 1/ by bundle morphisms. If the actions of 0 on 5, 
1/ commute with the corresponding actions of G and D is 
invariant with respect to the actions of 0, 

o(D(1/!») =D(o(1/!»), OEO, 1/JEC"'(5), (7.4) 

then the reduced operator D G : C'" (5 G ) -+ C'" (1/ G ) is invar­
iant with respect to the reduced action of 0 on 5 G and 1/ G . 

VIII. AN EXAMPLE OF DIMENSIONAL REDUCTION OF A 
GAUGE FIELD AND YANG-MILLS EQUATION 

Here we rederive, in the developed language, the results 
of Ref. 2. The goal is to make a dimensional reduction ofthe 
SU(2) Yang-Mills equation on Minkowski space M4 by 
means of a reduction group SL(2,C) with projected action 
on M 4-the natural action of the Lorentz group. 

We consider a complex two-dimensional Hermitian 
vectorbundle50verM4. Here (.xI"',z" ),p, = 0,1,2,3, a = 1,2, 
are global canonical coordinates, the metric tensor on M4 is 
gP-" = diag( - 1,1,1,1) and (xl< ,z" .z;) are the canonical co­
ordinates of J 1(5)' A linear connection on 5 will be consid­
ered as a splitting of (4.6) given by the covariant derivative 
V: J I (5)-+T*(M 4 )®5, VOi=id or by S: 5-+JI(5), 
1TI ,o oS = id. We have 

1T
I
,O: (x,z",Z;:) -+ (x,z") , (8.1 ) 

and 

(8.2) 

where the potentials AI< are the same as in the covariant 
derivatives 

'VI< =al< + AI< (8.3) 

because ker V = im S. The SU (2) connections correspond 
to A + = - A , tr A = 0 and the Yang-Mills equation for 

I< I< I< 

the potentials AI' is 

FI<" = al< Av - av AI< + [AI<,Av] , 
(8.4 ) 

al< Fl<v + [A P-,Fl<v] = 0, 

al< = a /axP-, (f' = gl<v avo We need a bundle morphism ac­
tion of SL(2,C) on 5. Let g-+Ag be the double covering 
SL(2,C) -+ SOo( 1,3). The projected action of SL(2,C) on 
M4 is taken to be 

g(x) = Ag (x), gESL(2,C), XEM4. (8.5) 

This action has different types of orbits and we shall only 
work on V+ = {xEM4 Ix2 <0, xo>O} (x2 =gl<v.xl"'xV), 
where we have orbits of one type and the dimensional reduc­
tion is possible. On V + the bundle morphism action of 
SL(2,C) is taken to be 

g(xl<,z") = (AivxV,U(g,X)~Zb), 

where 

U(g,x) = B -1(Ag_. (x»)oTgoB(x) , 

B(x) = al«x)al< ' 
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U o = I, U i = 1,2,3, are the Pauli matrices and 

aO(x) = [(XO + R)12R1 112, 

ai(x) = x i/[2R(xO + R) 1 112, i = 1,2,3, 

(8.9) 

(8.10) 

and Tg is the natural representation ofSL(e,C) on C2
• Here 

U(g,x) is the Wigner rotation between the two timelike vec­
tors x and Ag(x). It satisfies (2.9) and defines a bundle 
morphism action. Furthermore U(g,x)eSU(2), this bundle 
morphism action preserves the Hermitian structure on 5 and 
the Yang-Mills equation (8.4) is invariant. The one-jet lift­
ing of the action (8.6) on JI (5) is 

g(xIL,z".z:,) = (AivxV, U(g,x)~r', 

aIL U(g,X)~Zb + U(g,x)~Arl;~)' 
(8.11 ) 

The corresponding action of SL(2,C) on AIL [from S(A) 
eHom(5,JI (5»] is 

g(A)IL (x) = Ag-l; U(g,x')oA v (x')oU -I (g,x') 

+ U(g,x')aIL U- 1 (g,x'), x' = Ag-l (x) . 
( 8.12) 

The first step is to describe the reduced bundle for the 
SL(2,C)-invariant linear connections on 5, according to 
Comment 6.2. In this case we have a global coordinate bun­
dle. We take a cross section of all orbits Ua = {xeV+ Ixi = 0, 
i = 1,2,3} and this is the base of the reduced bundle. For 
X o = (I,O,O,O)eUa the isotropy group is 
SL(2,C)xo = SU(2). The representations of SU(2) on the 
fibers5xo andJ 1(5)xo are 

g(ZZ) = T~bZb , 
g(ZZ.z:,) = (T~bZb, T~bAg-l;~) , 

(8.13 ) 

(8.14 ) 

geSU(2)CSL(2,C). The representation on J 1(5)xo is re­
ducible; (O,Z;: ) is an invariant subspace. The typical fiber of 
the reduced bundle for the SL (2,C) -invariant linear connec­
tions on 5 is the set of all intertwining linear operators 

(8.15 ) 

between the two representations of SU(2): (!> on 5xo and 
q) ® (0) Ell (1») on (O,a~). [When geSU(2), Ag has the 
form 

(8.16 ) 

R g eSO(3).] But (!) ® (0) Ell (1») = q) Ell (!) Ell (~) and it is 
clear that the space of all intertwining operators has a com­
plex dimension 2. The result is 

( 8.17) 

He~ce, the restriction ofa SL(2,C)-invariant gauge field AIL 
on Ua is 

(8.18 ) 
Ai (xo) = Ai (xo,O,O,O) = C2 (XO)Uj , i = 1,2,3. 

The differential operator (8.4) is not internal for Ua . 

The symmetry condition g(A) = A in an infinitesimal form 
together with its first prolongation provides an expression 
for the transversal derivatives ajA (xo), a j aj AIL (xo) by 
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means of AIL (xo), aoAIL (xo), ao aoAIL (xo). The result is 

ajAo(xo) = - (lIxo)A j (xo) , (8.19) 

aj Aj (xo) = - [il4(xO)2]EijkUk - (lIxO)DijAo(xo) , 

a j aj Ao(xo) = Dij([ 1I(XO)3] - lIx°)Ao(xo) , 

aj aj Ak (xo) (8.20) 

= - (lIxo)Dij aOAk (xo) + [1I(xo)2]DjkAj (xo) 

- [i/4(xO)2]Eijn [Un.Ak (Xo)], i,),k = 1,2,3, 

where Eijk is a fully antisymmetric tensor, Em = 1. 
The set of equations (8.19) and (8.20) is an explicit 

form of the splitting morphism Sa in Proposition 6.2. The 
reduced operator (the analog of D a in Proposition 6.3) will 
be obtained if we consider the operator (8.4) on Ua and 
replace the derivatives a j AIL (xo), a j aj AIL (xo) by the ex­
pressions of (8.19) and (8.20). This is a global coordinate 
realization D a of the reduced operator. The invariant SU (2) 
connections correspond to the choice 

Ao(xo) = 0, 

Aj (xo) = If(xo)u;. i = 1,2,3 , 
(8.21) 

where/is a real-valued function. In this case, settingxO = t 2, 

the reduced operator (8.2) is 

4t 2/" + 8if' + 3/+ 8if3 = 0 . (8.22) 

An explicit global form of an SL(2,C)-invariant con­
nection on 5 is known.2 But we used here the connections in 
an infinitesimal neighborhood of Ua . This technique is used 
for dimensional reduction in different papers.8

,9 We stress 
here that the infinitesimal symmetry condition and its jet 
prolongations provide a splitting of a relevant exact se­
quence of the type (5.1). 

The splittings of (5.1) [or (6.2)] coming from some 
symmetry group are not all splittings. There are situations 
where a crucial role is played by another type of splitting. 
The next section gives an example of this. 

IX. DIMENSIONAL REDUCTION OF THE SIX· 
DIMENSIONAL MAXWELL EQUATION. CONFORMAL 
ELECTRODYNAMICS AND NON DECOMPOSABLE 
REPRESENTATIONS 

Here we show that the conformally extended Maxwell 
equation, the additional scalar fields, and the used non de­
composable representations of the conformal group C( 1,3 ) 
(see Refs. 10-15) can be obtained by a dimensional reduc­
tion of the six-dimensional Maxwell equation, followed by a 
restriction on the projected light cone. 

We start from R6
, v = (if ,V5,V6 ) = (va )eR6

, 

f.l = 0,1,2,3, gab = diag( - 1,1,1,1,1, - 1) is the metric ten­
sor, the Maxwell equation for the electromagnetic potential 
Aa is 

(9.1 ) 

where J b plays the role of an external current. The group 
0(2,4) acts naturally on the one-formsAa.Ja and Eq. (9.1) 
is invariant. We want to reduce simultaneously the differen­
tial operator and the group action. 
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The reduction group is R * = R\ {O}. It acts on JR6 by 
multiplications, 

p(v) =pv, pER *. (9.2) 

For any realA., the action (9.2) has an extension to a bundle 
morphism action T A) on T(JR6) and T*(JR6) by the formu­
las 

T~A)(V,U) = (pV,pAU) , 

(v,u)eT(JR6)v and 

TY)(v,p) = (pV,p-Ap), 

(9.3) 

(9.4) 

(v,p)eT*(lR6)V' The conditions (2.2) and (6.6) for a one­
formAa read 

Aa(Pv) =p-AAa(v), (9.5) 

(9.6) 

The action T A
) commutes with the action of 0(2,4) 

and the latter may be reduced. For the pair 1'1), 1'3) the 
Maxwell equation (9.1) is invariant and also may be re­
duced. We shall restrict our attention to the identity-con­
nected component SOo(2,4) of the group 0(2,4). The re­
duced cotangent bundle T*(R6)R. [we simplify the 
notation T*(JR6\ {O})R. ] doesnotdependon...t and the cor­
responding exact sequence 

i* j* 

0+--1"* +-- T*(JR6h. +-- T*(PJR6) +--0, (9.7) 

PJR6 = JR6 I R *, is invariant with respect to the reduced action 
ofSOo(2,4). Hence the subspace C'" (T*(PJR6» is invariant 
with respect to the realized representation of SOo(2,4) on 
C'" (T*(JR6h.). The dim 1"* = 1 and according to the inter­
pretation given in Sec. III, the reduced Maxwell operator 
acts on the pairs consisting of a scalar field and a one-form on 
PJR6. 

We shall do all calculations in the adapted (nonglobal) 
coordinates 

k = v5 + v6 , x/-L = ifl(v5 + v6) , 
(9.8) 

We set" - " indices for k and" + " for qy. In these coordi­
nates we have 

A/-L (k,x,qy) =A (~) 
ax/-L 

= kA/-L (v) - kx/-LA 5(v) + kx/-LA6(v) , 

A+ (k,x,qy) =A (~) = kA5(v) - kA6(v) , 
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(9.9) 

wherex/-L = 'TI/-LVxv, 'TI/-LV = diag( - 1,1,1,1),,u,v = 0,1,2,3. 
The Maxwell equation for F( k,x/-L ,qy) is 

~/-LF 1 3 
k 2 /-L- +~- F+_ +TF+-

2qy 
- pa+ F+_ =J_, 

:2 a /-L F/-Lv + f-a+ F -v + f-a- F +v 

2qy 
- pa + F + v = Jv , 

k\ a /-L F/-L + + f-a + F - + = J + . 

(9.10) 

LetXab = Va ab - Vb aa be the generators ofSOo(2,4). 
The physical generators 16 areX/-LV -the Lorentz transforma­
tions, X56-the dilatations, T/-L = X/-L6 - X/-L5 -the transla­
tions, and C/-L = X/-L5 + X/-L6 -the special conformal trans­
formations. The action of the special conformal 
transformations K = exp ( d" C '" ) in terms of the adapted co­
ordinates is 

K(k,xJ.L,qy) = (k',x'/-L,qy'), 

k' = k'(l + 2cvxv + C2 (X2 
- 2qJ»), 

x'/-L = xJ.L + d"(x
2 

- 2qJ) 
1 + 2cvxv + C2 (X2 - 2qy) , 

qy'= qy 
(1 + 2cvxv + C2 (X2 

- 2qJ)j2' 

(9.11) 

where x 2 = 'TI/-LVx/-L XV. The action (9.2) of the reduction 
group takes the form 

p(k,x/-L,qy) = (pk,xJ.L,qy) . (9.12) 

We shall consider a reduction of the six-dimensional 
Maxwell equation for the pair 1'1) and 1'3). For a coordi­
nate realization of the reduced bundle T*(JR6)Ro we take 
Ua = {veJR6lk = n. Then the section of T*(JR6)a has the 
form A_./-L.+ (x,qy) =A_./-L.+ (l,x,p), J-./-L.+ (x,qy) 
= J -./-L. + (l,x,qy). Equation (9.6) on Ua reads (for...t = 1) 

a_ A/-L (x,qy) = 0, a_ A+ (x,qy) = 0, 

a_A_(x,qy) = -A_(x,qy). 
(9.13) 

The reduced Maxwell equation [for 
A _ ./-L. + (x,qy)] is 

the fields 

(9.14 ) 
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[Equations (9.14) are obtained from (9.10) by setting k = 1 
~nd r~placing a_ A -.1'. + (x,91) by (9.13). This is 
Da = DoSa in Proposition 6.3.] 

The adapted coordinates are canonical for the exact se­
quence (9.7), 

i*(A_,A!J.,A+) =A_, 

j*(A!J.,A+) = (O,A,..,A+) . 
(9.15) 

The reduced action of the special conformal transforma­
tions K ~ exp(cY Cy ) on the base of(T*(R6») is 

K(x!-',91) = (x'''',91'), 

x'!J. = x!-' + cI-'(x
2 

- 2lp), (9.16) 
1 + 2cvxv + C2(X2 - 291) 

91'- 91 
- (1 + 2cv x v + C2 (X2 - 291»)2' 

and their action on the fields A _ .1'. + (x,91) for arbitrary A. is 

K- I (A)_(x,91) = [ll_ IA _(X',91')' 

K- I (A),..(x,91) 

2c + 2c2x 1 ax'v 
I' -< "'A_(x"91')+~--Av(x"91') 

p p ax!-' 

_ 4q?(c,.. + c2
x,..) A (x' ') (9.17) 

-<+2 +,91, 
P 

2c2 

K- I (A)+(x,91) = - ;:A_(x',91') 
p 

_ 2cvp + 2c2(xV + cv(X2 _ 2lp») 
+--~----!'--'----'---~ 

p-<+I 

XA (' ') + p + 4q?c
2 
A (' ') 

y x,91 -<+2 + x,91 , 
p 

where p = 1 + 2cy x Y + C2
(X

2 
- 2lp). 

ThesubmanifoldM 4 = {(X,91)EUa 191 = O} is invariant 
and is identified with the Minkowski space. This is the Dirac 
embedding M4-+Q2.4/R *, Q2,4 = {VER6\{0}lgabvavb 
= o}. OnM 4 the special conformal transformations are, as 

expected, 

K(x!-') = (x!-' + cl-'x2 )/(l + 2cvx Y + C2X2) . (9.18) 

The action ofSOo(2,4) on the restriction (T*(R6)a)M4 is 
natural and was, in fact, calculated in Ref. 15. 

The embedding 17 M 4 -+ Ua is fixed in our considerations 
and leads to the following exact sequences: 

k I 

0-+T(M4) -+ T(Ua)M4 -+ N(M4)-+0, (9.19) 

k* /* 

0 ..... T*(M4) ..... T*(Ua )M4 ..... N(M4)* ..... 0, (9.20) 

whereN(M 4) is the normal bundle, N(M4) = T(Ua )M4/ 
T(M 4

). In the adapted coordinates we have 

k *(A!J. (x),A+ (x» = AI' (x) , 

I *(A+ (x») = (O,O,O,O,A+ (x») , 

whereA_.!J..+ (x) =A_.!J..+ (x,O). 

(9.21) 

The operator (9.14) is not internal for M4 and we do not 
have a natural restriction onM4. We want to define a restric-
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tion on M 4 in such a way that the restricted operator would 
be invariant with respect to the reduced action of SOo (2,4 ) 
on (T * (R6

) )M4 [for the special conformal transformations 
this is (9.17) with 91 = 0]. This may be done if the expres­
sions for the transversal to M4 derivatives a+, a+ a+ are 
invariant. 

Let us consider the six-dimensional Lorentz condition 

aa Aa (v) = 0. (9.22) 

The reduction of (9.22) on T*(R6)a is (A. = 1), 

a!' AI' (x,91) + a+ A_(x,91) + 2A+(x,91) 

- 2lp a+ A+ (x,91) = 0. (9.23) 

Equation (9.23) is automatically invariant with respect to 
the reduced bundle morphism action of SOo(2,4) on 
T*(R6)a and, together with its first prolongation, gives on 
M4(91 = 0) 

al'A!J.(x) +a+A_(x) +2A+(x) =0, 

a+ a'" AI' (x) + a+ a+ A_(x) = 0. 
(9.24) 

Combining (9.14) (considered on M4, 91 = 0) and (9.24), 
we have 

DA_(x) -2aI'AI'(x) -4A+(x) =J_(x), 

DA y (x)+2av A+(x) =Jv(x), (9.25) 

DA+(x) =J+(x), 

where 0 = a!J. aw Equations (9.25) are also automatically 
invariant with respect to the reduced (1'1) for Aa and 1'3) 

for Ja ) bundle morphism action of SOo(2,4) on 
(T*(R6)a)M4, i.e., it is conformally invariant. 

One can impose some invariant conditions. Let 
i*(A) =0, i*(J) =0. Then A_(x) =O=J_(x) and we 
have 

-2a1'A!J. -4A+ =0, 

DAv +2av A+ =Jv ' (9.26) 

Excluding A + we have 

(9.27) 

F = a A - a Av. Equations (9.26) were derived in J.LV Jl v v 

Refs. 11 and 14, and Eqs. (9.27) were used in Ref. 15. 
If only J _ = ° and excluding A +' we have from (9.25) 

a!' F,..v +!O av A_ =Jv ' 

!02A_ -!OaI'AI' =J+. 
(9.28) 

The equation aa Ja = ° on R6
, reduced by means of 

1'3) on T*(R6)a,for J _ = ° is an internal differential oper­
ator for the submanifold M 4C Ua and on M4 gives 

(9.29) 

Hence it is conformally invariant and together with (9.28) 
leads to the conformally invariant equation 

02A_(x) =0. (9.30) 

The differential operators of (9.28) and (9.30) lead to a 
one-parameter family of conformally invariant differential 
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equations 

all- Fll-v +!OavA_ =Jv , 

P02A_ -!OaIl-AIl- =J+, 
(9.31) 

PeR. Equations (9.31) were introduced in Refs. 10 and 12 
by studying the conformally invariant two-point functions, 
and discussed in Ref. 13. 

The new result of this section is the observation that the 
set of equations (9.27) and (9.28) can be obtained in two 
steps. The first is the standard dimensional reduction of the 
six-dimensional Maxwell equation by means of a reduction 
groupR * and actions 1'1) ,1'3) . The second is a conformal­
ly invariant restriction of the reduced Maxwell equation by 
means of the reduced six-dimensional Lorentz condition. 
The additional fields come from the exact sequence (3.5) 
and have the same nature as the scalar fields and the gauge 
field in the dimensional reduction of G-invariant metrics 
(see Ref. 1 and Sec. III). 
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The cohomological properties of supermanifolds (intended in the sense of De Witt 
[Supermani/olds (CambridgeU. P., London, 1984)] and Rogers [J. Math. Phys. 21,1352 
( 1980) ]) are investigated, paying particular attention to the de Rham cohomology of 
supersmooth differential forms (SDR cohomology). The SDR cohomology of De Witt 
supermanifolds is shown to be equivalent to the de Rham cohomology of their body. The SDR 
cohomology is explicitly computed for some topologically nontrivial supermanifolds and some 
general conclusions concerning the geometric structure of supermanifolds and the properties of 
the SDR cohomology are drawn. In particular, it is shown that the SDR cohomology is neither 
a topological nor a real differentiable invariant, but rather a "superdifferentiable" invariant. 

I. INTRODUCTION 

In this paper we undertake a systematic investigation of 
the cohomology of supermanifolds. Supermanifolds are in­
tended in the sense of De Witt and Rogers, namely, they are 
manifolds whose coordinates take values in an exterior alge­
braBL • We consider here the casewhereBL is finitely gener­
ated, i.e., L < 00. Apart from its possible applications in 
theoretical physics, mainly related to the study of quantum 
anomalies in supergauge and superstring theories, this inves­
tigation has an interest of its own, since it can help to unravel 
the not yet well-understood geometrical structure of super­
manifolds. 

Our main object of interest is the cohomology of the 
differential complex of "supersmooth" differential forms on 
a supermanifold M, with the differential operator represent­
ed by the exterior differential d. The crucial point is that this 
"supersmooth de Rha.J1 cohomology" (SDR cohomology) 
is different from the Cech cohomology of the locally con­
stant sheaf fig L' on M with stalk B L" thus breaking the anal­
ogy with real manifolds, where the de Rham cohomology of 

smooth forms and the Cech cohomology of the locally con­
stant sheaf with stalk R. (the real field) do actually coincide. 
This implies that, in general, the supersmooth and the ordi­
nary de Rham cohomologies of a supermanifold are differ­
ent. This behavior is basically due to the fact that super­
smooth forms have in some sense holomorphic properties, 
and therefore the sheaves of supersmooth forms have non­
vanishing Cech cohomology, contrary to the sheaves of 
smooth forms on a real manifold. 

This state of affairs has an interesting consequence: 
SDR cohomology is not a topological invariant. Indeed we 
shall discuss an example where two supermanifolds, isomor­
phic as real manifolds but carrying nonisomorphic superdif­
ferentiable structures, have different SDR cohomologies. 
Thus this cohomology in some sense carries information 
about the superdifferentiable structure, and therefore could 
be a useful tool to study supermanifolds. 

This analysis shows that supermanifolds have a richer 
cohomological structure than graded manifolds. Basically, 
graded manifolds are sheaves of Z2-graded commutative al­
gebras on a real manifold; their de Rham cohomology is 

equivalent to the de Rham cohomology of the base mani­
fold. 1 In this respect, graded manifolds behave like De Witt 
supermanifolds (see Sec. V). 

Let us now describe the contents of this paper. In Sec. II 
we recall some basic definitions in sheaf theory and a few 
results in sheaf cohomology. Section III contains a brief in­
troduction to supermanifolds, with an emphasis on the de­
finition of the function sheaf. In Sec. IV we introduce the 
supermanifold cohomologies we are interested in (SDR co­
homology, ordinary de Rham cohomology, Cech cohomo­
logy of the locally constant sheaf fig L' and of the sheaf of 
supersmooth functions) and show the most obvious rela­
tionships among them. In Sec. V we deal with a "degener­
ate" case, i.e., the case of the so-called De Witt supermani­
folds (supermanifolds that are locally trivial bundles on a 
real manifold), while in Sec. VI we discuss some examples of 
topologically nontrivial supermanifolds. 

Finally, let us recall that SDR cohomology has already 
been considered by Rabin in Ref. 2, where some of our re­
sults can already be found. 

II. SHEAF THEORY 

Since in this work we shall mainly use techniques related 
to sheaf cohomology, we shall start with some definitions 
and results in sheaf theory and sheaf cohomology. 

Sheaves 3.. Let X be a topological space. A sheaf Y of 
Abelian groups on X is a correspondence that to each open 
set U in X assigns an Abelian group Y ( U), called the group 
of sections of Y over U, so as to verify the following proper­
ties. 

(i) For any inclusion of open sets ve U there exists a 
group morphism p ~: Y ( U) -+ Y ( V), called restriction 
morphism. 

(ii) For all open sets U, pg = id. 
(iii) If we ve U are inclusions of open sets, then 

p~op:;" =p~. 
(iv) If {Ui , iEf} is a collection of open sets in X, 

U = U ieI Ui , and s,tEY ( U) are such that 
pg, (s) = pg,u) ViEf, then s = t. 

(v) If {Ui ,iEf} and U are as above, and a collection 
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{SjEY( Uj ),iEl} is given such thatp~inu (Sj) = P~nu (sJ')' 
I J I J 

then there exists a section sEY ( U) such that p gi (s) = Sj. 

For all xEX one defines the stalk Y x of Y at x as the 
direct limit of the Y ( U) 's over all open neighborhoods U of 
x. Here Y x is an Abelian group whose elements are called 
the germs of sections of Y at x. 

Given two sheaves Y and [1 on X a sheaf morphism 
A: Y - [1 is a collection {Au, U open in X} of group mor­
phisms Au: Y ( U) - [1 (U) such that for all inclusions of 
open sets VC U one has p~oAu = Auop~. 

Soft and fine sheaves: In the following, Y will always 
denote a sheaf on a topological space X. A sheaf Y is said to 
be soft if any section of Y on a closed subset of X can be 
extended to all of X. 3 An example of a soft sheaf is provided 
by the sheaf on continuous real-valued functions on a normal 
space. 

A sheaf Y is said to be fine4 if, given any locally finite 
open cover ~ = {Uj , iEl} of X, there exists a collection 
{tfoi, iEl} of endomorphisms of Y such that (i) if sEY (V), 

then p ~ _ U
i 
otfoiv (s) = 0 for all iEl; (ii) if V intersects only a 

finite number of UiE~, and sEY (V), then 

S = I tfo~(s). 
ieJ 

Examples of fine sheaves are the sheaves of differential p­
forms on a real C<so differentiable manifold, p>O. 

If the base space is paracompact, it is easily verified that 
any fine sheaf is soft. 3 Under the same hypothesis, any sheaf 
can be canonically imbedded into a fine sheaf (by paracom­
pact we mean Hausdorff such that any open cover has a 
locally finite refinement). 

Cech cohomology~' Let Y be a sheaf of Abelian groups 
on a topological space X, and ~ = {Ua , aE.!} an open cover 
of X, with J an ordered set; for all ao" ·apE.! define 
Ua "'a = Ua n··· n Ua • Then define the complex of Abe-

o pop 

lian groups C'" ( ~ ,Y) whose pth term is 

II Y( Ua ... Ct ) 
o P 

and a differential operator 8: C p ( ~ ,Y) _ C p + I (~,Y) 

as follows: if 1= {/a "'a }EC p ( ~ ,Y), then 
o P 

p+1 

(81)ao"'a +1 = I (-l)klao"'iik"'ap+I' 
P k=O 

where the caret denotes that the index has been omitted. The 
Cech cohomology 01 X with values in Y with respect to the 
cover ~ is defined as the cohomology of the differential com­
plex (C"'(~,Y),8), i.e., 

v cr ker(8: CP( ~ ,Y) -CP+ I( ~ ,Y» 
HP(~,Y) = Im(8: CP-I(~,y)-CP(~,y»)' 

The Cech cohomo0gy 01 X with values in Y is defined as the 
direct limit of the Cech cohomologies with values in Y over 
all the open covers of X (this involves some set-theoretical 
difficulties, see Ref.3); the cohomology groups so obtained 
are denoted by Jp (X,Y). One has naturally a group mor­
phism 

v c;z- v cz-
fIP (~,Y ) -fIP (X,Y ). (2.1 ) 
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The following results, taken from Ref. 3, will be useful in the 
following. 

Theorem 2.1: If X is paracompact, a sufficient condition 
for the morphism (2.1) to be one-to-one is that for all non­
void intersections Uao"' aq ' one has 

Jp ( Ua . "a ,Y) = 0 for p> 1. 0 
Theore~ 2:2: If X is paracompact, and 

O-Y -[1-.5#-0 

is an exact ssquence of sheaves on X, there is a long exact 
sequence in Cech cohomology 

a 
O-HO(X,y) -HO(X,[1) -HO(X,.5#) -H I (X,Y) 

v v v 
... ··· ... fIP (X,Y) ... fIP (X,~) -fIP (X,.5#) 

a v 
-fIP +I(X,Y) ... ···, 

where the a 's are the so-called connecting morphisms.3 0 
Theorem 2.3: If the sheaf Yon a paracompact space X is 

soft (and, alortiori, if it is fine), its Cech cohomology van­
ishes, i.e., 

Jp (X,Y) = 0 for allp> 1. o 
De Rham cohomology~' Let M be a differentiable mani­

fold, and !}P the sheaf of the real valued p-forms on M, p>O. 
The cohomology of the differential complex 

d d 
!}o(M) ... !}I(M) _"', (2.2) 

where d is Cartan's exterior differential, is called the de 
Rham cohomology of M; its cohomology groups will be de­
noted by H ~R (M). The classical de Rham theorem can be 
stated as follows. 

Theorem 2.4: For allp>O, 
v 

HbR(M)=.fIP(M,&I), (2.3) 

where &I denotes the locally constant sheaf on M with stalk 
R (the real field). 0 

III. SUPERMANIFOLDS 

In this section we describe the fundamentals of super­
manifold theory, mainly following Rogers.6

,7 Let BL be the 
exterior algebra over RL

, L < 00, with its natural Z2 grada­
tion BL = (BL )oGl (BL )1 (in the following, "graded" will 
always mean Z2 graded). A basis for B L (as a graded vector 
space) is conveniently indexed by M L' the set of strictly in­
creasing sequences ofintegers,u = {O<,ul < .. , <,us <L}, as 
follows: if {e I ... e L} are generators of B L , then fl J.t 
= eJ.t1 A ... Ael',; moverover, we set flo = 1. 

With the wedge product, B L is a graded commutative 
algebra, in the sense that (BL)i (BL)j C (BL )i+jmod2 and 

aAb= (-l)ijbAa ifaE(Bdj, bE (Bd j 

(in the following, the wedge product symbol will be under­
stood).Let N denote the ideal of nil po tents of B L ; then BL 
= RGlN. We denote by u:BL -R (body map) ands:BL ... N 
(soul map) the projections. The Cartesian product 
(B L ) m + n has a natural structure of graded B L module, with 
the gradation 
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(BL)m+n = B';'"n€IJB,;:n 

given by B ';'"n = (BL );;'X (Bd~, B T,n = (BL )'{'X (BL )~. 
A body map IT",n: B ';'"n -+ Rm is defined by setting 
IT",n(x l .. ·xm ,yl .. 'y") = (U(XI) .. 'u(xm »). 

Here B ';'"n can be naturally endowed with two distinct 
topologies: its topology as a 2L - I (m + n) -dimensional real 
vector space (that we shall call fine topology) and a coarse 
topology whose open sets are the counterimages through 
IT"'" of open sets in Rm 

• If not otherwise stated, in the follow­
ing we shall consider in B ';'"n the fine topology. 

Next we come to the definition of a sheaf of BL -valued 
functions on B ';'"n, in terms of which the concept of super­
manifold is introduced. We denote by Crf [V;Q] the sections 
over vex of the sheaf of Q-valued C'r> functions on a mani­
fold X. Let U be an open set in Rm 

, Land L ' two positive 
integers with L ' <;L, and denote by7 

Z L ',L: Crf [ U;B L' ] -+ Crf [ (IT"'o ) - I ( U);B L ] 

the mapping explicitly given by 

ZL',L (f) (Xl •. 'xm
) 

± . , .. I .. , (a;' .. ·a;;n I 
i,"'im=O II' 1m' (7(X')"'(7(xm ») 

XS(XI)i, .. 's(xm )im • (3.1) 

Here Z£',L is.....injective; we denote by Y [(IT"'o) -I (U)] its 
image. Thus [1 [ (IT"'o ) -I ( U) ] is the ring of GB'" functions 
of even variables on (~,o) -I ( U). The GB'" functions of 
even and odd variables are naturally defined on open sets 
(~,n ) - I ( U), where U is an open set in Rm 

• The ring of 
GB'" functions on a set of this type is denoted by 
[1 [ (IT",n ) -I ( U)] and its elements have the form 

F(x l .. 'xm,yl"'yn) = I Fil (Xl .. ·xm )yll, (3.2) 
IlEML 

where yll = yll, . . . yll. and Fil EY [(IT"'o ) -I (U)]. The de­
rivatives of F are uniquely determined by the development 

m . aF 
F(x + h,y + k) = F(x,y) + I h '-j (x,y) 

;=1 ax 

+ i k a aF (x,y) + O(h,k)2 
a=1 aya 

provided that 

L-L'>n. (3.3 ) 

Remarks: (i) Here [1 [ (IT",n ) -I ( U)] is also endowed 
with a structure of graded B L' module. For all open sets V in 
B ';'"n we let [1 (V) = [1 [ (IT",n ) - 1lT",n ( V) ]; this defines a 
sheaf [1 of graded B L' modules on B ';'"n. 

(ii) For all open U in Rm 
, Eq. (3.2) defines an epimor­

phism of graded B L' modules 

9 [(IT"'o) -I( U)] ® BL,A[n] -+ [1 [(IT",n)-I( U)], 

(3.4) 

where A [n] is the exterior algebra generated by B ~n over 
B L" This morphism is one-to-one if Eq. (3.3) holds. 

(iii) The sheaf [1 is apparently not soft, and therefore, 
since B ';'"n is paracompact, not even fine. This precludes the 
existence of GB'" partitions of unity on B ';'"n, and a fortiori 
on any supermanifold. 
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The concept of GB'" function, due to Rogers,7 is a 
refinement of that of G'" function [which is recovered by 
setting L = L ' in Eq. (3.1)], motivated by the fact that G'" 
functions are not well behaved in many regards [partial de­
rivatives with respect to odd variables are not defined, i.e, the 
map (3.4) is not injective, and, as a consequence, the sheaf of 
derivations of G'" functions is not locally freeS]. 

In the following, in order to avoid the above-mentioned 
drawbacks, we shall always assume that condition (3.3) 
holds. 

Definition 3.1: An (m,n)-dimensional GB'" superman­
ifold is a Hausdorff, second countable topological space M 
together with an atlas .sf = { ( Ua, rf a ) I rf a: Ua .... B ';'"n} such 
that the transition functions are GB'" mappings. 0 

Supermanifolds defined in this way are quite general as 
far as topology is concerned, as explicit examples show.9 One 
can strongly constrain the topological structure by requiring 
that the images rfa (Ua ) are open in B ';'"n also in the coarse 
topology, thus obtaining the so-called De Witt supermani­
folds. 10 The structural result stated in the following theorem 
will be useful later on. 

Theorem 3.1: Any (m,n)-dimensional De Witt super­
manifold M is a locally trivial C'" bundle <1>: M -+ Mo over an 
m-dimensional real differentiable manifold M o, with typical 
fiber P m,n = pm X (B L ) ~ , P being the ideal of nilpotents in 
(BL )0' 0 

The real manifold Mo is usually called the body of M. 
Theorem 3.1 establishes the existence of C'" isomorphisms 
Pa: <1>-1 (Ua ) -+ Ua Xp",n; however, in general M is not a 
vector bundle since the mappingsPa 0Pi I (x,.): pm,n .... pm,n, 
with XEUfJ fixed, may fail to be vector space morphisms. 

IV. SUPERMANIFOLD COHOMOLOGY THEORIES 

We wish now to describe some cohomology theories 
that are natural to be considered on a GB'" supermanifold 
M. According to Definition 3.1, the topological space under­
lying M has a structure of 2L - I (m + n) dimensional C'" 
real manifold, where (m,n) is the dimension of Mas a super­
manifold. So we can consider on M the sheaves Crf P of B L'­
valued C'" p-forms,p>O. We define a BL,-valued de Rham 
cohomology, B j!;R (M,B L' ), as the cohomology of the com­
plex Crf*(M), 

d d 
Crfo(M) -+ Crf 1 (M) .... . , " (4.1 ) 

where d is the obvious extension of Cartan's exterior differ­
ential. There is a relationship between Bj!;R (MJJL ,) and 
Bj!;R (M), which is a straightforward consequence of the 
identity BL , = R®RBL , (in the following, all tensor prod­
ucts will be taken over R). In order to show this relationship, 
let us proceed as follows. The cochain complex (4.1) can be 
written as Crf*(M) = n*(M) ®BL" wheren*(M) is the de 
Rham complex (2.2). The cochain complexes Crf*(M) and 
n * (M) can be regarded as chain complexes, Crf • (M) and 
n. (M), by defining Crf _p(M) = CrfP(M), n_p(M) 
= !lP(M) for p>O, Crf _P (M) = n_ p (M) = 0 otherwise, 

and their cohomologies regarded as homologies. This trick 
permits us to apply the universal coefficient theorem, 3 which 
yields 
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HbR (M,BL ,) =HbR (M) ®BL , $TorR(Hb~ I (M),BL')' 

The torsion functor TorI is defined as follows: if A, Bare 1: 
modules, and 0 -+ F' -+ F -+A -+ 0 is any exact sequence with F 
free, then the sequence 0-+ TorI (A,B) -+F' ®B-+F®B 
-+ A ® B -+ 0 is exact. Since B L' is free as an R module, 
TorR(Hb~ I(M),BL ,) = 0, so that 

(4.2) 

Denoting by~P the sheaf of GHOO p-forms on M, we 
consider the complex ~ * 

d d 

~o(M) -+ ~I(M) -+'" • 

The GHOO (or supersmooth) de Rham cohomology of M, 
denoted by H tOR (M), is defined as the cohomology of this 
complex. Apart from the obvious isomorphism H~OR (M) 

~H'bR (M,BL')' HtoR (M) is a priori different from the 
B L' -valued de Rham cohomology of M, and we shall indeed 
give in Sec. VI examples where H fOR (M) #H i'>R (M,B L' ). 

It is obvious that the H tOR are functors from the category of 
GHOO supermanifolds to the category of Abelian groups. In­
deed, GHOO supermanifold maps I I: MI-+M2 and 12: 
M2-+M3 induce group morphisms Ir: 
HtOR(Mj + 1 )-+HtOR(Mj ) such that (/2°/1)* =ITo/! 
(actually, their are morphisms of graded BL , modules). 

Following Rabin,2 it is possible to state a theorem of 
GHOO homotopic invariance for SDR cohomology. 

Theorem 4.1: Letf ,g: M -+ Nbe GHOO maps. Ifthere is a 
GHOO map F: M X (BL )o-+N such that F (x,y) =1 (x) for 
o-(y) > I and F (x,y) = g(x) for o-(y) .;;0, then/* = g*. 0 

Other cohomol~ies we can consider ~n a supermani­
fold M are the Cech cohomologies H * (M,fIt) and 
H * (M,fiJ L' ) of the locally constant sheaves fit and fiJ L' on 
M, whose stalks are Rand B L' , respectively. Since Mis para­
compact, these cohomologies fulfill Theorems 2.1-2.3. 
Moreover, they are related by 

v v 
H*(M,fiJ L') = H*(M,fIt) ®BL" (4.3) 

which, like Eq. (4.2), is obtained by means of the universal 
coefficient theorem. Then using the de Rham Theorem 2.4 
one gets the canonical isomorphisms 

v v 
H*(M,fiJ L') = H*(M,fIt) ®BL' 

~H"ER (M) ®BL' = Hi'>R (M,BL')' 
(4.4) 

which can be regarded as morphisms of BL , modules. 
As far as the Cech cohomologies H * (M, ~ P ) are con­

cerned, one should remark that in general thex.,do not van­
ish, contrary to what happens in the case of H * (M, CC P ). 

More generally, one can prove the foll~wing result. 
Theorem 4.2: Assume that Hk (M,~P) = 0 for 

O.;;p.;;q - 1 and l.;;k.;;q. Then H~OR (M) 
~H~R (M) ®BL , for l.;;k.;;q. 

Proof: Following Ref. 11 (p. 44), one gets H ~OR (M) 
~Hk (M, fiJ L' ). Then the isomorphism ( 4.4) completes the 
proof. 0 

Since we shall see examples where H tOR (M) 

#Hi'>R (M) ®BL" Theorem 4.2 shows that H*(M,~P) 
#0 in general. 
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V. COHOMOLOGY OF DE WITT SUPERMANIFOLDS 

In this section we investigate the case of De Witt super­
manifolds (see Sec. III) for the various cohomologies we 
have introduced in the preceding section.JVe shall see that 
the B L' -valued de Rham cohomology, the Cech cohomology 
of fiJ L" and the SDR cohomology are isomorphic, and that 
they all coincide with the B L' -valued de Rham cohomology 
of the base real manifold. We consider a De Witt supermani­
fold M topologized with the fine topology; however, if we 
endow M with the coarse topology, the result is the same, 
even though the proof must be slightly modified (see remark 
at the end ofthis section). 

Let Mbe an (m,n) -dimensional De Witt supermanifold 
over the real manifold Mo with projection ct>: M -+Mo. fit 
denotes again the locally constant sheaf on M with stalk R, 
and fit 0 is the analogous object on Mo. Moreover, in this 
section ~ = {U a' aEJ}, with J an ordered set, denotes a 
good cover of Mo' namely, an open cover such that all non­
void finite intersections of its members are diffeomorphic to 
open balls in Rm. 

Lemma 5.1: For allp>O, 

fp (M,fIt) ~fp (Mo,flto)' (5.1 ) 

Proof: As a consequence of Theorem 2.1, we have 

(5.2) 

On the other hand, Jr = {Wa = ct>-I (Ua ), aEJ} is an 
open cover of M, and it is obvious that 

(5.3 ) 

Now, if V is a nonvoid intersection of members of Jr, V is 
COO homotopic to the fiber of M, which is a vector space and 
~ence has a vanishing de Rham cohomology. Since 
H * ( V,fIt I V) is !Jomorphic to the de Rham cohomology of 
V, this implies HI' ( V,fIt I V) = 0, p> 1. Then Theorem 2.1 
implies 

v v 
HI'(Jr,fIt)~HI'(M,fIt), p>O. (5.4) 

Collecting Eqs. (5.2 )-( 5.4) one gets the proof. 0 
Corollary 5.1: 

HbR(M)~HbR(Mo), p>O. (5.5) 

o 
Let {A a , aEJ} be a Coo partition of unity onMo subordi­

nate to ~ . Applying to the coordinate expression to each Aa 
the mapping Z L ',L given in Eq. (3.1), one gets a "tubular" 
GHoo partition of unity {Aa , aEJ} on M subordinate to 
Jr ';:: ct> -\ ( ~ ). Then the classical proof of the vanishing of 
the Cech cohomology ofthe sheaves of differential forms on 
a real manifold, obtained by means of a partition of unity 
argument,5 can be adapted to show the following result. 

Lemma 5.2: Let Jr = {Wa , aEJ} be the open cover of 
M obtained as above. For all q>O the long sequence of Abe­
lian groups 

restr ~ {j 

0-+ ~q(M) -+ II ~q( W a ) -+ II ~q( Wa n Wp ) -+'" 

a a<p 

is exact, that is, fp (Jr,~q) = O,p>1. 0 
We can now prove the main result of this section. 
Theorem 5.1: For all p>O there is an isomorphism of 
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graded right B L' modules 

R~DR (M) ~RbR (Mo) ®BL " 

t restr 

(5.6) 

t 

where the right-hand side is given a structure of graded right 
BL , module by setting «(i) ®a)b = (i) ® (ab). 

Proof Let us consider the double complex 

fj 

0 ~ [92(M) ~ IT [92(Wa) 

t a t 
2 t II [9 (Wa n Wp ) .... 

a<p t 
restr fj 

0 ~ [91(M) .... IT [91(Wa) 

t a t II [91( Wa n Wp ) .... 
a<p t 

restr fj 

0 [9°(M) IT [9°(Wa ) IT [9o( Wa n Wp ) .... 
a a<p 

f j 
fj Ii 

II @L'(Wa ) 

t 
II @L,(WanWp ) 
a<p t a 

0 

where @ L' is the locally constant sheaf on M with stalk B L' 

and the vertical arrows above the horizontal line are given by 
the exterior differential d. The columns on the right of the 
vertical line are exact as a consequence of Poincare's Lemma 
for GR"" forms (see the Appendix), and the rows above the 
horizontal line are exact as a consequence of Lemma 5.2. 
Then a general result in homological algebra3 implies that 
the cohomologies of the initial column and ofthe bottom line 
are isomorphic, namely, 

R~DR (M) ~fp (M'@L')' p>O. 

This isomorphism, together with Eqs. (4.4) and (5.5), es­
tablishEq. (5.6) as a group isomorphism. That (5.6) is also 
a morphism of graded B L' modules is proved by direct com­
putation. 0 

Summing up, we have shown that, given a De Witt su­
permanifold M with body Mo, the following cohomologies 
are all isomorphic: (i) de Rham cohomology of GR"" differ­
ential forms of M; (ii) de Rham cohomology of B L' -valued 
C"" differential forms on M; (iii) de Rham cohomology of 

v 
@L,-valued C"" differential forms on Mo; (iv) Cech coho-
mology of the locally constant sheaf @ L' with stalk B L' on 
M. Moreover, these isomorphisms are actually isomor­
phisms of graded B L' modules. 

Remark: If the De Witt supermanifold M is endowed 
with the coarse topology, not all the results of this section 
apply, due to the fact that M is not Hausdorff and therefore 
not paracompact. However, Eq. (5.3) still holds. Since in 
the coarse topology all the open covers are obtained by pull­
ing back open covers of Mo, the direct limit involved in the 
definition of H • (M,f!/i) can be taken over covers of the type 
of "Jr, so that Eq. (5.1) holds. Lemma 5.2 being still valid, 
Theorem 5.1 follows again. 

VI. EXAMPLES 

We proceed now to the explicit computation of the SDR 
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0 

j 
cohomology of three supermanifolds having nontrivial to­
pologies. 

Example 6.1: M = SiX R endowed with a structure of 
(l,Q)-dimensional GR"" supermanifold. We take L = L I 

= 2; BL has a basis {1,{31,{3z,{33 = {3J3z}. We choose two 
charts (x,Ui XR) and (y,UzXR), where U1 (U2 ) isS 1 with­
out the north pole (south pole), x and y are given in terms of 
zelR and the stereographic angles (),t/J, respectively, from the 
north and south pole, as follows: 

() 1T 11' 
X = e + tan - {33' - - < () <-' 

2 2 2' 

y=e-
2Z [e -tan(; - ~r3]' -; <t/J< ;. 

It is easily shown that x and yare C"" diffeomorphisms and 
that the transition functions x(y) andy(x) are GR"" . 

A direct calculation shows that a global GR"" function 
on M has the form 

j =K + ji{3i' i= 1,2,3, 

where the constant K and the C"" functionsji of z are real 
valued. Then 

[9 (M) = [9°(M) = RE!) [C"" (R) ®N], (6.1) 

where N is the nilpotent ideal of BLand C"" (R) is the vector 
space of C"" real functions on R. Moreover, denoting by 
.ffq (@q) the sheaf of closed (exact) q-forms, one has 

[91(M) = ,ql(M) = [C""(R) ®N] Ell [R®{33]' 

@l(M) = C""(R) ®N, 

whence 

R~DR (M) = .ff1(M)/@i(M) = R®{33' 

The unique B L' module structure of R ~DR (M) which makes 
the projection onto the quotient a morphism of B L' modules 
is given by (r®{33)a = r® ({33a). Clearly, R ~DR (M) is not 
free as a B L' module. 

Obviously, since [9q = 0 and q> 1, we have 
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H ~DR (M) = 0 for p > 1. On the other hand, 

HbR(M)®BL , =BL " 

so that in this case the SDR and the BL,-valued de Rham 
cohomology are different. Then Theorem 4.2 implies 
HI(M,[§O) =1=0. 

Example 6.2: Here M = T2 X R2, where T2 is the two­
dimensional torus. Here M is endowed with a structure of 
( 1,1) -dimensional GH"" supermanifold, with L = 2, 
L I = 1. If z, 5 are local real coordinates in T2, and u, t, real 
coordinates in R2, we put in M local B L -valued coordinates 
x = Z + U/33' Y = 5/31 + t/32' A direct computation shows 
that the global GH'" functions on M have the form 

f = a + y/31 + [ua' - tp, ]/33' (6.2) 

where a, y, and p, are periodic real valued functions of z and I 

denotes differentiation. So we have 

[§o(M) = coo(SI) EB [Coo(SI) ®/3d EB [C""(SI) ®/33] 

equipped with the structure of B L' module given by the 
wedge product of elements of the form (6.2) by elements of 
B L '. Standard computations show that 

,q'1(M) = Coo (S I) EB [C 00 (8 I) ®/3d EB [R®/32] 

EB [COO(8 1) EBR] ®/33' 

f!jj1(M) = CO'(SI) EB [CO'(SI) ®/3d EB [C ""(8 1) ®/33)' 

where CO' (S I) den<?tes the space of functions in COO (S I) 
whose integral over 8 1 vanishes. Taking the quotient gives 

H~DR(M) =BL , 

where B L has its canonical structure of B L' module. On the 
other hand, one has 

HbR (M) ®BL , = Be EBBL " (6.3) 

so that, acording to Theorem 4.2, we must have 
H I(M,[§o) =1=0 again. 

Example 6.3: The same underlying real manifold as in 
Example 6.2 but with a different GHOO structure, obtained 
by letting x = z + 5/33'Y = U/31 + t/32' Now a global function 
on M has the form 

f = KI + [a + K2u ]/31 + K2t/32 + ty/33' 

where K 1, K2 are real constants and a, yare real valued 
periodic functions of z, so that 

[§o(M) = REB [C 00 (S I) ®/31 J EB [R ®/32] 

EB [coo(SI) ®/33]' 

An explicit computation shows that ,q'1(M) = [§o(M) as 
B L' modules and that 

f!jj1(M) = [CO'(8 1) ®/3d EB [R®/32] EB [C""(8 1) ®/33], 

whence 

H~DR(M) =BL , 

with its natural structure of B L' module. Obviously, the B L ' -

valued de Rham cohomology of M is given by Eq.(6.3) 
again. 

The supermanifolds in Examples 6.2 and 6.3 have the 
same underlying real manifold, but their SDR cohomologies 
are different. Therefore SDR cohomology is neither a topo­
logical nor a real differentiable invariant, while, according to 
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Theorem 4.1, it is a superdifferentiable invariant; so it carries 
information about the superdifferentiable structure of a su­
permanifold. 

VII. FINAL REMARK 

In this paper we have considered the category of super­
manifolds defined in terms of GHOO functions, because in 
that case the modules of derivations off unctions are free and 
the differential geometry of supermanifolds can be studied in 
terms of local coordinates. However, one can stick to the 
choice of G"" functions originally introduced by Rogers,6 
and all the results of this paper are still true, provided that L ' 
is everywhere replaced by L. 
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APPENDIX: GHoo POINCARE LEMMA 

Though the statement and the proof of Poincare's 
lemma for GHoo forms are a straightforward adaptation of 
the classical result, for the sake of completeness we report it 
here. 

Lemma A.I: Let Ube a star-shaped open subset of B ;:,n, 
and let w be a closed GH'" p-form on U, p> 1. There is a 
GH'" (p - I)-form TJ on U such that w = dTJ. 

Proof' We may assume that U is star-shaped with re­
spect to O. Define a homotopy operator K: [§ p ( U) 
..... [§P- 1 (U) as follows: if w = dxAp 1\ ... I\dx4' 
XWA "'A (x), withxEU, and A; = 1"'m + n, , p 

Kw = ( - l)pp dxAp-'I\'" I\dx4' xB 

X t tP-1WBA ".A (tx)dt. Jo I p-I 

A direct computation yields dKw + Kdw = w; moreover it 
is easily shown that Kw is GH"" . Then setting TJ = Kw one 
gets the proof. 0 
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The necessary and sufficient conditions for a canonoid transformation with respect to a given 
Hamiltonian are obtained in terms of the Lagrange brackets of the transformation. The 
relation of these conditions with the constants of motion is discussed. 

I. INTRODUCTION 

The usual Hamiltonian description of mechanical sys­
tems with N degrees offreedom is formulated in a 2N-dimen­
sional space, the phase space, where (q;,p;), i = 1, ... ,N, 
specify the canonical variables. Alternatively one can intro­
duce a compact notation in which (q; ,Pi ) are treated as com­
ponents S/1-; jl = 1, ... ,2N, of a single entity S= (SI'''',SN' 
SN + I , .. ·,S 2N) == (ql,· .. ,qN,PI,,,,,PN)· In this notation theca­
nonical equations of motion corresponding to a given Hamil­
tonian H(q,p,t) = H(S,t) are written as 

ta =Ya{3H,{3' (1.1 ) 

where H,{3 = aH /as{3 and 

( 1.2) 

such thae,2 

Ya{3 'Yav = tJ{3v' (1.3 ) 

Ya{3 + Y{3a = O. (1.4) 

Also, given any two dynamical variables R (S,t), S(S,t) the 
Poisson bracket (PB) is defined as 

[S,R ls = S,a Ya{3 R,{3' ( 1.5) 

In this equation and everywhere in this paper we denote 
a¢/aSa by ¢,a for any function ¢. 

Now, given a Hamiltonian description (S,H) let 

1/a = 1/a (S,t) ( 1.6) 

be an invertible transformation on phase space. This trans­
formation is called canonoid with respect to H(S) if there 
exists a function K( 1/,t) such thae,3 

aK 
1/a = Ya{3 -a . 

1/{3 
( 1.7) 

For N = 1 it was recently shown4 that (1.6) represents a 
canonoid transformation with respect to H(S) if and only if 
the PB [1/a, 1/{3 ls' a,/3 = 1,2, is a constant of motion for the 
(s,H) system. 

The main goal of the present paper is to discuss the gen­
eralization of this result for systems with N> 1 degrees of 
freedom. As we shall prove, the foregoing result is a peculiar­
ity of one-dimensional systems not being necessarily correct 
in the general case. In Sec. II we show that a generalization 
to N~ 1 of the result from Ref. 4 leads to a necessary but not 
sufficient condition for a canonoid transformation. The nec­
essary and sufficient conditions are obtained in Sec. III in 
which we also establish a systematic procedure of construct-

ing a canonoid map for a given Hamiltonian function. The 
main results of this section are resumed in the form of two 
theorems. In Sec. IV we give some applications. 

II. NECESSARY CONDITIONS FOR A CANONOID 
TRANSFORMATION 

Given a Hamiltonian system (S,H) we can look at Eqs. 
( 1.6) as defining a set of 2N dynamical variables. Hence 
setting 

Aa{3 = [1/a ,1/{3 ] s (2.1 ) 

we can use the Poisson bracket theorem I writing 

Aa{3 = [ha,1/{3]s + [1/a,h{3]s' (2.2) 

where the dot over a letter has its usual meaning of indicating 
time derivative and Greek indices a, /3, jl, v, ... will be as­
sumed to range from 1 to 2N. In what follows we shall also 
assume the summation convention for repeated indices. Us­
ing definition (1.5) we have 

. aha ah{3 
A {3 =--A (3 ---A 

a a1/v v a1/v va 

from which we obtain 

Ya{3 Aa{3 = B{3v Av{3' 

where 

(2.3) 

(2.4) 

Now let us assume that Eqs. (1.6) stand for a canonoid 
transformation (CT), with respect to H(S,t). In this case 
there will exist a function, say K( 1/,1), the new Hamiltonian, 
such that Eqs. (1.7) hold, and from Eq. (2.3) we obtain 

Ya{3Aa{3 = 0, (2.5) 

which means that the trace of IIYa{3A{3v II is a constant of 
motion for the (S,H) system, i.e., 

Ya{3 Aa{3 = constant of motion. (2.6) 

Thus (2.6) is a necessary condition for the map S~1/ to be a 
CT. But it is not sufficient: the validity of (2.6) does not 
imply (for N > 1) the existence of K( 1/). Note that for N = 1 
we obtain B 12 = B21 as a consequence of (2.6) and from the 
definitions (2.4) the existence of some K ( 1/) function fol­
lows. Thus for one-dimensionalsystems conditions (2.6) are 
necessary and sufficient for a CT. Indeed, in the most com­
mon usage Sa -- (qitP;), 1/a -- (Q;,P;), i = 1, ... ,N, condition 
(2.6) reads 
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N 

L [Qj'Pj ] (q.pl = constant of motion, 
j=l 

(2.7) 

which for N = 1 reduces to the previously mentioned result 
of Ref. 4. 

Summing up the foregoing results we can say that condi­
tion (2.6), although necessary, is not sufficient to guarantee 
the "canonoidicity" of a transformation and the result of 
Ref. 4 cannot immediately be extended for the N> 1 case. 
This will be done in the next section. 

III. NECESSARY AND SUFFICIENT CONDITIONS 
FOR ACT 

In order to discuss the characterization of a CT let us 
consider more fully the objects Bap defined in (2.4). For 
simplicity we restrict ourselves to time-independent invert­
ible maps, 

(3.1 ) 

We start by considering (3.1) as a set of CT for a given 
Hamiltonian H(t). In this case there will exist some K( '/]) 
such that Eqs. (1. 7) hold. Using those equations we obtain 
B,..v = O. For the converse, i.e., starting with B,..v = 0, it fol­
lows from (2.4) that 

atPp atPv 
--=--, 
a'/]v a'/]p 

where tPP = Yap~a. Hence, as is well known, there exists a 
function, say K('/]), such that 

aK 
tPp=-, 

a'/]p 

and Eqs. (1.7) follow immediately. Thus we have shown 
that for aCT wehaveB,..v = OandconverselywhenB,..v = 0 
Eqs. (3.1) stand for a CT. 

Now, in contrast to the canonical transformations a CT 
requires the specification of a Hamiltonian, and so this Ham­
iltonian is an important piece in the analysis of a CT on phase 
space. Indeed, if one looks at Eqs. (3.1) as defining 2N dy­
namical variables for a given (t,H) system one can write, 
from (1.1), 

~a = '/]a.,..Y,..pH.p. (3.2) 

Using these relations it is not difficult to obtain the result 

B,..v '/]v,a '/],..,/3 = taP - tpa , (3.3) 

where 

taP =Pa.p , (3.4) 

Pa = la,..y,.."H.", (3.5) 

laP = {ta,tP}1j = '/],...aY,..v'/]v,/3 = -lfJa· (3.6) 

Notice that lap defined by (3.6) are the so-called1
•
2 La­

grange brackets of the t 's with respect to the '/]'s. Now, due to 
the assumption ofinvertibility of (3.1) we can rewrite (3.3) 
as 

(3.7) 

Thus from (3.3) and (3.7) it is easily verified that the sym­
metry of the objects taP implies a CT and vice versa. Hence 
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Eqs. (3.1) will correspond to a CT for a given (t,H) system 
if and only if 

(3.8) 

This result is related to the one obtained in the previous 
section. In fact, the general result expressed by Eq. (2.3) can 
be rewritten as 

(3.9) 

after using (3.7). Thus, as before, but now based on condi­
tions (3.8), we see that for a CT the trace of II YapA pv II is a 
constant of motion but not vice versa, i.e., condition (2.6) 
did not necessarily imply a CT. 

Conditions (3.8) can be exploited to shed some light 
upon the question of relating constants of motion of a given 
mechanical system to CT. To this end, using (3.4) and (3.5) 
we first rewrite (3.8) as 

(/"'P'v + lpv.,.. )YppH.p + If.lPYppH,/3v 

-lvpYppH.p,.. =0. (3.10) 

From definitions (3.6) it is easy to verify the following prop­
erty for the Lagrange bracket laP: 

laP.v + IPv.a + l"a.p = O. (3.11 ) 

This result permits us to conclude the existence of 2N func­
tions g,.. (t) such that 

laP =ga.p -gp.a· (3.12) 

Then, using (3.11) and (3.12) in (3.10), we obtain after 
some manipulation, 

(g,..).v - (gv).,.. + R,...v - Rv.,.. =.P,...v - pv.,.. = 0, 
(3.l3 ) 

where 

(3.14) 

Equations (3.l3) are more than only a new version of 
conditions (3.8) in the sense that they allow us to more easi­
ly treat the problem of constructing a CT for a given H(t). 
We have the following procedure: for any set of2N dynami­
cal variables g,.. (t) satisfying (3.l3) the corresponding 
t-.::t.'/] mapping is obtained by solving the N(2N - 1) first­
order partial differential equations for '/]a (t) which, in turn, 
is obtained from (3.6) and (3.12). Of course this could still 
be rather complicated in some cases but we can restrict our­
selves to transformations under which the coordinates in 
configuration space are preserved, the so-called fouling 
transformations,5 which considerably simplify the problem. 
Indeed, for fouling transformations we have 

(3.15 ) 

(3.16) 

with i = 1,2, ... ,N, thus reducing to N the number of un­
known quantities. 

We also note that for any suitable set g,.. (t) satisfying 
(3.l3) we can associate infinitely many other sets letting 

( 3.17) 
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with X = XeS) arbitrarily chosen functions. This result 
comes from the invariance ofEqs. (3.12) and (3.13) with 
respect to (3.17) and, following the usual notion, defines a 
gauge for the problem. It is also interesting to observe that 
the gauge-transformation set is the intersection between 
fouling transformations and canonical transformations 
(which implies laP equals numerical constants), both con­
stituting subclasses of the CT.s 

Equations (3.13) admit a simpler and more interesting 
class of solutions than those corresponding to dynamical 
variables. In fact if we select gp (5) as constants of the mo­
tion for the (s,H) system in such a way that 

(3.18 ) 

the necessary and sufficient conditions for a CT will be ac­
complished. Hence we have the following theorem. 

Theorem I: Let Sa be a set of general coordinates on 
phase space and (s,H) a Hamiltonian description of some 
mechanical system with N degrees offreedom. Letgp (5) be 
a set of 2N constants of motion for this system and l1a (5) 
invertible time-independent transformation on phase space 
constructed so that 

This transformation will be canonoid with respect to H (5) if 
the conditions 

Rp,v = Rv,p 

are fulfilled. 
The procedure of explicitly obtaining the CT map after 

the gp (5) family of constants is determined follows the same 
steps as the one described for dynamical variables. On the 
other hand our technique limits the gp family to constants 
which do not depend explicitly on time. This, in some cases, 
could become a severe restriction but, fortunately, there is no 
need of keeping gp = gp (5)' The more general gp (s,t) can 
be used in writingEqs. (3.12). In this case conditions (3.13) 
are changed to 

(gp ) ,v - (gv) ,p + gv,pt - gp,vt + Rp,v - Rv,p 

=Pp,v -Pv,p =0 (3.19) 

so that in addition we must impose the conditions 

gv,pt =gp,vt (3.20) 

in order to constitute the gp family of Theorem I. These 
conditions mean that 1a{3 will not explicitly depend on time 
thus agreeing with our initial assumption, namely Eqs. 
(3.1). 

There exists an alternative procedure of treating the 
present problem in which we need not worry about the func­
tionsgp (5), but may directly use the elements lap. Actually, 
defining the quantities 

mpv = IppYppH,pv (3.21) 

it is not difficult to set (3.13) in the following form: 

ipv + mpv - mvp = Pp,v - Pv,p = O. 

Hence we have the following theorem. 
Theorem II: Let Sa be a set of general coordinates on 

phase space and (s,H) a Hamiltonian description of some 
mechanical system with N degrees of freedom. 
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Let l1a (5) be an invertible time-independent transfor­
mation on phase space so that 

laP = l1p,aYpvl1v,/3' mpv = IppYppH,/3v. 

This transformation is canonoid with respect to H (5) if and 
only if 

ip.v + mpv - mvp = O. (3.22) 

It is Theorem II that corresponds to the generalization 
to the N> 1 case of the result presented in Ref. 4 for N = 1. 
Indeed for the particular case N = 1 we have m 12 = m21 so 
that it follows from (3.22) that 112 is necessarily a constant of 
motion. We also have 112 = A 12 for N = 1. 

We point out that if lpv are numerical constants [i.e., 
gp (5) are linear on the 5 's] the corresponding map 5 +=t 11 will 
be canonoid with respect to H(s) if and only if mpv = mvp ' 
The particular choice Ipv = Ypv is a solution of (3.22) inde­
pendent of the initial Hamiltonian function H (5): the corre­
sponding map is a canonical transformation which is a sub­
class of the CT. 

Another class of particular solutions is obtained when 
Ipv are constants of the motion for the (s,H) system and 
mpv = mvp ' The resulting CT map turns out to be rather 
cumbersome. This and the foregoing results are discussed in 
the next section where some examples are presented. 

IV. EXAMPLES 

To avoid unimportant calculations which only obscure 
the main point we shall restrict ourselves to the case N = 2. 
As a first example consider 

H = aS I +Ps2 + (1!2m)(s~ + S~), (4.1) 

where a, P are numerical constants. In this case we have 
RI = 0, R2 = 0, R3 = m-Ig l , R4 = m- lg2. A set ofgp con­
stants of motion satisfying (3.13) is 

gl=PS4+P 2t, g2=PS3-aS4, g3=0, g4=0. 

Restricting ourselves to fouling transformations, 111 = 51, 
112 = 52, 113 = II (5),114 = J;(s), the corresponding differen­
tial equations for the unknown/; (5) are 

11,2 -/2,1 = 0, 11,3 = 0, 

iI,4 = p, 12,3 = P, 12,4 = - a. 

Thus one possible CT is 

111 = 51' 112 = 52' 113 = PS4 + ! S~, 
114 = PS3 - aS4 + 5152' 

and the fouled Hamiltonian is easily found to be 

K = (1!2mp> (2mp 3 - 2112113 + 11~ )111 

+ (1!8mp2)(al1~ - 4a113 - 4(3114) 11~ 

+ (1!2mp 2) (a113 + 2{3114)113' 

As a second example consider the two-dimensional iso­
tropic simple harmonic oscillator (2 DISHO). The Hamil­
tonian is 

H=!(si +s~ +s~ +S~)· 
Forg l = 3s3,g2 = S4,g3 = S2,g4 = 51' conditions (3.13) are 
satisfied and lpv are numerical constants. A fouling canon­
oid transformation corresponding to this choice is 
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1]1 = 51' 1]2 = 52' 1]3 = 253 - 54 + 5152' 

1]4 = 54 - 53 + g L 
and the fouled Hamiltonian is found to be 

K = !(1]1 + 21]2)1]f + !(2 -1]3 - 21]4 + 1]~ )1]i 

+ ! (1]~ + 1]~ + 21]~ ) 

- (1]3 + 1]4 + 1)1]11]2 + 1]31]4' 

A rather complicated fouling transformation is obtained 
when one decides to specify Il'v as constants of motion. For 
instance, with 112 = 0, 113 = !(5i + 5~), 114 = 0, 123 = 0, 
124 = !(5~ + 5~), 134 = 0, all the requirements of Theorem 
II are fulfilled and a fouling CT for this case is 

1]1=51' 1]2=52' 1]3=!5i53+i5L 

1]4=!5~54+i5!, 

for which the inverse map is 

2372 

51 = 1]1' 52 = 1]2' 53 = b [(u + 2) 1/3 - U1/3 ], 

54 = a[ (v + 2) 113 - vI/3 ], 

J. Math. Phys., Vol. 28, No.1 0, October 1987 

where 

a3 = 31]4' b 3 = 31]3' a3v = (a6 + 1]~) 1/2 _ a3, 

b 3U = (b 6 + 1]~) 1/2 _ b 3. 

The corresponding fouled Hamiltonian is given by 

K=~(1]i +1]i) - (a4/8) 

X[VI/3 (v+4) + (V+2)1/3(V-2)] 

- (b 4/8)[u I/3 (u+4) + (U+2)1/3(U-2)]. 

Despite its complicated form this Hamiltonian function also 
describes the 2 DISHO. 
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It is shown that every Lorentz transformation can be decomposed into a helicity-preserving 
transformation that changes the momentum of a free particle and a helicity-changing 
transformation that leaves the momentum invariant. Since momentum-preserving 
transformations constitute a subgroup of the Lorentz group, helicity-preserving 
transformations form a coset space. It is shown further that, for massive particles, every 
Lorentz transformation can be decomposed into the Wigner rotation and helicity-preserving 
transformations. For massless particles, every Lorentz transformation can be decomposed into 
the gauge transformation and helicity-preserving transformation. The gauge transformation in 
this case is a Lorentz-boosted Wigner rotation. 

I. INTRODUCTION 

In his 1957 paper on relativistic invariance and quan­
tum phenomena,1 Wigner noted that there are Lorentz 
transformations that preserve helicity and those that do 
not.2 He suggested that the difference between these two 
different sets of transformations may play an important role 
in understanding the internal space-time symmetries of ele­
mentary particles, particularly the symmetry of massless 
particles as a limiting case of the space-time symmetry of 
massive particles. 

In his earlier work,3 Wigner studied systematically the 
subgroups of the Lorentz group that leave the four-momen­
tum of a given particle invariant. These subgroups, which 
are called the little groups, have been extensively discussed 
in the literature. 4,5 The transformations of the little group do 
not leave the helicity invariant. 

Since the little group is a subgroup of the Lorentz group, 
it is of interest to study the cosets of this subgroup. We are 
particularly interested in the physical quantity that remains 
invariant under the transformations of these cosets. 

We shall show in this paper that the transformations of 
these cosets leave the helicity invariant while changing the 
momentum. We shall therefore establish the following 
theorem. Every Lorentz transformation can be decomposed 
into a momentum-preserving transformation and a helicity­
preserving transformation. This theorem is applicable to 
both massive and massless particles and to the case in which 
the massless limit is taken from a massive case. 

As Wigner pointed out in 1957,1 a boost along the direc­
tion perpendicular to the momentum does not preserve the 
helicity. We shall show in this paper that this transformation 
can be decomposed into a helicity-preserving transforma­
tion and a momentum-preserving transformation. The heli­
city-preserving transformation in this case consists of a boost 
along the direction of momentum and a rotation around the 
axis perpendicular to both the momentum and the direction 

of boost. The momentum-preserving transformation is an 
element of the little group. This can be done for both massive 
and massless particles, and the massless case is a special case 
of the massive case. 

The organization of this paper is very similar to that of 
our previous paper,6 but the Lorentz kinematics is different. 
The kinematics of the present paper is designed to illustrate 
fully the set of helicity-preserving transformations. 

In Sec. II, we construct a Lorentz kinematics that en­
ables us to write an arbitrary Lorentz transformation as a 
product of a helicity-preserving transformation and a mo­
mentum-preserving transformation. In Sec. III, the kinema­
tics constructed in Sec. II is compared with the traditional 
approach to the 0 (3) -like little group for massive particles. 
The role of the Wigner rotation is studied in detail. We study 
also the role of the Wigner rotation in the zero-mass limit. It 
is shown that, in this limit, the little group becomes a group 
of gauge transformations applicable to massless particles 
with spin 1. In Sec. IV, we study the conclusions ofSecs. II 
and III using the SL(2,c) formalism for spino! particles. 

II. DECOMPOSITION OF LORENTZ 
TRANSFORMATIONS 

Ifwe perform a Lorentz transformations on a free parti­
cle with definite helicity, this applies to the helicity as well as 
the four-momentum. Lorentz boosts along the direction of 
momentum changes the magnitude of momentum but leaves 
the helicity and the direction of momentum unchanged. Ro­
tations around the momentum leave both the helicity and 
the momentum invariant. Other rotations change the direc­
tion of momentum, while preserving the helicity and the 
magnitude of momentum. These transformations form a set 
of helicity-preserving transformations. They are capable of 
transforming the momentum to every possible value in the 
three-dimensional momentum space. 1,2 

Let us start with a particle at rest with mass m and its 
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FIG. 1. Lorentz boost along the x direction. The four-momentump can be 
boosted to p' either directly by B. or through the rotation Ry preceded by 
Bz along the z direction. These operations produce two different effects 
when applied to the internal space-time coordinates. This figure appears 
identical to Fig. 1 of Ref. 10, but there is one important difference. This 
figure is applicable also to massive particles, and allows the Lorentz boost 
A z (a). 

spin in the z direction, and then boost this particle along the z 
direction with velocity parameter a, as is illustrated in Fig. 1. 
In the four-vector convention: xl' = (x,y,z,t), the resulting 
four-momentum p is 

pl'= (O,O,ala,1/a), with a= (1_a2)1/2. (1) 

The matrix that boosts the rest state four-momentum to the 
above form is 

o 
1 

o 
o 

o 
o 

1/a 

ala 
a~a)' 
1/a 

(2) 

After this boost, the particle is in the positive helicity state. 
We can boost this particle with nonzero momentum 

along the z direction without changing the helicity. We can 
also rotate the system without affecting the helicity. We can­
not, however, boost the system along the direction perpen­
dicular to the momentum without changing the helicity. In 
this case, both the momentum and helicity become changed. 
We propose to write this transformation as a product ofheli­
city-preserving and momentum-preserving transforma­
tions. 

Let us take this perpendicular direction to be the x direc­
tion, and boost the four-momentum of Eq. (1) along this 
direction with velocity parameter /3, 

p' = Bx (/3)p, (3) 

where 

C
h 0 0 P~h) 

Bx (/3) = ~ 1 0 
0 o ' 

/3/b 0 0 1/b 

(4) 

with b = (1 - /3 2) 1/2. This is not a helicity-preserving trans­
formation. 

The boost Bx (/3) is not the only transformation that 
changes the four-momentump to p'. As is illustrated in Fig. 
1, we can boost p along the z axis first so that its speed (or 
magnitude of momentum) is the same as that of p', and then 
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rotate this boosted vector until its direction coincides with 
that ofp', 

p' = (Ry (a,/3)Bz (a,/3»)p. (5) 

Since rotations and boosts along the direction of momentum 
preserve the helicity, the above transformation is a helicity­
preserving transformation. The explicit forms for the matri­
ces are 

and 

o 
1 

o 
o 

o 
o 

(1- al)la2b 

(I - a)la2b 

° /311 Chi! 
R,(ap) ~ -:I! 0 

0 abll 

° 0 
where 

V' 
1= (1_a2b 2)1/2= (a2 +/3 2_a2/3 2)112. 

(7) 

The boost velocity of Bz is (I - a) I (1 - a/). The rotation 
angle of Ry is 

O=sin- 1(/3II)· (8) 

We have seen above that p can be transformed to p' in 
two different ways. However, these two transformations do 
not produce the same result when applied to the internal 
space-time symmetry space. The best way to see this differ­
ence is to construct the closed-loop transformation, 

Dx (a,/3) = [Bx (/3)] - IRy (a,/3)Bz (a,/3) , (9) 

described in Fig. 2. The result of the above matrix multipli­
cation is 

Wigner RotatiOn) 

L:i 
-I L .. {Azl Bz 

{Azl 

FIG. 2. The difference between the two transformations illustrated in Fig. 1. 
The difference can best be described by the closed-loop transformation 
[(B. (P»)-'Ry (a,/:J)Bz (a,/:J) ]. This closed-loop transformation leaves the 
four-momeritump invariant, and is therefore an element ofWigner's 0(3)­
like little group if the particle mass does not vanish. According to Wigner's 
original version of kinematics, we bring the particle to the rest state by ap­
plying the inverse of the boost operator Az (a). We can then perform a 
Wigner rotation without changing the momentum of the rest particle. We 
then apply Az (a) to the rest particle in order to increase its momentum to p. 
This procedure does not change the four-momentum, but performs nontri­
vial transformations on the internal space-time structure of the particle. 
However, this traditional kinematics is possible only for particles with non­
zero mass. On the other hand, the closed-loop kinematics is possible for 
both massive and massless particles. 
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( 

a/I 

Dx (a,/3) = _ ~ /1 

-a/3/1 

o 
1 
o 
o 

/3/1 
o 

a(1 - a/)/a21 

a(a - 1)/a21 

-a/3/1 ) 

a(1 _Oa)/a21 . 

(I - a 3 )/a2
/. 

( 10) 

When applied to the four-momentum p, this matrix leaves it 
invariant, 

p = Dx (a,/3)p. (11) 

Therefore, the above four-by-four matrix is a representative 
of the little group that leaves the four-momentum p invar­
iant. 

Let us now writeBx ofEq. (4) as 

Bx = [RyBz (Bz ) -1(Ry ) -1]Bx· (12) 

Then the right-hand side of the above equation can be rear­
ranged, and 

Bx = RyBz [(Bx) -IRyBz ] -I 

= (Ry (a,/3)Bz (a,/3) )(Dx (a,/3») - I. (13) 

The transformation (RyBz ) is a helicity-preserving transfor­
mation, but changes the momentum. D -I is also a represen­
tative of the little group, but it can change the helicity. 
Therefore, Bx can be decomposed into a helicity-preserving 
transformation which changes the momentum and a mo­
mentum-preserving tranformation which changes the heli­
city. 

In Eq. (13), (Dx) -I is a representative of the little 
group, and (RyBz ) is an element of the left coset consisting 
of a helicity-preserving transformation. Equation (13) can 
be written in terms of the right coset, 

Bx = (RyBz )(Dx) -I (RyBz ) - I (RyBz ) 

= (RyBzD x-I B z-I R y-I) (RyBz ). (14) 

The transformation (RyBzD -IB z- IR y- I) is a representa­
tive of the little group which leaves the four-momentum p' 
invariant. 

III. MASSIVE AND MASSLESS PARTICLES 

The kinematics presented in Sec. II is applicable to both 
massive and massless particles. For massless particles, this 
kinematics has been discussed in the literature.5 For a mas­
sive particle, the D matrix of Eq. (10) is a representative of 
the 0 (3) -like little group. Wigner's original kinematics for 
this little group is the three-dimensional rotation in the Lor­
entz frame where the particle is at rest, 3 

(15) 

where R w (<I» is a rotation matrix. This means that the par­
ticle is brought to its rest frame and then is rotated before it is 
brought back to its original frame, as is indicated in Fig. 2. 
The rotation at the rest frame is called the Wigner rotation. 6. 

7 

If the transformations are performed on the xz plane, as 
in the case of Sec. II, R w (<I» represents a rotation matrix 
around the y axis, 

RW=( CO~<I> 
- s~n <I> ~ co~ <I> 

o sin <I> 

~) o . 
1 

(16) 
1 o 
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rj----------------------------------------
This rotation matrix leaves the four-momentum invariant in 
the Lorentz frame in which the momentum is zero. How­
ever, this rotation changes the direction of spin. Thus the 
Wigner rotation is not a helicity-preserving transformation. 

If the transformation ofEq. (11) is equivalent to that of 
Eq. (15), we should be able to write 

Dx(a,/3) =Az(a)Rw(<I»[Az(a)] -I, (17) 

and the following similarity transformation on Dx (a,/3) 
should produce the Wigner rotation matrix: 

Rw(a,/3) = [Az(a)] -ID(a,/3)Az(a). (18) 

The resulting matrix is indeed of the form of Eq. (16), and 
the Wigner angle is determined from the parameters a and 
/3, 

<I> = sin -I (/3a/l) 

= sin- I(f3( 1 - a 2 ) 1/2/[a2 + /3 2 - a 2/3 2 ] 112). (19) 

The D transformation is therefore a Lorentz-boosted 
Wigner rotation. 

For the case of massive particles, every Lorentz trans­
formation can be written in terms of the Wigner rotation and 
helicity-preserving transformations, since we can replace 
D - I in Eq. (13) by the inverse of the expression given in Eq. 
(17), 

Bx = (RyBz)(Az(a)R w( -<I»Az-I(a») 

(20) 

The transformation (BzA z ) is a boost along the direction of 
momentum. Every transformation, except R w' on the right­
hand side of the above expression is a helicity-preserving 
transformation. 

Let us next address the question of whether the 0 ( 3 )­
like little group becomes the E(2)-like little group in the 
a -+ 1 limit. This has been discussed in terms of the singular 
transformation known as the Inonu-Wigner group contrac­
tion.8

•
9 The parameter a that we use here is not the param­

eter in the Lie group upon which the group contraction 
method is based. It is therefore not surprising to see that 
every element in Dx ofEq. (10) is analytic in a at and near 
a = 1.6 

For this reason, we do not have to make any special 
effort to take the limiting process. At a = 1, the D matrix 
takes the form 

o /3 
1 0 
o 1-/3 2/2 
o -/3 2/2 

(21) 

This matrix as an element of the E(2)-like little group was 
given in Wigner's original paper,3 and discussed repeatedly 
in the literature since then as a gauge transformation ma­
triX.5

•
1O However, there is one difference. The magnitude of 

/3 cannot exceed one in Eq. (21), while the parameters in the 
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150' f3 = 0,6 

120' 

60' 

0,2 0.4 0,6 0,8 1,0 
a 

FIG, 3, The Wigner angle and the angular separation between the direction 
of the momentum and that of the spin in the SL (2,c) regime as functions of 
p for a given value of (t, As P - I, the particle speed approaches that oflight, 
and 8+ vanishes, but 8_ becomes 180', 

E(2)-like little group can be made arbitrarily large. We can 
bridge this gap by observing the fact that the D transforma­
tion can be repeated in the following manner: 

(22) 

The parameter fJ in Eq. (21) can be replaced by 
(fJI + fJ2 + ... ) which can become arbitrarily large. II 

The expression given for D in Eq. (17) is still valid, and 
the Lorentz boosted Wigner rotation is a gauge transforma­
tion.6 As is indicated in Fig. 3, the Wigner rotation angle <I> 
vanishes as a -+ 1. However, the parameters in the boost ma­
trixAz become infinite to make the elements oftheD matrix 
remain finite. 

IV. PARTICLES WITH SPIN 1 
The purpose of this section is to study what we did in 

Sees. II and III in terms ofSL (2,c) for spin-! particles. While 
the generators of rotations in SL( 2,c) are S; = !O";, the boost 
generators can take two different signs: 
K; = ( ± ) U/2)0";.5,6 

Let us start with a massive particle at rest, and the usual 
normalized Pauli spinors X + and x_for the spin in the posi­
tive and negative z directions, respectively. If we take into 
account Lorentz boosts, there are four spinors. We shall use 
the notation X ± for which the boost generators 
K; = U/2)0"; are applicable, and X ± to which 
K; = - (U/2)0";) are applicable. 

The boost matrix that brings the spinor X ± and X ± 

from the zero-momentum state to that of p is 

A; ± lea) = (NO± N°=!,,). (23) 

with 

N± = [(1±a)/(1=F a )]1I4. 

We use the superscripts ( + ) and ( - ) for the undotted 
and dotted spinors, respectively. 

If this matrix is applied to the spinors at rest X ± 

and X ±' 
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X ± (p) =A; + )(a)x ±' and X ± (p) =A ~ - )(a)x ±' 

(24) 

it produces the spinors for the particle with the four-momen­
tump, 

X±(p)=N±X±, X±(p)=N=!"X±. (25) 

The SUbscripts + and - denote in this case positive and 
negative helicities, respectively. 

Let us next boost the above spinors along the x direc­
tion, 

x'± (p') =B~+)(fJ)X± (p), X'(p') =B~-)(f3)X± (p). 
(26) 

The boost matrix takes the form 

B(±) _( ((1 +b)/2b)1I2 
x (fJ) - ± ((1 _ b)/2b )112 

± ((1 - b)/2b )112) 
((1 + b)/2b )112 ' 

(27) 

where b is defined in Eq. (4). The new spinors of Eq. (26) 
can be written as 

x'± (p') =N ±X'±, X'± (p) =N=!"X'±, 

where 

(28) 

, (((1 ± b)/2b )112) ., (± ((1 + b)/2b )112) 
X ± = ((1 +b)/2b )112' X ± = + ((1 +b)/2b )112 . 

This boost is not a helicity-preserving transformation. The 
spin directions represented by the above spinors are 
± sin - I (fJ). These new spinors do not represent the spins 
parallel or antiparallel to the new momentum p'. The angle 
between p' and the z axis is given in Eq. (8). The angle 
between the momentum and the spin direction is 

o± = sin- l (fJ/[a2 +fJ2-a2fJ2 ]112) ±sin-l(fJ), 
(29) 

as is described in Fig. 4. 
The angles 0 + and 0 _ are plotted in Fig. 3 against fJ for 

a fixed value of a. Since we are starting with spins that are 
parallel and antipara1lel to the momentum, these angles are 
zero for fJ = 0. When fJ -+ I, one of the spins become parallel 
to the momentum (0 + -+ 0), but the other becomes anti par­
allel (0_ -+ 180'). 

--x_ x+ 

FIG. 4. The Wigner angle and the angular separation between the direction 
ofthe momentum and that of the spin in the SL(2,c) regime as functions of 
a for a given value of p. As a - I, 8+ becomes zero, but 8 _ does not. This 
non vanishing angular separation is the source of gauge degrees offreedom. 
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ISO· 

150· 

(/)120· a =O.S 

~ 
<t 90. 

60· 

30· 

0.2 0.4 0.6 08 1.0 
f3 

FIG. 5. The angular separation between the direction of momentum and 
that of the spin in the SL( 2,c) regime. As we boost the spinor along the x 
direction, the spin of orientation angle depends only on p, while the direc­
tion of the momentum depends on both a and p. All the spin directions are 
rotated clockwise from those of the helicity states. This is due to the clock­
wise Wigner rotation in the rest frame. 

In order to study the case for massless particles, let us go 
to Fig. 3 where /j + and /j _ are plotted as functions of a for a 
fixed value of /3. Here again, the /j + becomes zero in the 

x 

FIG. 6. Lorentz boost along an arbitrary direction. The procedure devel­
oped in the present paper is applicable to this general kinematics. 

a -+ ± 1 limit, while /j _ does not. Indeed, for one of the two 
spin orientations, every Lorentz transformation is a helicity­
preserving transformation as the momentum/mass becomes 
infinite, as was pointed out by Wigner. 1 However, for the 
other spin orientation, the spin direction never coincides 
with the direction of momentum. This is illustrated also in 
Fig. 5 where the angles are plotted against/3 for a fixed value 
ofa. 

This lack of spin alignment is the origin of the gauge 
degrees of freedom. In order to see this, let us calculate the D 
matrix from the closed-loop kinematics of Fig. 2. Its form is 

( 
f+ lal)1I2 

(±) _ 2j 
Dx (a,/3) - ((1 =fa)(j-Iai) )112 

2(1 ± a) 

(
(1 ± a)(j - lal) )112) 

2(1 =fa)j 

f~ja'y/2 . (30) 

The boost matrix B ~ ± ) (/3) can now be written as 

B ~± )(/3) = (R y (a,/3)B; ± ) (a,/3»)D (± ) (a,/3), (31) 

where [Ry (a,/3)B; ± ) (a,/3)] is a helicity-preserving trans­
formation. Therefore, the spin disalignment is caused by the 
D matrix. In terms of the Wigner rotation, the D matrix is 

D ~ ± ) (a,/3) = A; ± lea) W( - <I>)(Az (a»)-l, (32) 

where 

W <I> = (COS(~/2) 
() sin(~/2) 

- Sin(~/2»). 
cos(~/2) 

(33) 

In the present kinematics, the rotation angle given in Eq. 
(19) is positive. Therefore, the matrix W( - ~) performs a 
clockwise rotation. Figure 4 clearly indicates the effect of 
this rotation. 

In the limit a -+ 1, 

D ~ + ) (1,/3) = (~ -13\ (_) (1 0) 
1 }' D x (1,/3) = \p l' 

(34) 

Here again the parameter /3 can be replaced by u that can 
become arbitrarily large. 

In Sec. III, we noted that the D transformation applied 
to a free electromagnetic four-potential performs a gauge 
transformation. Thus the SL(2,c) spinors are gauge invar­
iant in the sense that 
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D~+)(1,u)X+ =X+, D~-)(1,u)X_ =x-· (35) 

On the other hand, the SL( 2,c) spinors are gauge dependent 
in the sense that 

D~+)(1,u)X_ =X- +uX+, (36) 
D~-)(1,u)X+ =x+ - ux-· 

The gauge-invariant spinors ofEq. (35) appear as polarized 
neutrinos in the real world. As was discussed in the litera­
ture,5,6 it is possible to construct the four-potential from the 
above SL(2,c) spinors. These gauge-dependent spinors give 
rise to the gauge dependence of the four-potential. 

v. CONCLUDING REMARKS 

The starting point of the present work is Wigner's 1957 
paper, 1 in which he suggests the possibility of exploiting the 
difference between helicity-preserving and non preserving 
transformations. Indeed, Wigner's suggestion leads to a 
physical embodiment of the coset expansion of the Lorentz 
group with respect to its little groups. 

In this paper, we specialized in the Lorentz transforma­
tion perpendicular to the momentum. In this case, the set of 
helicity-preserving transformations includes a boost along 
the direction of momentum and a rotation around the axis 
perpendicular to the momentum and to the direction of the 
boost. This is the reason why we had to introduce Lorentz 

Han. Kim. and Son 2377 



                                                                                                                                    

kinematics different from that of Ref. 6. The kinematics of 
Ref. 6, while designed for its own purpose, cannot accommo­
date boosts along the direction of momentum. 

The kinematics of the present paper is a special case of 
the most general kinematics described in Fig. 6. This general 
case includes the Lorentz boost along with an arbitrary di­
rection, in addition to the boost along the perpendicular di­
rection. We can use the procedure established in the present 
paper in order to study the general case with more compli­
cated formulas. However, it will not alter the conclusion of 
the present paper. 
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Generalized Lorentz transformation for an accelerated, rotating frame 
of reference 
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An exact, explicit coordinate transformation between an inertial frame of reference and a 
frame of reference having an arbitrary time-dependent, nongravitational acceleration and an 
arbitrary time-dependent angular velocity is given. This transformation is a generalization of 
the Lorentz transformation and is obtained in two steps. First, the Minkowski metric is 
transformed under an intermediate coordinate transformation to obtain a new set of 
noninertial metric coefficients in which one can easily identify the Thomas precession, as well 
as the expression for the acceleration of the moving frame with respect to the instantaneous 
rest frame in terms of the acceleration as seen from a stationary inertial frame. Second, a 
rotation of axes is performed to absorb the Thomas precession and to add an ordinary spatial 
rotation. The coordinate transformation obtained by combining these effects is nonlinear, since 
certain terms involve time integrals, and leads to the appropriate space-time metric for an 
accelerated, rotating frame of reference. It is shown that the usual forms of the Lorentz 
transformation are contained as special cases of this result. 

I. INTRODUCTION 

In special relativity it is customary to represent an accel­
erated frame of reference by an infinite sequence of comov­
ing inertial frames. Each successive comoving inertial frame, 
or rest frame, is connected to the previous one by an infini­
tesimal Lorentz boost. 1.2 As is well known, when the velocity 
and acceleration are not collinear the axes of the accelerated 
frame do not remain parallel to axes in the stationary frame 
but rather rotate at the Thomas precession frequency.3 In 
the general case the accelerated frame may also have an ordi­
nary spatial rotation. The space-time metric in the acceler­
ated, rotating frame (Xi ,t) with Cartesian spatial coordi­
nates Xi and time t (xo=ct) is4 

gij =oij' 

gOj = (i)kjX
k Ie = (roXr)/c, 

- goo = (1 + W·rle2)2 - (roxr)2le2, 

(1a) 

(1b) 

(1c) 

where W is the time-dependent, nongravitational accelera­
tion of the observer's frame of reference relative to the in­
stantaneous rest frame, r is the position vector locating a 
spatial point with respect to the origin of the observer's ac­
celerated frame, and ro is the time-dependent angular veloc­
ity of the observer's ordinary spatial rotation with respect to 
the rest frame. Historically, accelerated reference frames 
and the Thomas precession have been studied by approxi­
mate methods. 1.2 The coordinates of an accelerated, rotating 
observer have also been studied by the method of Fermi­
Walker transport.5 In this paper an exact, explicit, nonlinear 
coordinate transformation that incorporates the Thomas 
precession and leads to the metric above will be given. 

II. ACCELERATED FRAME OF REFERENCE 

For simplicity, consider first a frame of reference whose 
origin moves along an arbitrary path with velocity and accel-

eration that vary arbitrarily with time but whose axes have 
no ordinary spatial rotation. The metric in this frame is then6 

gij = Oij> 

gOj = 0, 

- goo = (1 + W·rle2)2, 

(2a) 

(2b) 

(2c) 

and the coordinate transformation that leads to this metric is 
to be sought. 

Suppose the instantaneous rest system is defined with 
respect to the stationary frame by a pure Lorentz boost rath­
er than a boost plus a rotation. Then the transformation 
from the stationary inertial frame S" with coordinates 
(X"i ,t") to a comoving inertial frame S' with coordinates 
(X,i ,t '), whose origin has constant velocity Vi=dx"i/dt" in 
S" and is instantaneously at rest with respect to the observ­
er's accelerated frame S with coordinates (Xi ,t) at the ob­
server's proper time t = 'T, is given by (notice that unprimed 
coordinates are reserved for the accelerated frame) 

where 

and 

A~ =0; + (lIV 2 )(y-l)Vi J), 

No = - (lIc)yV i
, 

AOj = -(lIc)YJ), 

AOo= y, 

y=(1- V 2le2 )-1/2. 

(3) 

(4a) 

(4b) 

(4c) 

(4d) 

(5) 

If the velocity V i is regarded as a function of proper time 'T, 

the transformation (3) defines a family of comoving inertial 
frames, each of whose axes are parallel to the axes of the 
stationary inertial frame. However, if the velocity and accel­
eration are not collinear the axes of successive comoving 
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frames will not appear parallel to one another as seen from 
the observer's accelerated frame due to the Thomas preces­
sion. 

In the stationary inertial frame S" the observer's four­
velocity is U"a =.dx"a /dr = (yV i ,cy). Therefore, the 
components of the four-acceleration are? 

d~:i = r[ W"i + :2 r( Vm w"m) Vi], (6a) 

dd
UIIO 

=..!.- r"( Vm w"m), (6b) 
r c 

where W"i=.dVi/dt II = y-l dVi/dr is the acceleration of 
S in S ". Since U" aU"a = - c2 the four-velocity and the 
four-acceleration are orthogonal, i.e., U" a du"a /dr = O. 

In the instantaneous rest frame S I the four-velocity is 
U,a = (O,c). By the orthogonality of the four-velocity and 
four-acceleration, the four-acceleration is of the form 
du,a/dr = (Wi,O). In this frame the observer's three-di­
mensional acceleration Wi is thus the spatial part of the 
four-acceleration. The observer's four-acceleration in the in­
stantaneous rest frame is obtained by applying a Lorentz 
boost 

dU 'i . du"a . 
-- = A'a -- = W', 
dr dr 

dU 'O 0 du"a 
--=Aa--=O. 

dr dr 

ax"k ax,,1 ax"o ax"o 
g .. =----8kl +---- (-1) 

IJ ax i axj ax i axj 

(7a) 

(7b) 

Substituting Eqs. (4) and (6) into Eq. (7a) one obtains 

Wi=r[W"i+ (l/V 2)(y-1)(vmw"m)Vi], (8) 

which gives the acceleration Wi of S in the instantaneous 
rest frame S I in terms of the acceleration W" i of S in the 
stationary inertial frame S " . 

As an intermediate step toward the desired coordinate 
transformation, consider the transformation from the sta­
tionary inertial frame (X'ii ,t") to an accelerated frame 
(Xi,n, 

X"i=X i + iTyVidT+ ;2 (y-1)(VmX m)Vi, (9a) 

t" = (YdT+~Y(Vmxm), (9b) 
)0 c 

where V i and yare functions of time T = t = r. The metric 
transforms as 

(10) 

where TJaf3 is the Minkowski metric. We wish to investigate 
the components of the metric given by Eq. (10) in the frame 
defined by the coordinate transformation given by Eq. (9). 
For J..l = i, v = j, 

=[8~+ ;2 (y-1)Vyk][8j+ ;2 (y-1)JjV
1
]8kl -(+YV;)(+yJj)=8ij' (11a) 

For J..l = 0, v = j, 

ax"k ax,,1 ax"o ax"o 
gOj = axo axj 8kl + axo axj ( - 1) 

=..!.-[YVk+_1_ (y-1)(Vmxm) dV
k 

+_1_ (y_1)(dVm xm)Vk 
C V 2 dr V 2 dr 

+..!.-_l_A.3V dV(V xm)Vk_2_1_V dV (y-1)(V xm)Vk][8~+_1_(Y-1)VVI]8 
c2 V2r dr m V4 dr m J V2 J kl 

= -..!.-Y[ -_l_(y-1)(Vk W". - VW"k)X k ]. 
C V 2 J J 

(lIb) 

ForJ..l =v=O; 
ax"k ax,,1 ax"o ax"o 

-goo = - axo axo 8kl - axo axo ( - 1) 

1 [ kIm dV
k 

1 (dVm m) k 
= - c2 yV + V2 (y - 1) (VmX ) dr + V2 (y - 1) dr X V 

+..!.-_l_A.3V dV (V xm)Vk_2_1_ V dV ( -l)(V xm)Vk] 
c2 V 2 r dr m V4 dr y m 

[ 
I 1 dV

I 
1 (dVn ) I X yV +- (y-1)(Vnxn)_+- (y-1) _xn V 

V 2 dr V 2 dr 
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={1+ :2r[W"k+ :2 (r-1)(vmw"m)Vk ]Xkf- :2r[ - :2 (r-l)(Vkw"m_vmW"k)Xk] 

X[ - :2(r-1)(Vn W" m - Vm w\)xn], (11c) 

where W" k = r- 1 dVk/d1". 
One finds that W"i fromdV i /d1"appears inside the first 

term of Eq. (11c) in the combination of Eq. (8). It also 
appears in Eq. (11 b) and in the second term of Eq. (11c) in 
the combination 

which is the well-known Thomas precession frequency. The 
metric can therefore be written 

gij =8ij' 

gOj = - nkjX k Ie = - (flXr)/c, 

-goo = (1 + Wor/c2) 2 
- (flXr)2/c2, 

( 13a) 

(13b) 

( 13c) 

where n kj = rn" kj" This metric reduces to the metric given 
by Eq. (2) for the observer's accelerated frame (Xi ,t) under 
the coordinate transformation 

Xi=Xi + f(flxr)i dt, 

T=t. 

(14a) 

(14b) 

The appearance of fl X r ingoj and goo is furthermore charac­
teristic of a rotation. From Eq. (12) it follows that there is no 
precession phenomenon when the velocity and acceleration 
are collinear, as is well known. 

The origin of the frame (X i ,n defined by Eq. (9) coin­
cides with the origin of the observer's accelerated reference 
frame (Xi ,t). The origin moves along an arbitrary path in the 
stationary inertial frame (X"i ,t") with velocity Vi that var­
ies arbitrarily with proper time. The axes of (X i ,n appear 
to remain parallel to the axes of (X"i ,t "). However, with 
respect to the axes of (Xi ,t) they appear to rotate with proper 
angular velocity - ni = - !E'mnnmn opposite in sense to 
the Thomas precession. At any given instant of proper time, 
the origin and axes of (X i ,T) coincide with those of the 
instantaneous rest frame (X,i ,t') that moves with constant 
velocity V i relative to (x',; ,t " ). 

The desired coordinate transformation from the station­
ary inertial frame to the observer's accelerated frame must 
include the rotation of axes (14) to account for the Thomas 
precession. Therefore, combining the transformations (9) 
and ( 14), and taking care to include coefficients of X i in Eq. 
(9) inside the integral in Eq. (14a), one obtains 
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X"i=Xi+ f(flXr)idt+ fr Vidt 

1 . + ~ (r- I)(Vm x m )V' 

+ (' -4 (r - 1) Vm (flxr)mv i dt, Jo V 
(15a) 

it 1 it 1 
t" = rdt+-zr(Vmxm) + -zrVm(flXr)mdt, 

o c 0 c 
(15b) 

where V i and r are functions of time t = 1". It is understood 
that the integrals are functions of time only. The metric 
transforms as 

ax"a ax"P 
gp.v = axp. axv TJaP' (16) 

In carrying out the details of the calculation of the metric 
components directly with Eq. (15) one finds that 
dVi/dt = dVid1" = rW"i again appears in the combina­
tions ofEqs. (8) and (12). The kinematics of the accelera­
tion and rotation are thus automatically incorporated into 
the transformation. Equation (15) is the exact, explicit, non­
linear coordinate transformation that transforms the Min­
kowski metric for an inertial frame of reference into the met­
ric given by Eq. (2) for an accelerated frame of reference. 

When the velocity Vi is constant, Eq. (15) reduces to 
the usual Lorentz transformation 

x"i=xi+rVit+ (lIV2)(r-l)(Vmxm)Vi, (17a) 

t" = rt + (1/c2 )r( Vmxm), (17b) 

where the axes of S " and S remain parallel but the direction 
of Vi is arbitrary. Also, as is well known, for motion with 
time-dependent acceleration along thex" axis one may write 
V=ctanh O,r= cosh 0, W=rW" =rdV/dt=cdO/ 
dt, and n = 0, where 0 is the velocity parameter and is an 
arbitrary function of time t = 1". The transformation (15) 
then becomes8 

x" = fc sinh 0 dt + x cosh 0; y" = y; zIt = Z, (18a) 

t" = ('cosh 0 dt + ~ sinh O. Jo c 
(I8b) 

In particular, if the acceleration W is constant the motion 
is hyperbolic. In this case, with the substitution x = x 
+ (c2/W), the metric of Eq. (2) reduces to the Rindler 
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metric9 dS2=dx2+dy2+dz2_C-2(WX)2dt2 for the 
space-time geometry of a uniformly accelerated reference 
frame. 

III" ACCELERATED, ROTATING FRAME OF 
REFERENCE 

Suppose now that the accelerated frame of reference has 
an ordinary spatial rotation with time-dependent angular 
velocity co with respect to the instantaneous rest frame in 
addition to its Thomas precession. Then since the origins of 
the accelerated, rotating frame and the instantaneous rest 
frame coincide, it is only necessary to make the substitution 
0-0 + co in Eq. (14a). One therefore obtains the follow­
ing general coordinate transformation that leads to the met­
ric ofEq. (1): 

X"i=Xi+ f[(O+CO)Xr)i dt 

+ t r Vidt +--4- (r- 1)(Vmx m)Vi 
Jo V 

t 1 . +'Jo V2'(r - 1) Vm [(0 + co) Xr]mv' dt, 

(19a) 

(19b) 

where again Vi and r are functions of time t = T. Upon 
transforming the Minkowski metric with this coordinate 
transformation one finds 

~=~, (~) 

gOj = - (l/c)r[ - (l/V2)(r - 1)( Vk W"j - Jj W" k )Xk] + (l/c)[ (0 + co) xr)j = (l/c)(coXr)j' (20b) 

-goo={l + (lle2 )y2[W"k + (l/V2)(r-1)(VmW"m)VdxkF 

- (l/c2)y2[ - (l/V 2 )(r - 1)( Vk w"m - vmw" k )Xk] [ - (l/V 2 )(r - 1)( Vn W" m - Vm W" n )xn] 

- (1/c2)[ (0 + co) Xr]2 + 2(1/c2 )r[ - (l/V 2)(r - 1)( Vk w"m - vmw" k )Xk][ (0 + co) Xr]m 

as required. 
The coordinate transformation given by Eq. (19) repre­

sents a boost followed by a rotation, as may be made clear by 
defining the rotation operators 

yp~ = 8J + f dt(O + co)/' (21a) 

yp"~ = 8; - t dt(O + co)/ 
Jo 

(21b) 

For infinitesimal rotations YP" = yP -I. If V i is the velocity 
of the accelerated, rotating frame S relative to the stationary, 
inertialframe S" and V" i is the velocity of S" relative to S, 
then 

V"i = - YP"~ vj, 

Vi = - yP~ V"j. 

(22a) 

(22b) 

Therefore, Eq. (19) may be expressed as 

X"i = ypimxm + f r Vi dt - V" m [ :2 (r - l)xmV i], 

(23a) 

t" = f r dt - V" mC2 rxm). (23b) 

where the identity [(0 + co) XV)"r = - [(0 + co) xr]"V 
has been used. Equation (23) has the form of the most gen­
eral Lorentz transformation including rotation. 10 

IV" EQUATION OF MOTION 

For completeness, one may derive the exact equation of 
motion of a particle as seen from the accelerated, rotating 
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(2Oc) 

I 

frame of reference. The differential equation for a space-time 
geodesic implies 

+ (1. r?k dxi dx
k 
+ 2ro dxi + cro )dX

i
. 

c J dt dt jO dt 00 dt 

(24) 

The Christoffel symbols for the metric given by Eq. (1) are 

(2Sa) 

r~ = (11e) [w/ - (l/c2) (1 + W"rle2
) -I JJj (coxr)i], 

(2Sb) 

x [(coxr)"W + (W"r)] (coXr)i}, (2Sc) 

rJk = 0, (2Sd) 

r~ = (l/c2) (1 + W"r/c2 )-IJJj, (2Se) 

r~ = {lle3 )(1 + W"rle2 )-I[(coxr)oW + (Wor)J. (25f) 

Therefore, the equation of motion is 
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ai = - (1 + W'rlc2
) Wi - (ri>xr)i 

- 2(roXV)i - [roX (roXr)]i 

+ (1/c2)( 1 + W·r/c2) -! [2(v + roxr)·W 

+ (W + roXW)·r] [v i + (roxr)i], (26) 

where in Cartesian coordinates Vi = dXi Idt is the velocity 
measured by the accelerated, rotating observer and 
ai = d 2Xi I dt 2 is the coordinate acceleration. 

Equation (26) agrees with an exact result of DeFacio, 
Dennis, and Retzloff!! obtained by using a general coordi­
nate-independent treatment of special relativity. An ap­
proximate form of this equation was obtained using local 
coordinate methods by Ni and Zimmermann!2 who were 
investigating general relativistic corrections to special rela­
tivity; they included gravitational tidal effects expressed in 
terms of the Riemann tensor evaluated along the world line 
of the observer but found no coupling between the gravita­
tional terms and inertial terms to the order calculated. Ref­
erence 11 and the special relativity part of Ref. 12 were later 
shown to be consistent. 13 Li and Ni!4 extended the method of 
Ref. 12 and found that the gravitational-inertial coupling 
only occurs at the next order; they also found an exact 
expression for the inertial terms in agreement with the ear­
lier result of Ref. 11. 

V. CONCLUSION 

An exact, explicit coordinate transformation has been 
presented that yields the exact space-time metric for a flat 
space noninertial reference frame having an arbitrary, time­
dependent translational acceleration and angular velocity. It 
was shown that the usual forms of the Lorentz transforma-
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tion are contained as special cases of this result. The expres­
sion for the Thomas precession frequency and the relation 
between the reference frame's acceleration as measured in 
the instantaneous rest frame and in the stationary inertial 
frame are contained implicitly in the calculation of the met­
ric. Therefore all of the relevant special relativity kinematics 
appear in a self-consistent manner. 

The results of this paper should be useful for practical 
numerical calculations of special relativistic effects, such as 
in an accelerated spacecraft or on the rotating Earth. The 
simple metric coefficients ofEq. (1) and the explicit coordi­
nate transformation of Eq. (19) may be more convenient 
than some of the more formal works referenced here. 
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A state tP on a W*-algebra..-#' is said to fulfill the Jauch-Piron condition if tP(p) = tP(q) = 1 for 
projections p,q~ implies tP (p /\ q) = 1. Here p /\ q denotes the infimum of p and q in the 
projection lattice of..-#'. The Jauch-Piron condition is a compatibility condition between the 
algebraic and the lattice-theoretic approach for the description of physical systems. Normal 
(i.e., u-weakly continuous) states always fulfill the Jauch-Piron condition. It is argued that 
states not fulfilling this condition should be regarded as unphysical. It is shown that a state tP 
on a u-finitefactor..-#' is singular if and only if projections e,fE..-#' exist such that 
tP(e) = tP(f) = 1 and e /\f = O. In particular, any pure state tP on..-#' fulfilling the Jauch­
Piron condition is normal, which implies that the underlying factor..-#' is of type 1. 
Furthermore, the following result is proved: Let tP be apure Jauch-Piron state on W*-algebra 
..-#' with separable predual and without any commutative summand. Then tP is normal and a 
central projection ZoE..-#' exists such that tP(zo) = 1 and zo..-#'zo is a factor oftype 1. Thus, cum 
grano salis, pure Jauch-Piron states exist only on commutative W*-algebras and type I factors. 
The former case corresponds to classical theories, the latter to Hilbert-space quantum 
mechanics. The implications of these results on the interpretation of quantum mechanics are 
discussed. 

I. INTRODUCTION 

Different axiomatic formulations have been found to 
widen the original quantum mechanical formalism and to 
embed quantum mechanics and classical theories into a 
broader structural setting. One may distinguish three main 
approaches: quantum logics, algebraic quantum mechanics, 
and the "convex state approach." In quantum logics and 
algebraic quantum mechanics one starts with "observa­
tions" or "observables" forming a lattice or an algebra (C *­
or W*-algebra), respectively. In the convex state approach 
the physical states of a system to be described are the central 
object of interest. In the former situation an appropriate no­
tion of "state" has to be introduced, in the latter an appropri­
ate notion of observable. 

In algebraic quantum mechanics physical states are 
commonly introduced as normalized positive linear function­
als on the respective algebra. The critical point of such a 
definition is the linearity of the functional. Various attempts 
for its justification have been developed. The most famous 
one is the theorem of Gleason. 1 

In the following, attention will be focused on a particu­
lar algebraic approach, namely W*-algebraic quantum me­
chanics.2

•
3 It is interesting to note that this approach is inti­

mately connected with quantum logics. The set 9 (J() 
def 

= {pE JI [P2 = P = p*} of projections of a W *-algebra J( 
is a (complete, orthomodular) lattice. Its elements can be 
interpreted as the "propositions" or "yes-no questions" of 
quantum logics. It is therefore possible to adopt a characteri­
zation of physical states given by Jauch4 who says: "A state of 

a) Permanent address: Laboratory of Physical Chemistry, ETH-Zentrum, 
CH-8092 Ziirich, Switzerland. 

a system is the set of all 'true' propositions of the system. " 
Recall that a lattice (L,<) is a partially ordered set L 

with a least element 0 and a greatest element 1 such that the 
supremum p V q and the infimum p /\ q of two arbitrary ele­
ments p,qEL with respect to the partial order < exist. An 
orthocomplemented lattice or simply ortholattice (L,<,1) is 
a lattice (L, < ) together with an involutive mapping 1: L -+ L 
such that p /\pl = 0 and p V pl = 1, VpEL, and such that 
p<q implies ql <pl for arbitrary p,qEL. 

In the projection lattice 9 (JI) of a W *-algebra J(,O is 
given by the zero operator and 1 by the unit operator in J(. 
The orthocomplement pl of pe9 (J() is defined as pl 
def 

= 1 - p. Furthermore p<q holds for p,qE9 (JI) if 
pq=qp=p. 

The definition of physical states (with respect to a W*­
algebra J() as given above is formalized as follows5: Consid­
er an orthosublattice T of 9 (J() and an ortholattice homo­
morphism r: T -+ {O, I} into the lattice {O, I} consisting only 
of a least element 0 and a greatest element 1: 

r(p/\q) =r(p)/\r(q), 

r(pVq) =7(p)Vr(q), p,q,E9(JI), 

r(pl) = 7(p)\ pE9 (JI) . 

The couple (T,7) will be called a truth:functional. The prop­
ositions pET with 7(p) = 1 [rep) =0] are considered as 
true (false). A truth functional (T, r) is maximal if there is 
no truth functional (T',r') with T; T' and 7'IT = 7. 
Henceforth physical states of a system described by a W*­
algebra J( will be represented by maximal truthfunctionals 
(T,r), Tr:;;, 9 (JI), 7: T -+{O,I}. Their existence is guaran­
teed by the axiom of choice. 
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II. THE JAUCH-PIRON PROPERTY 

In concordance with mathematical literature the techni­
cal term state will be used for a "normalized positive linear 
functional." To prevent misunderstandings, the word 
"physical state" will henceforth be omitted and replaced by 
(maximal) truth functional. Recall the following defini­
tions.6 

Definition: A state ¢ on a W*-algebra J/ is called nor­
malif ¢(suPIJeJxp) = sUP{JeJ¢(xp) holds for every bounded 
increasing net (xp) {JeJ of positive operators in J/ with su­
premum suppoxp. 

Definition: A state ¢ on a W * -algebra J/ is called singu­
lar if for every pe9 (J/) with ¢(p) #0 there exists a 
qe9 (J/), q#O, q<.p such that ¢(q) = O. 

Starting from a pure state ¢ on a W *-algebraJ/, one can 
eventually construct a maximal truth functional by setting 

def def 

T~ = {pe&'(J/)I¢(p)e{O,l}} and (T,r) = (T~,¢IT~)' 

Consider two examples, referring to classical mechanics and 
Hilbert space quantum mechanics, respectively. 

Example 1: Let ¢ be a pure state on a commutative W *­
algebraJ/. Then ¢ is a character, i.e., ¢(xy) = ¢(x) '¢(y), 
Vx,yeJ/. Consequently, ¢(p) = ¢(p2) = {¢(p)p, 
Vpe9 (J/), and therefore ¢(p)e{O,l}, Vpe&' (J/). For 
p,qe9(J/) one haspAq = pq (since J/ is commutative) 
and ¢(PAq) =¢(Pq) =¢(P)'¢(q) =¢(P)A¢(q). Thus 
(9 (J/), ¢1.9'(..-R» is a maximal truth functional. 

Example 2: Consider a Hilbert space 7t', 5e7t', 
def 

11511 = 1. Let J/ = gj (7t') consist of all bounded linear op-
def 

erators on 7t'. Set ¢(X) = (5IX5), xegj (7t'). Then ¢ is a 
pure normal state on gj (7t') and (T~ ,¢ I T,') is a maximal 
truth functional (Ref. 5: Appendix 1, Corollary 1). 

Conversely, one can start from a truth functional (T,r) 
and find a linear functional ¢ with ¢ (p) = r(p), V peT. This 
is done in the following theorem and justifies the use of linear 
functionals in algebraic quantum mechanics. 

Theorem 1 (Ref. 5: Theorem 11.2.3): Let (T,r) be a 
truth functional in a W * -algebra J/. Then there exists a pure 
state ¢ on J/, such that ¢(p) = rep), VpeT. 

Note that in this theorem the truth functional need not 
be maximal. Ifit is maximal, one may expect that the state ¢ 
extending r is unique. This is at least the case if (T, r) is 
normal, i.e., if T is a complete orthosublattice of 9 (J/) and 
r( A iEJPi) = A iEJr(p;) holds for every family {Pi lie J} in 
T [ ( T, r) is then extended by a normal state ¢ ] . 

If (T,r) is a maximal truth functional and ¢ an extend­
ing pure state, it might happen that T; T'. This means that 
projections e,fe J/ exist with ¢ (e) = ¢ (/) = 1 but 
¢(e A/) # 1. It is even possible to sharpen this statement to 
¢(e) = ¢(/) = 1, e A/= O. This means that ¢ has expecta­
tion value 1 on e and/but nevertheless e and/are not true 
propositions, since they cannot be incorporated within a 
truth-definite orthosublattice T. Such states <,6--and the cor­
responding truth functionals-should in fact be excluded in 
physics. 

It has been argued above (see Examples 1 and 2) that 
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states ¢ without those unpleasant properties exist. They will 
be called states with the Jauch-Piron property or simply 
Jauch-Piron states (cf. Ref. 7). 

Definition: A state ¢ on a W*-algebra J/ is said to have 
the Jauch-Piron property if ¢(P) = ¢(q) = 1, p,qe9 (J/) 
implies ¢ (p A q) = 1. 

Theorem 2: Let ¢ be a pure state on a W*-algebra J/ 
with the Jauch-Piron property. Then ¢ is the only state on 
J/ which extends the maximal truth functional (T~ ,¢ IT. ). 

Proof: The assertion follows from the results in Ref. 8, 
Chaps. 1 and 2. The maximality of (T~ ,¢ I T~) is a conse­
quence of Ref. 9. 

Theorem 3 (Ref. 5: Appendix 1, Corollary 1): Every 
normal state ¢ on a W*-algebraJ/ satisfies the Jauch-Piron 
condition. 

III. JAUCH-PI RON STATES ON FACTORS 

In the present chapter, J/ is assumed to be a u-jinite 
W*-algebra. Recall that J/ is u-finite if it has a separable 
predual. 

In the following lemma a class of states not satisfying the 
Jauch-Piron condition is introduced. 

Lemma 1: Consider the W*-algebra 
def 

J/ = 2" 00 (N) ®'J/2, 

where N denotes the natural numbers, 2"00 (N) the W*­
algebra of bounded complex-valued functions on N, and J/ 2 
the algebra of 2 X 2 matrices. Let ¢ = '1'1 ® '1'2 be a product 
stateonJ/. Assume that 'I'2isa (normal) pure state on J/2 c 

and '1'1 is a state on 2" 00 (N) such that 

'I'llco(N) =0 (eo(N) :: {meL 00 (N) llimj _ oo m(j) = O}). 

Then there are projections e and / in J/ with 
¢(e) =¢(/) = 1 andeA/=O. 

Proof: Here 2" 00 (N) ® J/ 2 is naturally isomorphic to 
the direct sum algebra ffi jeNf/lj' where f/lj ~J/ 2' VjeN (cf. 
Ref. 6: Chap. IV.7). The support r of '1'2 is an atom in 
9 (J/2)' In appropriate coordinates one has r = (~g)eJ/ 2' 

def 

Also e = 1 ® r corresponds, to the direct sum ffi jeN ej , ej = r, 
VjeN. For/one takes the projection ffi jeNfj, 

~ 1 (j-l ~'-1 . fj - -:- r:--1 ' leN. 
1 ,,; - 1 1 

The projections fj are atoms in &' (J/ 2); 
e AI = ffi jeN (r Afj) = 0 since r# fj implies r Afj = 0, VjeN, 

¢(e) = ('I'I®'I'2)(I®r) = 1, 

¢(/) = ¢((1 ® r)/(1 ®r») = ¢({N3 j- (j - 1)lj}®r) 

= 'I'1({N3j-- (j - l)lj}) = 1, 

for 

lim [(j - 1)lj] = 1 . Q.E.D 
i-oo 

Theorem 4: Let ¢ be a singular state on a W *-algebra J/, 
Assume a projection r to exist in J/ with ¢ (r) = 1 and 
r_rl (Le., rand rl = 1- r are Murray-von Neumann 
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equivalents). Then projections e,JeJi exist with 
fjJ(e) =fjJ(/) = 1 andeA/=O. 

Proof: There exists a W*-algebra:; and a *-isomor­

phism I: .7J ® ..,II r-J1 such that I ( 1 ~lI(bg») = r (use 

Ref. 6: Proposition V. 1.22). The Cauchy-Schwarz inequali­
ty together with fjJ(r 1) = 0 implies that fjJoI is a product 
state '1'1 ® '1'2 on 21 ® ..,112' Here '1'2 is a (normal) pure state 
on ..,112' Also '1'1 is a singular state on:i since fjJ is singular on 
..,II. Using the singularity of '1'1 and the axiom of choice one 
can construct a family (qk)kEJ (J an index set) of pairwise 
orthogonal projections in:;; with the properties l: keJq k = 1, 
'1'1 (q k ) = 0, V ke J. The set J cannot be finite. This would 
imply '1'1 ( 1) = O. Since ..,II was supposed to be u-finite, the 
set J is countable. Identify J = N. 

The W *-algebra generated by {q k I keN}is *-isomorphic 
to!L' 00 (N) in such a way that the q k , keN, correspond to the 
atoms in 9 (!L' 00 (N»). Since '1'1 (q k ) = 0, V keN, it follows 
that '1'1 ICo(N) :=0, whereCoCN)!:!L' 00 (N) is considered as a 
subalgebra of 1. The assertion is then an immediate conse­
quence of Lemma 2. 

Remark: For type I factors the following theorem has 
been proved by Anderson (cf. Ref. 5: pp. 49 and 50). 

Theorem 5: Let fjJ be a Singular state on a/actor ..,II. Then 
projections e,Je ..,II exist with fjJ (e) = fjJ ( /) = 1 and 
eA/= O. 

Proof: A factor ..,II is of type In' neN, 100 , III, 11 00 , or III. 
These cases are studied separately. 

(i) Let ..,II be of type III. Since fjJ is singular there exists 
re9 (JI), nt{O,l}, such that fjJ(r) = 1. Since any two non­
zero projections in a u-finite type III factor are equivalent 
(Ref. 6: Proposition V. 1.39), r-r 1 holds and the assertion 
follows from Theorem 4. 

(ii) Let ..,II be of type III' Since fjJ is singular there exist 
pairwise orthogonal projections (see proof of Theorem 4) 
qk' keN, in ..,II with l:kENqk = 1, fjJ(qk) = 0, VkeN. Let Tr 
be the canonical normalized trace on ..,II. Then 
l:kEN Tr(qk) = 1. Therefore oeN exists such that 

Tr(l:ZO= I qk) >~. Set 

def leo 

q= L qk' 
k=1 

:::::}Tr(q) > Tr(ql). 

:::::}q1Sq. 

:::::} 3 a projection P S q such that ql_ p. 

def 

Set s = p + ql and consider the factor sJl s. The restriction 

fjJls...Ks of fjJ to sJls is a singular state with 
fjJls...Ks(s) =fjJls...Ks(ql) = 1. Furthermore within sJls the 
projectionp is the orthogonal complement of ql and ql -p. 
The assertion then follows from Theorem 4. 

(iii) Let ..,II be oftype 100 or 1100 . It will be shown first 
that an infinite projection s exists in ..,II such that fjJ(s) = 0: 
Consider pairwise orthogonal qk' keN, with l:kEN q k = 1 and 
fjJ(qk) = 0, VkeN (cf. the proof of Theorem 4). The qk'S 
may be supposed to be finite (if q leo is infinite, set s = q leo ) • 

Since Tr(l) = 00, one can suppose that Tr(qk) > 1, VkeN. 
The W*-algebra generated by the operators qk, keN, is 
*-isomorphic to !L' 00 (N) [see (ii)]. If I: 
!L' 00 (N) - W*{qk IkeN}!:J1 is such a *-isomorphism, it 
follows from fjJ(qk) = 0, VkeN, that fjJOI ICo(N) :=0, 
Co(N)!:!L' co (N). 

By use of the axiom of choice one can construct a maxi­
mal family (PK)KEJ (J an index set) of projections in 
!L' 00 (N) such thatpK 'F,seCo(N) if K:;6c5, the subsetsAK ofN 
corresponding to the projections PIC' Ke J have infinitely 
many elements, the complement of a union Uj= IAK) of fi­
nitely many AK 's is a set with infinitely many elements. 

Such a family cannot be countable. If this were the case, 
J = N, one could set Bk = UJ= IAk and take elements 
nkEBk \Bk_ l , k = 2,3, .... Then the projection Poo corre­

def 

sponding to the subset A co = Uk = 2,3, ... n k ofN would extend 
the family (Pk ) kEN contradicting its maximality. 

Consider a finite number of projections PK.' j = 1, .. ,n. 
1 

Then 

fjJetl I (PKj) ) = fjJ(l(PKl ) + I(PK2 APt) + I(h2 ApKl) + ... 

+ I(PKj A (PKj_l V'" V PKY) + I(PKj A (hj _1 
V ... V PKl») + ... 

+ I(PKn A (PKn_l V·" V PK)l) + I(PKn A (PKn_l V," V PKl») 

*' = fjJ(l(PKl ) + I(PK2 Ap;, ) + ... + I(PK
n 

A (hn_
1 
V ." V PKI )1» ..;;;fjJ(I(1»)..;;; 1 . 

At (#) the fact was used that PK A (PK V ... V PK ) 
'j "j-l I 

eCo(N), Vj = 2, ... ,n. Consequently, the set 
{Ke J IfjJ(I(PK) ):;60} has only countably many elements. In 
particular, there exists Koe J such that fjJ(I(PKo») = O. Here 
I(PK ) is an infinite projection [because Tr(qk) > 1, VkeN, 

o 

and I(PK) is an infinite sum of different qk'S]. Thus 
def 

S = I(PKo) is an infinite projection with fjJ(s) = O. If sl is 

infinite, too, the assertion follows just as in (i), because in 
this situations-s1 holds (Ref. 6: Proposition 1.39). IfSl is 
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finite, a reasoning similar to that of (ii) proves the assertion. 
(iv) Since factors of type In' neN, do not admit singular 

states, the theorem is proved. Q.E.D. 
Corollary 1: Let fjJ be apure state on a/actor ..,II fulfilling 

the Jauch-Piron property. Then fjJ is normal and JI is a 
factor of type I. 

Proof: A pure state is either normal or singular. Only 
type I factors possess pure normal states. Q.E.D. 

Corollary 2: Let (T,r) be a maximal non-normal truth 
functional in a factor JI. Consider an arbitrary (T,r)-ex-
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tending state r/J( which might be nonpure if the extension pro­
cedure is not unique!). Then r/J does not fulfill the Jauch­
Piron condition. 

Proof: If (T,r) is maximal and non-normal, anyextend­
ing state r/J is singular (Ref. 5: Theorem 11.3.2). The corol­
lary then is a consequence of Theorem 5. Q.E.D. 

Corollary 3: A state r/J on alactor vii is singular if and 
only if projections e,fEvQ' exist with r/J(e) = r/J(/) = 1 and 
eA/=O. 

Proof: Assume r/J is nonsingular, i.e., the decomposition 
r/J = )'r/J" + (1 -). )r/J. into a normal state r/J" a?d ~ singu~ar 
state r/J. is nontrivial, ° <). < 1. Let e,fbe prOjectIons WIth 
r/J(e) = r/J(/) = 1. This implies r/Jn (e) = r/J" (I) = 1 and 
(by Theorem 3) r/J,,(eA/) = 1. In particular, eA/#O. 

Q.E.D. 
Corollary 4: Let vii be alactor and consider a represen­

tation tr: vii - fg (£') of vii on a Hilbert space £' with the 
property 

tr(pAq) = tr(p) Atr(q), Vp,qef!lJ (vii) . (1) 

Then tr is u-weakly continuous. 
Proof: There exists a central projection zetr(vII) " such 

that tr,,: v113x-(tr(x)z)efg (z£') is u-weakly continuous 
and 71's: v113x-(1T(X)(1-z»)efg((1-z)JY) is singular, 
i.e., v113x-(tI1T(X)(l-z)t)eC is singular for every 
te£' (Ref. 6: Theorem 11.2.14). Supposez# 1. From (1) it 
can be inferred that the singular states w: 
v113x ..... (tI1T(x)t)eC, te(1-z)£', lit II = 1, have the 
Jauch-Piron property. This contradicts Theorem 5. Thus 
z = 1 and 11' = 11'" is u-weakly continuous. Q.E.D. 

The results of this section may be regarded as an a pos­
teriori explanation of the fact that only normal states on fac­
tors are considered in physics. Corollary 1 was conjectured 
in 1981 by Raggio and the author. A preliminary version of 
this corollary-not comprising factors of type Ill-Was de­
rived in July of 1986 by Zsido together with the author. 

IV. JAUCH-PI RON STATES ON ARBITRARY W*­
ALGEBRAS 

In this section vii is assumed to be a W*-algebra with 
separable predual. Recall that a W*-algebra has separable 
predual iff it is *-isomorphic to a von Neumann algebra on a 
separable Hilbert space. Attention will be focus~ on pu~e 
states with the Jauch-Piron property. The Gel fand-Nal­
mark-Segal (in short GNS) representation with respect to 
such a state will be an essential tool. 

Theorem 6: Let r/J be a pure state with the Jauch-Piron 
property on a W*-algebra vii. Let OY,p,1T,p,o.,p) denote the 
GNS representation of vii with respect to r/J. Then 

1T,p (p A q) = 11'", (p) A tr,p (q), Vp,qef!lJ (vii) 

holds true. 
Proof: For p,qef!lJ(vII), 1T",(pAq)<'1T",(p)A1T",(q) is 

obviously fulfilled. Suppose 1T,p (p A q) # 1T,p (p) A 11'", (q). 
Consider a vector te£'"" lit II = 1, 1T",(pAq)t=0, 
{1T (p) A 11'", (q)}t = t. Since 11'", (vii) acts irreducibly on 
~ (Ref. 10: 10.2.3), t~ere exists (Ref. 10: Theorem 5 .. 4.5) 
a self-adjoint operator HEtr", (vii) such that for the umtary 

U:: exp iiI one has Ut = ll,p. Due to Ref. 10: 4.6.2 a self-
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adjoint operator HEvQ' exists with 11'", (H) = iI. Setting 
d~ _ 

U = exp iH, one has 11'", (U) = U. For an arbitrary 
sef!lJ (vii) the following holds: 

(tI1T", (s)t) 

= (tI1T,p (U*U)1T", (S)1T", (U*U)t) 

= (UtI1T",(UsU*)ut) = (ll", 111'", (UsU*)ll",) 

=r/J(UsU*) . 

Due to the definition of t we have r/J( UpU *) 
= r/J(UqU*) = 1, r/J(U(pAq)U*) = 0. Since r/J has the 

Jauch-Piron property, this leads to a contradiction 
r/J(U(pAq)U*) = r/J(UpU*) A (UqU*») = 1. Q.E.D. 

Remark: Theorem 6 together with the observation of 
Anderson (quoted in Ref. 5: pp. 49 and 50) that singular 
states on a type I factor do not have the Jauch-Piron proper­
ty, can be used to prove Corollary 1 for factors of type III and 
11 00 , Compare the remark at the end of Sec. III. 

Lemma 2: Let r/J be a pure state on the W*-algebra 
def 

vii = !f co ( [0,1 ]) '® vii 2 

nO,I] = {xeRI°<.x.;;;l}; !foO([O,I]) is the algebra of 
(classes of) Borel measurable functions, which are essential­
ly bounded with respect to Lebesgue measure]. Then projec­
tions e,fEvQ' exist with r/J (e) = r/J (I) = 1 and e AI = 0. 

Proof: Let C( [0, I]) denote the algebra of continuous 
functions on the interval [0, I). Here 
C ( [0, 1 ] ) C!f 00 ([ 0, I ] ). Considering the (irreducible!) 
GNS-representation 11'", of vii with respect to r/J, one sees that 
r/J is a product state, that r/J I C([O,I J .. I is a character and 
r/J11 .. 1 z isa (normal) pure state. Thereforer/Jlc([o,11"1 is rep­
resented by a point xoe[O,I]: r/J(m®l)=m(xo), 
't/ meC( [0, I ] ) (cf. Ref. 6: Proposition 1.4.5). The support of 
r/J 11 .. 1 , is given by an atom rin 1 ® v112. In appropriate co­
ordinates r= 1 ® (~g). Here !f co ([0,1])'®vII2 

~!f .., ([0,1],vII2) (cf. Ref. 6: Chap. IV.7), i.e., every ele­
ment of vii can be represented by a measurable essentially 
bounded function from [0, I] into v112. Define 

d~ (1 0) 
e(x) = ° 0' Vxe[O,I], 

~ (1- IX-xol 
f(x) = 12 

v'lx -xol-ix -Xo 

xe[O,I] . 

.Jlx - xol - Ix - Xo12) • 
Ix-xol 

Note that f is an element of C( [0,1 ]) ® v112 
~C([0,I],vII2)~!f 00 ([0,1],vII2 ). Sincee(x) A/(x) = 0, 
't/ x #xo, and {xo} is a Lebesgue null set, e Af = ° follows, 

r/J(e) = r/J(l ® (~ ~)) = 1 , 

r/J(f) = r/J(( I ® (~ ~))/( 1 ® (~ ~))) 
~<I({(O.ll3X_(1-IX -x.l)h(~ ~)) ~ l. 

Q.E.D. 
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Theorem 7: Let t/J be a pure state on a W*-algebra J/, 
which does not admit a commutative direct summand. Sup­
pose the center !!' (J/) of J/ does not have any minimal 
projections. Then t/J does not fulfill the Jauch-Piron condi­
tion. 

Proof' The W*-algebra J/ is a direct sum 
J/ = J/1 EIlJ/ll EIlJ/m (Ref. 6: Theorem V.1.19) of W*­
algebras of type I, II, and III. Since t/J is pure, it vanishes on 
all but one summand of this decomposition. Thus one can 
suppose J/ to be of a fixed type. Let 1T '" : J/ --+ flJ (:It'' ",) be 
the GNS representation of J/ with respect to t/J. 

(i) Let J/ be of type II or III. Then a W*-algebra:i 
exists such that J/~:i ® J/ 2 (Ref. 6: Proposition V.1.35 
and Proposition V.1.22). Here !!'(J/)~!!'(..::R) 
~.y 00 ( [0,1]) (Ref. 6: Theorem 111.1.22). Consider a vec-

tor SEfft'" "', lis II = 1 with 1T ",(1 ® (~g »)5" = s . Such a vector 
always exists since every representation of J/ 2 is faithful. 

def 

The state 'I'(x) = (S 11T", (x)S), xEJ/, and its restriction to 

!!' (.:1') ® J/ 2 ~.y 00 ( [0,1» ® J/ 2 fulfills the J auch-Piron 
condition (this is a consequence of Theorem 6). Here 
'l'ly ~([O.I]) ®~2 is a pure state and the assertion follows from 
Lemma 2 by contradiction. 

(ii) Let J/ be of type I. Since t/J is pure, it can be sup­
posed that J/ is either of type 100 or a direct sum 

J/ ~ ® {dj ®J/j}' J~{2,3, ... }, where djljEJ, is a com-
jeJ 

mutative W*-algebra and J/j is the jXj-matrix algebra 
(Ref. 6: Theorem V.1.27). The former case can be handled 
just as in (i). In the latter one considers projections qjEJ/j of 
even dimension 

dim ( .) = {j if j is even, 
q) j-l ifj is odd, 

jEJ, 

q:: (:, 1 ®qj )E{:' d j ®J/j } . 

(a) Assume 1T '" (q) # 0. Since !!' (J/) has no atoms, 
there cannot exist atoms in the commutative W*-algebras 
dj,jEJ' ~dj~.Y 00 ([0,1», VjE J. All projections qj are 
the sum of two equivalent orthogonal projections 

~qjJ/jqj~ {
J/j /2 ® J/ 2 if j is even, 

J/(j-1J/2 ®J/2 if j is odd. 

In particular, J/ q ~ Ell jeJ{dj ® qjJ/jq) contains a 
W*-subalgebra which is *-isomorphic to J/ 2' Since 1T", I~q: 
J/q--+flJ(1T",(q):lt"",) has the property (1), !!'(J/q ) 
=q!!'(J/)q~.Y 00 ([0,1», and 1T",I~q(!!,(J/q») 
~C'1T", (q), a pure state with the Jauch-Piron property on 
.Y 00 ( [0, 1 ] ) ® J/ 2 can be constructed just as in (i). This 
contradicts Lemma 2. 

(fJ) Assume 1T4> (q) = ° ~1T4> (ql.) = 1. Here qfvanish­
es for j even and is an atom in J/ j if j is odd. A projection p 
can be constructed out of projections Pj >qf, jE J, such that 
dimpj = 2, VjEJ, 1T", (p) #0. In the same manner as under 
(a) this leads to a contradiction to Lemma 2. Q.E.D. 

Theorem 8: Let J/ be a W *-algebra with an atomic cen­
ter !!' (J/) and without any commutative summand. Con­
sider a pure state t/J on J/ with the Jauch-Piron property. 
Then t/J is normal and an atom ZoE!!' (J/) exists with 
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(i) t/J(zo) = 1 , 

(ii) zoJi' Zo is a factor of type 1. 

Proof: J/ may be supposed to be of a fixed type (cf. 
proof of Theorem 7). If there is an atom Z in !!' (J/) with 
t/J(z) #0, the assertion follows from Corollary 1. Therefore 
!!' (J/) can be supposed to be infinite dimensional, 
!!' (J/)~'y 00 (N), and t/Jlco(N) =0' ~J/ ~ Ell jEN !!Itj , 
where the !!It/s are factors. Similarly as in the proof of 
Theorem 7, a projection qEJ/ can be found (q = 1, if J/ is of 
type II or III) with 1T '" (q) #0 such thatqJ/ q contains a W*­
subalgebra.Y 00 (N) ®J/2' This contradicts Lemma 1 (cf. 
again the proof of Theorem 7). Q.E.D. 

Let J/ be a W*-algebra with a commutative summand 
d. ThenJ/ is *-isomorphic to the direct sum:ff EIld for an 
appropriate W * -algebra 1. If 'I' is a pure state on d, the 

def ..-

state t/J(x,y) = 'I'(y) , xEJ/, yEd, defines a Jauch-Piron 

state on:i ed ~J/. Therefore the assumption in Theo­
rems 7 and 8-that J/ has no commutative summand­
cannot be omitted. 

Corollary 5: Let J/ be a W *-algebra without a commu­
tative summand and consider a pure state t/J on J/ obeying 
the Jauch-Piron property. Then t/J is normal and an atom 
ZoE!!' (J/) exists with 

(i) t/J(zo) = 1 , 

(ii) zoJi'zo is a factor of type I. 

Corollary 5 summarizes all results of this paper on pure 
states. A remaining question of interest concerns the exis­
tence of truth functionals (T,r) in a W*-algebra J/ such 
that T = &' (J/). The unique extending state t/J 
[t/J(p) = r(p), VpE&' (J/); see Theorem 1] then is a char­
acter, i.e., t/J(xy) = t/J(x) .t/J(Y), Vx,yEJ/. Investing little ef­
fort one can prove the following (essentially known) result 
(cf. Refs. 11 and 12). 

Theorem 9: Let J/ be a W *-algebra and t/J be a multipli­
cative state on J/ [i.e., t/J(x'Y) = t/J(x) .t/J(Y), Vx,yEJ/]. 
Then a central projection c exists with t/J (c) = 1 and such 
that cJ/ c is commutative. 

v. CONCLUDING REMARKS 

An individual interpretation of quantum mechanics 
presupposes the existence of "suitable" pure states (in con­
trast to mixed ones for an ensemble interpretation). In the 
present context, suitable means of course that the Jauch­
Piron condition is fulfilled . 

The results of this paper show that pure Jauch-Piron 
states exist essentially only on commutative W*-algebras 
and type I factors. More precisely, let t/J be a pure Jauch­
Piron state on a W * -algebra J/. Then W * -algebras !!It and 
.Y exist, such that J/~!!It EIl.Y where !!It is arbitrary, .Y is 
either commutative or *-isomorphic to the algebra flJ (:It'') 
of bounded linear operators on an appropriate Hilbert space 
:It'', and t/J restricted to !!It vanishes. Note that t/J may be a 
singular state if.Y is commutative. For .Y ~ flJ (Jf'), t/J is 
always normal and represented by a vector sEfft"', lis II = 1: 
t/J(x) = (S Ixs), VXEflJ (:It''). 
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Therefore an individual interpretation of quantum me­
chanics is only possible in classical theories (whose corre­
sponding "algebra of observables" is commutative) and Hil­
bert space quantum mechanics. The interpretation of 
systems whose respective W*-algebra is of type III-such as 
algebraic statistical mechanics-has to be nonindividual or 
at least partly nonindividual: The classical properties of such 
a system--corresponding to the center of the respective W *­
algebra J( --could behave as belonging to an individual sys­
tem if the state on the whole of J( is a/actor state (with the 
Jauch-Piron property) and thus its restriction to the center 
of J( is pure. 
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The Wigner integral transformation, which intertwines the twisted product and the 
composition of kernels, is of order 24. Indeed, it commutes with, and its sixth power equals, 
the Fourier cotransformation. 

I. INTRODUCTION 

In the Weyl-Wigner-Moyal formulation of quantum 
mechanics, 1-4 observables are functions on phase space and 
the composition of observables is given by the twisted prod­
uct or Moyal product off unctions. It is well known that this 
operation is equivalent to composition of 2n-variable ker­
nels,5-8 and this equivalence is implemented by an integral 
transformation known as the Wigner transformation8 (or 
alternatively the Weyl transformation5). The Wigner trans­
forms of kernels corresponding to positive operators have 
been extensively studied under the name of "Wigner distri­
bution functions. ,,3,9 They are also widely used in the theory 
of radar signal processing as "radar autocorrelation func­
tions."IO,ll Thus it is of great interest to know as much as 
possible about the intrinsic properties of the Wigner trans­
formation, 

If one considers the Wigner transformation as an iso­
morphism of L 2(lR2N) onto itself, it is easily seen to be uni­
tary. Moreover, as Pool12 and Cressman13 noted long ago, 
the Wigner transformation factorizes into a reflection on 
phase space (of order 2) and a partial Fourier transforma­
tion (of order 4); however, these factors do not commute. In 
this article we establish that the Wigner transformation is 
itself of finite order, namely, of order 24, and indeed its sixth 
power is just the (2n-variable) Fourier cotransformation. 
The proof we give involves merely a transfer of context to the 
so-called Bargmann representation, wherein the proof re­
duces to an elementary computation. 

In Sec. II we recall the definition of the Wigner transfor­
mation and some of its properties, In Sec. III we briefly re­
view the Bargmann spaces of analytic functions. Using these 
we show in Sec. IV that the Wigner transformation is of 
order 24. 

II. THE WIGNER TRANSFORMATION 

The Wigner-Weyl-Moyal formulation of quantum me­
chanics starts from the Weyl quantization which establishes 
a correspondence between "symbols" J, i.e., functions on 
phase space, and operators A of the conventional formula­
tion. For our present purposes, it suffices to consider that 
"flat" phase space R2N = T*(RN

). Here the Weyl quantiza­
tion rule may be formally written as 

A=(217')-2N( ( (Ff)(a,b) 
JRN JRN 

xexp(i(a'Q + b'P) ]da db, 

where F denotes the Fourier transform and QI, ... ,QN and 

P1"",PN denote the usual position and momentum opera­
tors. 

Composition of operators corresponds then to the 
"twisted product" of symbols, 

(fxg)(u): = (217') -2N ( ( f(v)g(w) 
JR2N JR2N 

xexp (i(uJv + vJw + wJu»)dv dw (1) 

[where u,v,wER2N, and uJv: = :If= 1 (UkVN+ k - uN+ kVk) 

is the symplectic product of two vectors in R2N
], and, at a 

formal level, the usual operator calculus is replaced by a 
"twisted product calculus" whose objects are functions on 
phase space. The twisted product is noncommutative, as is 
the "kernel product" on R2N

, namely the productfog given 
by 

(fog)(x,y): = (217') -N12 ( f(x,z)g(z,y)dz 
JRN 

(where x,y,zERN ). In fact, these two products are isomor­
phic; the Wigner transformation W, which we will now re­
call, satisfies W(fxg) = WfoWg. 

To make the above discussion rigorous, we observe that 
(1) makes sense whenever j,gEY (R2N), the space of rapid­
ly decreasing smooth functions over R2N; then also 
fXgEY(R2N) and the product is continuous on Y(R2N). 
The same is true for the kernel product, or if Y(R2N) is 
replaced by the space of square-integrable functions 
L 2(R2N

). Let Y'(R2N) denote the space of tempered distri­
butions over R2N. Define the isomorphisms (of Frechet 
spaces) R, 4>, W from Y(R2N) onto Y(R2N) by 

(Rf)(x,y): =f(2- 1/2 (x + y), 2- J12 (x - y»), 

(4)f)(x,y): = (217') -N12 ( f(x,t) exp (iyt)dt, 
JRN 

(Wf)(x,y): = (R4>f)(x,y) 

= (217')-N12 ( f(2- J/2 (x+y),t) 
JRN 

xexp(2- 112i(x - y)t )dt, 

noting that these extend to unitary operators on L 2(R2N). 
The Wigner transformation is the operator W. 

We will write x, y, t, p, q, r for vectors in RN and u, v, w 
for vectors in R2N. We also find it convenient to use the Haar 
measures dAx: = (417') -N12 dx on RN , dAu: = (417') -N du 
on (R2N) (where dx, du denote the usual Lebesgue mea­
sures). 

The Fourier transformation F on Y (R2N) is given by 
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(F/)(u): = (21T) -Ni /(v)e-iuvdv. 
R2N 

We note also that 

iN exp( - x 2 + 2112xt)d
A
t = 2 -N eXPC2

2
). 

r exp( _ u2 + 21/ 2UV)d A u = 2 -IN exp(V2). 
J~ 2 

(2) 

We may now verify that W(/xg) = W/oWgbyadirect 
calculation. By duality (see Ref. 8) this relation holds also 
for/or gin Y'(R1N). 

Standard treatments of the one-dimensional harmonic 
oscillator involve the Hermite functions (suitably normal­
ized for our purposes) h m EY (R) given by 

hm (x): = (2m- Im!)Hm (x) exp (-x2/2) 

(xER, m = 0,1,2, ... ). 

Let us set hmn (x,y): = hm (x)hn (y); then in the case N = 1, 
one computes that hmn = W(/mn)' where the/mn are the 
Wigner functions corresponding to the harmonic oscillator 
transitions between states8.1O.1J.14: 

/mn (q,p) 

: = 2( - l)n(n!lm!) 1/2(q _ ip)m - nL;;' - n(q2 + p2) 

xexp( _ (q2 + p2)/2) 

for m;,n; /mn: =/-:m (complex conjugate) if m <no For 
N> 1, we also have hmn = W(/mn)' where we define, for 
given multi-indices m,nENN, hm' hmn' and /mn as direct 
products of the corresponding one-variable or two-variable 

functions hm" hm,.n"/m,.n,. 
Both hmn and /mn are eigenfunctions of the Fourier 

transformation F on Y(R2n ), with common eigenvalue 
( - i) m + n; thus F and W commute. 8 This suggests a possible 
relationship between the Wigner and Fourier transforma­
tions. On the other hand, both hmn andfrs are eigenfunctions 
of the Hermite operator with the same eigenvalue if and only 
if m + n = r + s (Ref. 8); this would rather suggest that W 
is of infinite order. This question is resolved by the following 
somewhat surprising theorem, which is proved in Sec. IV. 

Theorem: W 3 (hmn ) = exp(i1T(m + n)/4)hmn for all 
m,nENN. 

Corollary J: W 6 = F - I. 

Corollary 2: W 24 = Id. 

III. THE BARGMANN REPRESENTATION 

The simplest approach we know to proving the above 
theorem is to pass to the Bargmann representation. We brief­
ly review what is involved. 15

-
17 Let j.t denote the Gaussian 

measure on CN
: 

[ with u = (q,p)], where the kernel M (z,w*) is given by 
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dj.t(z): = 1T- N exp( -zz*)dz 

= 1T - N exp( - (x2 + y2) jdx dy, 

where z = x + iy. Let Y(CN
) denote the Hilbert space of 

entire analytic functions in L 2 (CN ,j.t), and let 

?f(CN): = {/EY(CN): (1 +zz*)m exp( -zz*/2)/(z) 

is bounded, for all mENN }. 

As shown in Ref. 16, ?f (CN
) can be given the topology 

of a Frechet space, such that the maps AN: 
Y(RN) ..... ?f(CN), VN: ?f(CN) ..... Y(RN),givenby 

(ANh)(z): = r A (z,t)h(t)dAt, 
JRN 

(VN/)(t): = r A (z*,t)/(z)dj.t(z), JcN 

(3) 

are Frechet-space isomorphisms, with V N = AN', the ker­
nel A (z,t) being given by 

A(z,t): = 2N/2 exp( - r12 - t 2/2 + 2112zt). 

We recall l5 thatANhm (z) = (m!) -112zm for mENN. 

The spaces ?f (CN
) and Y (CN

) have a reproducing ker­
nel 

r exp(w*z)/(w)dj.t(w) =/(z) JcN (4) 

(see Refs. 15 and 16), from which we obtain the following 
formula: 

r exp(az + bz*)dj.t(z) = exp(ab). JcN 
(5) 

The advantage of working with these spaces is that oper­
ators Ton Y (RN) or L 2 (RN) transfer to operators A N TV N 
on ?f (CN

) or Y (CN
) given by integral kernels. 

As F denotes the Fourier transformation on Y(R2N), 
one shows easily using (2)-(4) that (A lNFV2N/)(Z) 

=/( - iz), for/E?f(C2N
), in agreement with Ref. 15. 

IV. PROOF OF THE THEORI:M 

Since (A2Nhmn )(Z,,z2) = (m!n!)-1/2z7'z~, it suffices to 
show that 

(A2N W
3hmn ) (ZI,z2) 

= (A1Nh mn ) (exp(i1T/4 )z"exp(i1T/4 )Z2)' 

By the reproducing kernel property (4), this reduces to 
showing that the operator AlN W 3 V2N is given by the inte­
gral kernel exp(2 - 1/2 (1 + i) w*z). This we do in a few steps. 

Step J: For /E?f (C2N ), we obtain 
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_ 2N 2 2 + * t + 21/2t * + Z2 + It d ~t f { ~ + W2* 2 (2 1/2 . )2 } 
- exp - ZIW1 -- w2 

222 

on using (2) repeatedly. 
Step 2: Again withfE ~ (C2N), we find that 

(A 2NRV2Nf)(z) = f L(z,w*)f(w)d/-l(w), 

where the kernel L is given by 

L(z,w*): = exp{2- 1/2 (z lwT +zlw! +z2wT -Z2W!)} 

by a similar calculation. 
Step 3: Hence forfE~ (C2N), we get 

(A 2N WV2Nf) (z) 

= (A2NRV2NA2N<I>V2Nf)(z) 

= f N(z,w*)f(w)d/-l(w), 

where the kernel N(z,w*) is given by 

N(z,w*) 

: = f L(z,t*)M(t,w*)d/-l(t) 

= f f exp{2- 112(zl +z2)tT + (Zl -Z2)t!) 

+ wTtl + iw!t2}d/-l(tI)d/-l(t2) 

= exp{2- 1/2(zl + z2)wT + i(zl - Z2)W!)} 

upon using (5) twice. 
Step 4: Thus A2N W 2 V2N is given by the kernel 

N 2(z,w*): = f N(z,t*)N(t,w*)d/-l(t) 

= exp{rl(l + i)(ZI - iz2 )wT 

+ (Zl + iz2 )w!)} 

again by (5). 

2392 

Finally, A2N W 3V2N is given by the kernel 

N\z,w*): = f N 2(z,t*)N(t,w*)d/-l(t) 

= exp{2- 3/2 ( 1 + i) (2z lwT + 2z2w!)} 

= exp(2-1/2(1 + i)zw*) 

J. Math. Phys., Vol. 28, No. 10, October 1987 

I 
as claimed. 

Proof of Corollary 1: From ( 4 ) we see that 
(A 2N W

3V2Nf) (z) =f(exp(i1T/4)z) forfE~ (C2N ), so that 

(A 2N W
6 V2Nf)(z) =f«(exp(i1T/4»)2z ) 

=f(iz) = (A2NF-IV2Nf)(z); 

hence W 6 = F- 1 on Y(R2N ). 

Remark: The Fourier transformation is often replaced 
in computational problems by its discrete analog, the finite 
Fourier transform, a matrix in cnxn of order 4. Using its 
action on the basis functions hmn as a guide, one may con­
struct a discrete analog of the Wigner transformation also, 
whose sixth power is the finite Fourier cotransform. This 
could provide a useful tool for the analysis of signal process­
ing. 
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The investigation of transition amplitude spaces (tas's) introduced by Gudder and 
Pulmannova [J. Math. Phys. 28, 376 (1987)] is continued. In particular, ordered structures 
related to tas's are considered. Under some conditions, which are analogous to the conditions 
obtained for transition probability spaces by Pulmannova [J. Math. Phys. 27, 1791 (1986)], 
the ordered structure related to a tas can be represented by the orthocomplemented lattice of 
allf-closed subspaces of a generalized Hilbert space (r,9,8,J). It is shown that, provided 
that the above representation takes place for a total tas, the division ring 9 must be 
isomorphic with a subfield C) of the field of complex numbers C. Sufficient conditions are also 
given under which the ordered structure of a tas can be represented by the lattice of all closed 
subspaces of a complex Hilbert space. 

I. ORDERED STRUCTURES RELATED TO A tas 

Contrary to the traditional Hilbert space formulation of 
quantum mechanics, it is our opinion that transition ampli­
tudes should play the primary role. This idea is basic to the 
early work ofFeynman and we have begun to develop it into 
an axiomatic foundation for quantum mechanics. ) Since the 
Hilbert space structure is physically unmotivated and is only 
the result of fairly restrictive ad hoc assumptions, this ap­
proach has the advantage of placing the foundations of quan­
tum mechanics at a more basic level. 

In Ref. 1 we have given some strong physical reasons 
why a quantum system acts like a Markov process at the 
amplitude level. The basic property of a transition amplitude 
then follows from the Chapman-Kolmogorov equation for a 
Markov process.) We have also given a second justification 
for this property in terms of a transmission amplitude inter­
pretation. Moreover, relationships between the present 
framework, the algebraic approach, the operational statis­
tics and quantum logic approaches, and traditional Hilbert 
space quantum mechanics were presented. It was shown in 
Ref. 1 that a transition amplitude space always admits a Hil­
bert space representation and that sums and tensor products 
of such spaces can be formulated in a natural way. 

Recently, the concept of a transition amplitude space has 
been introduced.) Let us recall basic definitions. Let S be a 
nonempty set and let A: S XS-+C. We say that x,yeS are 
orthogonal (xly) if x # y and A (x,y) = O. Let us denote by 
vii A the collection of maximal orthogonal sets in S. We call a 
set MCS an A set iff or every x,yES, we have 

LIA(x,z)A(y,z)1 < 00, 

%EM 

and 

A(x,y) = LA(x,z)A(y,z), 
%EM 

where an overbar denotes the complex conjugate. 
Denote the collection of A sets by ./VA' We call A: 

S XS-+C a transition amplitude if (i) ./VA #0, and (ii) 

A (x,x) = 1 for all xES. If A is a transition amplitude on S we 
call (S,A) a transition amplitude space (tas). A strong (ul­
trastrong) tas is a tas (S,A) that satisfies (iii) A(x,y) = 1 
[ (iv) IA (x,y) 1 = 1] implies x = y. Although an ultrastrong 
tas is clearly strong, it is shown in Ref. 1 that the converse 
need not hold. A tas (S,A) is total if./VA = vilA' To every 
tas we can associate a strong tas if we introduce a relation ::::: 
byx:::::yifA(x.v) = 1. Then::::: is an equivalence relation and 
the function A: S XS-+C defined by A (.X,y) =A(x,y) 
(where S = S / ::::: ) is well defined and (S,A) is a tas. Similar­
ly, we define a relation - onSby x-yifIA(x,y) 1 = 1. Then 
- is also an equivalence relation. Denote by x the class con­
taining x and let S = S / -. If (S,A) is a total tas, then the 

pair (S,T), where T(x,ji) = IA (x,y) 12
, is a transition prob­

ability space (see Theorem 2.2 in Ref. 1). 
Let (S,A) be a tas. We shall use the orthogonality rela­

tion on S defined by xly if A (x,y) = 0 to introduce 

XO = {yES:ylx for all xEX}, 

where X is any subset of S. It is easy to check that the map 
X .. -+Xoo has the following properties: 

XCX OO, X OO = (Xoo)oo, 

XC YimpliesXooC Y oo, 

i.e., it is a closure operation (see Ref. 2, p. 148). We shall 
write X = X 00 and denote by Y (S) the set of all "closed" 
subsets of S, i.e., 

YeS) = {XCs:x=X}. 

If X = {x}, we shall writexO instead of {x}O, andi instead of 
{x}-. 

Proposition 1.1: Let (S,A) be a tas. Let the following 
condition be fulfilled: 

(1) 

Then Y (S) is a complete, orthocomplemented, atomic lat­
tice with the set of atoms {i: xES}. Specifically, if (S,A) is a 
total tas, then condition (1) is satisfied. 

Proof: Let (S,A) be a tas satisfying condition (1). Let 
QCS, Q #0, be such that QCi for xES. Then there isyeQ, 
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and yCi implies XOCyo. By (1), XO = yO, so that y = i. 
From this we obtain that i = yC QCi, i.e., Q = i. The fact 
that X~X is a closure operation implies that 07 (S) is a com­
plete lattice with the operations I\Xi = nXi and 
V Xi = (UXi ) - (Xi CS, iEl). As the orthogonality rela­
tion 1 is symmetric and antireflexive, it is easy to show that 
X~X ° is an orthocomplementation on 07 (S). We also have 
SO =0and0° =S. 

If(S,A) is total, then for every xES thereisME...#'A such 
that xEM. Let yOCxO and let yEM, ME...#'A' Then M 
- yCyOCxo. Therefore 

1 = A(x,x) = I IA(x,z) 12 = IA(x,yW· 
ZEM 

By Corollary 3.3 (a) in Ref. 1, it is implied that A (y,z) 
= A (y,z)A (x,z) for all xES. From this we obtain that 
~=~ 0 

Let X::<y if XO Cyo (x,yES). If ( 1) is satisfied, then ::< is 
an equivalence relation. Let x be the class containing x 
(xES). It is easy to see that x = i. Let ily if xly for any 
representative xEi, YEY. It is straightforward that this rela­
tion is well defined. If (S,A) is total, then X::<y if and only if 
IA(x,y) 1 = 1. 

Recall that ECS is an event if ECM for some ME...#'A . 
For an event E, let A E be the A -transition amplitude condi­
tioned by E, i.e., AE is defined by 

AE(x,y) = IA (x,z)A (z,y). 
ZEE 

Proposition 1.2: Let (S,A) be a tas. If E is an event, then 

E= {xES:AE(x,x) = I}. 
Proof: Let xEE. Then xlM - E, where ECM and 

ME...#'A' Therefore 

1 =A(x,x) = IIA(x,z) 12 + I IA(x,zW 
zeE ZEM-E 

= IIA(x,zW =AE(x,x). 
ZEE 

Now let AE (x,x) = 1. Then 

AE(x,x) = IIA(x,zW = 1 
ZEE 

implies that 

I IA(x,zW = 0, 
ZEM-E 

i.e., A (x,z) = 0 for all zEM - E. Therefore for any yEE0 we 
get 

A (x,y) = IA(x,z)A(z,y) 
ZEM 

= IA (x,z)A (z,y) + I A (x,z)A(z,y) = o. 
ZEE ZEM-E 

This shows that xEE. o 
Proposition 1.3: Let E,Fbe events. Then (i) A EA F = A E 

if and only ifECF (cf. Ref. 1); and (ii) A -AE =AM _ E, 
where ECM and ME...#'A' 

Proof: (i) LetAEAF = AE andletxEE. For ME...#'A such 
that ECM, we obtain 
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AE(x,y) = IA(x,z)A(z,y) = IA(x,z)A(z,y) =A(x,y) 
ZEE ZEM 

and 

1 =AE(x,x) =AEAF(x,x) = IAE(z,x)AF(x,z) 
ZEM 

= IA(z,x)AF(x,z) =AF(x,x). 
zeM 

The last equality holds by (4.3) in Ref. 1. Hence xEF. 
Now let ECF. Then FOCEo and hence 

AEAF(x,y) 

= IAE(z,y)AF(x,z) 
ZEM 

= IAE(z,y)AF(x,z) + I AE(x,y)AF(x,z) 
zeE ZEM-F 

= IA (z,y)AF(x,z) 
zeE 

= IA (z,y)IA (x,z')A (Z',z) 
ZEE zeF 

= IA(z,y) I A (x,z')A(z',z) 
zeE z'EM' 

= IA (z,y)A (x,z) =AE(x,y), 
zeE 

This proves that A EA F = A E' 
The proof of the second statement is straightforward, 0 
Corollary 1. 4: Let (S,A) be a total tas. Then the map 

A E~E is an orthoisomorphism between the atomic, u-or­
thocomplete orthomodular posets If = {A E: E is an event} 
and tJ (S) = {E: E is an event}, (See Refs. 1 and 3.) 

In the next proposition we show a relation between the 
sets 07 (S) and tJ (S) for a total tas. To introduce it, we need 
some definitions. Let Fbe a partially ordered set. For a sub­
set G of Fset 

G \1 = {aEF: a>b for all bEG}, 

G 6 = {aEF: a<.b for all bEG}. 

The map G ~G \16 is a closure operation and the set of all 
subsets G of F such that G = G \16 is called a completion by 
cuts of the set F (see Ref. 2, p. 167). 

Proposition 1. 5: If (S,A) is a total tas, then 07 (S) is a 
completion by cuts of tJ (S). 

Proof' tJ (S) is an orthocomplemented partially ordered 

set and the set S of all atoms is join dense in tJ (S). For a 
subset BC tJ (S) let 

Bl = {aEtJ (S): bla for all bEE}, 

where bla, a,bEtJ (S) if a C b 0. Clearly, for x,yES we have 
xl)) if and only if T(x,))) = IA (X,y) 12 = O. A subset B of 
tJ (S) is closed if B II = B. By Theorem 2.5 in Ref. 4, the set 
of all closed subsets of tJ,..,(S) is orthoisomorphic with the set 
of all closed subsets of S, but the latter is orthoisomorphic 
with YeS). It is easy to see that for any BC tJ (S) the equal­
ity B \16 = B II is satisfied, so that 07 (S) is the completion 
by cuts of tJ (S). 0 

It is easy to see that if E is an event, then (E,A E) is a tas. 
It is a strong (ultrastrong) tas if (S,A) is strong (ultra-
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strong). If (S,A) is total, then (E,A E) is total, too. Indeed, 
let F be a maximal orthogonal set in E. Then FCE, 
EYEtJ (S), and the orthomodularity of tJ (S) implies that 
F = E. By Proposition 1.3 then AE = AF , i.e., FEJY'A

E
' 

The following definitions are analogous to those intro­
duced in Ref. 3 for transition probability spaces. 

Let (S,A) be a tas. We say that an element xES is a 
superposition of a subset F of S if A (z,y) = 0 for all yeP and 
for zES implies A (z,x) = o. It is easy to see that x is a super­
position of F if and only if xEFoo = F. 

An element xES is called a minimal superposition of F 
(FCS) if x is a superposition of F, but x is not a superposi­
tion of any proper subset of F. 

We say that a minimal superposition postulate (MSP) 
holds for (S,A) iffor any finite subset FCS and any minimal 
superposition x of F there holds 

{x,FJ - nF2 #0, 
where {FI,F2} is any partition of the set F (i.e., FI and F2 are 
nonempty disjoint subsets of F such that FI U F2 = F). 

We say that a superposition principle holds for a tas 
(S,A) if for any x,yES such that xEji, yEX, there is zES such 
that zEX, ZEji, and ZE{X,y} - (in other words, z is a minimal 
superposition of x and y) . 

A physical motivation of the above notions can be found 
in Refs. 3 and 5. An advantage of this approach is that super­
positions can be defined without assuming any underlying 
linear structure. In this way the properties of superpositions 
follow directly from those of the transition amplitude. If a 
state x is a superposition of a subset F, then x is orthogonal to 
every state that is orthogonal to F. In a certain sense, this 
means that as far as its transition amplitudes are concerned, 
x is determined by the elements of F. For example, if F is a 
subset of an A set, it follows that for every yES we have 

A(x,y) = 2: A (x,z)A (z,y). 
ZEF 

Recall that a tas (S,A) is a direct sum of two tas's 
(SI,AI) and (S2,A2) if S l nS2=0, S=SIUS2, and A: 
S xS -+C is defined by 

A (x,y) = {A; (x,y), if x,yES;. i = 1,2, 
0, otherwise. 

If the superpositon principle holds for a tas (S,A) then 
(S,A) cannot be isomorphic to a direct sum of two tas's. 
Indeed, let the superpositon principle hold and let (S,A) be 
isomorphic with a direct sum (SI EBS2,AI EBA2) of theTAS's 
(SI,AI) and (S2,A2)' Without any loss of generality, we may 
assume that (S,A) = (SI EBS2,AI EBA2). IfxESI, thenS2Cxo 
impliesxCS~. ThisimpliesthatxnS2 = 0, i.e.,xCSI. Sim­
ilarly, if yES2, then jiCS2. Now let xESI and yES2' Clearly, 
XEji and yEX. Let z be a minimal superposition of x and y. We 
have zESI US2. Suppose that zESI. Let UEXo. If uESJ> then 
UEyo, i.e., we have A (x,u) = A (y,u) = O. Aszisasuperposi­
tion of {x,y}, we obtain that A (z,u) = 0, so that ueD. If 
uES2, then we get again that A (z,u) = O. Therefore Xo CzO, 
i.e., ZEX, which contradicts the supposition that z is a mini­
mal superposition ofx andy. 

The proof of the following theorem can be obtained by 
essentially the same manner as has been used in Ref. 3. 
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Theorem 1.6: Let (S,A) be a tas with dimension of at 
least 4 which satisfies condition (I). Let the superposition 
principle and postulate of minimal superposition hold. Then 
there is a division ring g; with an involutive antiautomor­
phism 0: g; -+ g;, and a vector space rover g; with a Her­
mitian form f r X r -+ g;, such that the set .7 (S) is or­
thoisomorphic with the set .ff f( r) of alll-closed subspaces 
of r. (For the details concerning Theorem 1.6 see Ref. 3.) 
We recall that a subspace JI of r is / closed if Jloo = JI, 
where Jlo = {UEr:/(U,v) = 0 for all VEJI}. 

To conclude this section, we show some relations 
between the elements of.7 (S) and a representation of a tas. 
Let H be a complex Hilbert space. We say that a map ¢: 
S-+H is a representation of a tas (S,A), if A (x,y) = (¢(x), 
¢(y» for all x,yES and ¢(M)EJY'H for some M6ffA (see 
Ref. 1). Every tas admits a representation (see Ref. 1, 
Theorem 3.2). A tas (S,A) is strong if and only if all its 
representations are injective. If ¢: S -+ H is a representation, 
thenforanysetM6ffA , ¢(M)EJY' H [i.e., ¢(M) isa base for 
H]. 

Let (S,A) be a tas and let ¢: S -+ H be a representation. 
For any subset X of S we have 

¢(Xo) = ¢{yES: A (x,y) = 0 for every XEX} 

= ¢{yES: (¢(x),¢(Y» = 0 for every xEX} 

= ¢(X)l n¢(S), 

where ¢(X)l is the orthogonal complement of ¢(X) 
in H. Therefore ¢(X) = (¢(X)ln¢(Swn¢(S). From 
¢(X)ln¢(S) C¢(X)l we obtain ¢(X) :J¢(X)lln¢(S). 

Proposition 1. 7: Let (S,A) be a tas and let ¢: S-+Hbe a 
representation. Then for any event ECS, 

¢(E) = ¢(E)lln¢(S). 

Proof: Let ECM, MEJY'A' Then ¢(M)6ffH, i.e., any 
/EB has the form 

/= 2: (J,¢(z»¢(z). 
zeM 

Now let/e¢(E) 1 
• Then 

/= 2: (J,¢(z»¢(z). 
zeM-E 

IfyeE, thenylz for all zEM - E, so that for any /e¢(E)l, 

(¢(y),j) = 2: (J,¢(z» (¢(y),¢(z» = O. 
zeM-E 

Hence ¢(y)e¢(E)ll n¢(S). 0 
Corollary 1.8: If E = {ZI,z2, ... ,zn}is a finite eventofa tas 

(S,A), then xeE if and only if there are complex numbers 
CI,C2, ... ,cn such that {( - 1,x),(CI,zI), ... ,(cn,zn )}E nA • 

Proof' We have previously shown that the subset 
{(CI,zI), ... ,(cn,zn)} of CxS belongs to nA if 
1:7= I ciA (z;,x) = 0 for all xES (see Ref. 1). Now the closed 
subspace of H generated by the elements 
¢(ZI),¢(Z2), ... ,¢(zn ) is just the set ofalllinear combinations 
of these elements. If xeE, then Proposition 1.7 implies that 
¢(x)e¢(E)ll, but this implies that 

n 

¢(x) = 2:c;¢(z;) 
;=1 
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n 

A(x,y) - Lc;A(zoY) 
i=l 

n 

= (</J(X),</J(y» - Lc;(</J(z;),</J(y» 
;=1 

i.e., 

o 

II. DIVISION RINGS RELATED TO A tas 

In this section we investigate the division rings which 
can be related to tas's by Theorem 1.6. We shall show that 
only the subrings of the field of complex numbers can be 
realized. 

Theorem 2.t: Let ,g and ,g' be division rings and 'Y 
and 'Y' be vector spaces over ,g and ,g', respectively. Let 
the dimension of 'Y be n (n;>3). Let g('Y,,g) and 
g ( 'Y' ,,g ') be the lattices of all linear subspaces of 'Y and 
'Y', respectively, and let there be an injective lattice mor­
phism s: g('Y,,g)-.g('Y',,g') which maps atoms to 
atoms. Then there is a subdivision ring ,g; of ,g' such that 
,g and ,g; are isomorphic. 

Proof' LetxE'Y. We write 

,g·x = {dx: dE,g}, (2) 

and ,g' ·x' is defined similarly for X'E'Y'. If CE,g, and c#O, 
then,g·x =,g. (cx). SupposexE'Y,x'E'Y'. Wewritex-x' 
when and only when x#O, x'#O, s(,g·x) = ,g',x' (as S 
maps atoms to atoms, to any XE'Y, x # ° there is x' E'Y' such 
that x-x'). To continue the proof, we need a lemma. 

Lemma 2.2: Let XE'Y, X'E'Y', and let x-x'. Then, for 
any ye'Y withy#O and,g .y#,g ·X, there exists a unique 
y'E'Y' such that 

y-y' and x - y-x' - y'. (3) 

Proof' Let y" be some nonzero vector in S (,g 'y). Since S 
is a lattice morphism that maps atoms to atoms, it follows 
that for some a,bE,g', 

s(,g '(x - y») = ,g', (ax' + by"). 

Since ,g .y#,g 'X, ,g. (x - y) is distinct from both ,g·x 
and fij 'y, and since S is injective, a #0, b #0. Define y' by 

y' - (a-Ib)y". 

Theny'#O,y-y', and x - y-x' - y'. 
To prove the uniqueness of y', suppose that z' #0 is in 

'Y' such thaty-z', x y-x' - z'. Then for a,bE,g', which 
are both nonzero, 

z' ay', x' - z' = b(x' y'), 

from which it follows that 

x' = bx' + (a - b)y'. 

Since ,g',x' and ,g',y' are distinct, this implies that b = 1 
and a b = 0, so that a = 1. Hence y' = z' and this finishes 
the proof of Lemma 2.2. 0 

LetxE'Y,x'E'Y', and let x-x'. We define the mapping 
Tx•x• by 
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Tx.x·(O) =0, Tx.x'(Y) =y' if YE'Y, Y#O, ,g·x#,g·y, 
(4) 

wherey'E'Y'satisfies (3). Note that Tx•x ' is not defined for a 
nonzeroy unless,g .y#,g ·X. 

Since the dimension of 'Y is at least 3, we can choose 
three vectors u I,U2,U3 of'Y that are independent. Let u; E'Y' 
be such that U 1-u; and let ui ,u3 E'Y' be defined by 

ui = T . (uz), u~ = T . (u3 ). 
U1.U, U1.Ut 

It can be shown that the mappings Tx,x' have all the proper­
ties proved in Ref. 5 (Lemmas 3.4-3.8). As the proofs are 
literally the same; we shall not repeat them. We note that all 
that one needs to prove these lemmas is the fact that x',y',z' 
are independent provided x,y,z are independent. This is 
guaranteed by the properties of s. 

We can now define a mapping L of 'Y into 'Y' . We set 

LO=O. (5) 

If x # ° there will exist an integer i such that 1 <i < 3 and 
,g 'x#,g ·Ui • We then set 

(5') 

Again, similarly as in Ref. 5, we prove that L is well defined 
and LUi = u; for i = 1,2,3. Also, L is additive, i.e., if y and z 
are vectors of 'Y, then 

L(y+z) =Ly+Lz. (6) 

(See Lemmas 3.9 and 3.10 in Ref. 5.) 
We now examine the properties of L relative to scalar 

multiplication. Similarly as in Lemma 3.12 in Ref. 5, we 
prove that 

L(cx) =c"Lx 

for every XE'Y. Then a(c f---H:") is a well-defined map of ,g 
into ,g'. 

Lemma 2. 3: Let a(,g ) be the image of,g under a. Then 
a(,g) is a division ring and a(Cl---+c(7) is an isomorphism of 
,g onto a(,g). 

Proof' First we show that a: ,g ->,g' is a morphism of 
,g into,g'. Letx#Obein 'Y. Letc l ,c2E,g. Then Lx #0 and 

(c i +c2 )(7Lx=L(cl +cz)x) L(clx+czX) 

=L(cjx) +L(czX) = (cf +cnLx, 

so that 

(c l + c2 )" = cf + c~. 
Further 

(c jc2 )(7Lx = L (c i (czX» = cfL(czX) = cfc~Lx, 

so that 

(c j c2 )" cfc~. 

Now if cf = c~, then for x#O in 'Y, L(cjx) = L(czX), i.e., 
L(clx - czX) = 0. ButLy = ° if and only ify = 0. Therefore 
C j - Cz = 0, i.e., Cj = Cz. This proves that a(!iJ) is an iso­
morphic image of !iJ, and consequently a(,g) is a division 
ring. The proof of Lemma 2.3 is finished. 0 

To conclude the proof of Theorem 2.1, it is enough to 
set !iJ; = a(,g). 0 

In what follows, we shall use Theorem 2.1 to prove that 
the only division rings which can be related to a total tas 
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in the sense of Theorem 1.6 are the subdivision rings ofthe 
field of complex numbers. 

Theorem 2.4: Let (S,A) be a strong total tas with dimen­
sion of at least 4. Let there be a division ring fiJ with an 
involutive antiautomorphism (): fiJ -+ fiJ, a vector space 'lr 
over fiJ, and a Hermitian formf 'lrX 'lr -+ fiJ such that the 
set ..? f( 'lr) of all f-closed subspaces of 'lr is ortho­
isomorphic with the set Y (S). Then there is a subfield C I of 
the field of complex numbers C such that fiJ and CI are 
isomorphic. 

Proof' Let 'Y be a subspace of 'lr such that dim 'Y = n 
(n;;;.3). Let SIEY(S) correspond to 'Y. Since SI is finite 
dimensional, there is an orthogonal set ECS such that 
S I = E (see Ref. 2). Since (S,A) is total, E is an event. Then 
(SI,AE) is a strong, total tas. Without any loss of generality, 
we may assume that (S,A) = (SI,AE), and that YeS) is 
orthoisomorphic with the orthocomplemented lattice 
"?('Y) of all linear subspaces of 'Y. Let </J: S-+H be any 
representation. For a linear subspace JI C 'Y set 

5(JI) = </J (X) 11 , (7) 

whereXEY(S) corresponds toM. We shall showthat5is an 
injective lattice morphism from the subspaces of'Y into the 
subspaces of H, which maps atoms to atoms. Then, when we 
set fiJ' = C and 'Y' = H in Theorem 2.1, the proof of 
Theorem 2.4 will follow. 

Let xES. Since (S,A) is total, x is an event. By Proposi­
tion 1.7, 

</J(x) = </J(x)l1n</J(S) C</J(X)l1C</J(X)l1. 

Therefore 

</J(x)ll = </J(X)l1 = C·</J(x). 

Now if VE'Y, then to the atom fiJ . v of ..? ('Y) there corre­
sponds an atom x of the Y (S), so that 

5(fiJ 'v) = </J(X)l1 = C·</J(x). 

This shows that 5 maps atoms to atoms. 
LetJlI,Jlz be linear subspaces of 'Y. LetXI,Xz be the 

elements of YeS) corresponding to Jl I, Jlz, respectively. 
Evidently, 

5(Jl I ) V 5(Jlz) = </J(XI )l1 V </J(XZ)l1 C</J (XI V XZ)l1 

=5(Jl I VJlz)' 

Now let xEXI V Xz, xE£XI, xE£X2 • As XI and Xz are finite di­
mensional, there are x IEXI and xzEXz such that XE{XI,xz}­
(see Ref. 3). Let z I,zZ be an orthogonal base for {x I,xZ} - , 
i.e., {ZI'ZZ}- = {x1'XZ}- andzllzz (such an orthogonal base 
exists by Ref. 3). By Corollary 1. 8 we have 

</J(x l ) = al</J(zl) + az</J(zz), al,azEC, 

</J(xz) = bl</J(zl) + bz</J(zz)' b l ,b2EC, 

</J(x) = CI</J(ZI) + C2</J(ZZ)' CI,C2Ec' 

As </J(xl ) and </J(X2) are independent vectors in H, we can 
express </J (z I) and </J (zz) as linear combinations of </J (x I) and 
</J(x2), so that for some dl,dzEC, 

</J(x) = dl</J(x l ) + dz</J(Xz)E</J(XI )l1 V </J(XZ)l1. 

Thus we obtain that 

</J(XI V Xz) C</J(XI)l1 V </J(XZ)l1, 
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and hence 

5(Jl I V J(2) = 5(Jl I ) V (Jlz). 

For JlE..?('Y) we have Jlo = {UE'Y:j(U,v) = 0 for 
all vEJI}. If XEY(S) corresponds to JI, then XO corre­
sponds to Jlo. Then we obtain 

5(Jlo) = </J(XO)il. 

Let B be an orthogonal base for X. As (S,A) is total, there is 
M6/Y'A such that BCM. ThenXo =Bo = (M -B)-, and 

</J(Xo) = </J(X)ln</J(S) C</J(X)lC</J(B)l. 

As M6/Y'A' </J(M)6/Y' H, so that for every JER, 
/= I(J.</J(z»</J(z) + I (J.</J(z»</J(z). 

zeD ZEM-B 

Now ifjl</J(z) for allzEB, then 

j = I (J.</J(z) )</J(z), 
ZEM-B 

i.e., /E</J(M - B)l1. Therefore </J(B)lC</J(M - B)l1 
C</J(BO)l1 = </J(XO)l1. From this we obtain that 
</J(XO)l1 = </J(X) \ i.e., 5(Jlo) = </J(X)l = 5(JI)1. Now by 
de Morgan's law we obtain that 

5(Jl I /\Jlz) = 5(Jl I ) /\5(Jlz)' 

This proves that 5 is a lattice morphism. 
Let X = D, where B is an event. By Proposition 1.7 we 

have 
</J(X) = </J(E)l1n</J(S) C</J(E)l1, 

i.e., </J(X)llC</J(E)l1, and hence </J(E)l1 = </J(X)l1. Now if 
5(JI) = 5(J1i') , then </J(X)l1 = </J( Y)11, where X and Y cor­
respond to JI and J1i', respectively. As every finite-dimen­
sional element of YeS) belongs to deS), we obtain that 
</J(X) = </J(X)l1n</J(S) = </J(y)l1n</J(S) =</J(Y).Since</Jis 
injective, we get X = Y, i.e., JI = J1i'. This proves that 5 is 
injective. 0 

Example 1: Let H be a complex Hilbert space and let M 
(MCH) be an orthonormal base. Let us take all finite real 
linear combinations of the elements of M, and complete this 
set in H. We obtain a real Hilbert space, which we donote by 
H'. Let S= {xED': IIxil = 1} and A (x,y) = (x,y). Then 
(S,A) is a strong total tas. It is not difficult to check that the 
set Y (S) is orthoisomorphic with the set of all closed sub­
spaces of H'. Clearly, fiJ is the field of real numbers, 
(): R -+R is the identity, and the Hermitian form/is identical 
with the scalar product in H'. 

Example 2: Let H be a complex Hilbert space and let M 
be an orthonormal base in H. Let fiJ = {a + bi: a,b are ra­
tional numbers}. Evidently, fiJ is a division ring and the 
complex conjugation restricted to fiJ is an involutive antiau­
tomorphism. Take all finite linear combinations of the ele­
ments of Mover fiJ and denote it by 'Y. Let S = {XE'Y: 
x#O} and letA (x,y) = (x,y)/IIxil IIYII. Then (A,S) is a tas. 
If the dimension of S is finite, we can use the orthogonaliza­
tion method to prove that any maximal orthogonal set in S is 
at the same time a maximal linearly independent set in 'Y. 
This implies that (S,A) is total. 

The map </J: S -+H defined by </J(x) = xlllxll is a repre­
sentation. If we set j(x,y) = (x,y), then f 'Y X 'Y -+ fiJ is 
a Hermitian form, and A (x,y) = 0 ifand only ifj(x,y) = O. 
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III. STRONG SUPERPOSITION PRINCIPLE 

In this section we shall investigate the conditions under 
which the set Y (S) of all closed subsets of S, where (S,A) is 
a tas, is orthoisomorphic with the lattice Y (H) of all closed 
subspaces of a Hilbert space H. Evidently, we can concen­
trate our attention to total tas's. In what follows, we shall 
need the concept of an automorphism of a tas. A map J: S -+ S 
is an automorphism if J is a bijection and A (x,y) = A (Jx,Jy) 
for all x,yeS. 

We say that a strong superposition principle (SSP) holds 
in a total tas (S,A) if (i) for every x,y and u,v in S, such that 
x # y and u # v there is an automorphism J: S -+S such that 
{u,v}- = {Jx,Jy}-; and (ii) there is a representation 
t/>: S - H such that for some x,yeS, x # y, we have 

(>t/>({x,y}-) = {t/>(x),t/>(y)}l1 

[i.e., for every C),C2eC there exists a ceC andze{x,y}- such 
thatc)t/>(x) +C2t/>(y) =ct/>(z)]. 

Lemma 3.1: Let (S,A) be a tas and let J: S-S be an 
automorphism. Then for anyXCSwe haveJ(Xo) = J(X)o. 

ProolLetyeJ(Xo). Then there isxeX ° such thatJx = y. 
Since A (x,z) = 0 for all zeX, we obtain A (y,Jz) = 0 for all 
zeX, and henceyeJ(X) 0. On the other hand, ifyeJ(X) 0, then 
A(y,Jx) = 0 for every xeX. Let zeS be such that y =Jz. 
Then A (Jz,Jx) = 0 implies that A (z,x) = 0 for all xeX, and 
hence zeX 0. From this we obtain thatyeJ(Xo) , and together 
with the first part of the proof this proves that 
J(Xo) = J(X)o. D 

Lemma 3.1 implies that for any x,yeS, J( {x,y} - ) 
= {Jx,Jy}-. 

Lemma 3.2: If SSP holds for a total tas (S,A) then 
C't/>({u,v}-) = {t/>(u),t/>(v)}l1 for every u,veS such that 
u#v. 

Prool Letx,yeSbe such that for them (ii) of SSP holds, 
and let t/>: S-+H be the corresponding representation. Let 
u,veS be such that u # ii. By (i) of SSP, there is an automor­
phism J: S-S such that {u,v}- = {Jx,Jy}-. Then we ob­
tain 

t/>({u,v}-) = t/>({Jx,Jy}-) = t/>(J({x,y}-»). 

By Corollary 4.3 in Ref. 1, there exists a unique unitary oper­
ator U on H such that t/>J = Ut/>. Therefore, 

C't/>(J({x,y}-») = U(C't/>({x,y}-») 

= U({t/>(x),t/>(y)}l1). 

We have t/>(u),t/>(v)eU({t/>(x),t/>(y)}l1), and since 
t/>(u),t/>(v) are independent [in the opposite case we would 
have I (t/>(u),t/>(v» 1= IA(u,v) 1= 1, i.e., u = V, acontradic­
tion] , we obtain that 

{t/>(u),t/> (V)}l1 = U({t/>(x),t/>(y)}l1) = C·t/>({u,v}-). 
D 

Corollary 3.3: If SSP holds in a total tas (S,A), then the 
superposition principle holds. 

Prool Let us suppose that the superposition principle 
does not hold, and let u,veSbesuch thatu#vand {u,v} does 
not admit any minimal superposition. By the preceding 
statement, 

C't/>({u,v}-) = {t/>(u),t/>(v)}l1. 
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From the properties of H it follows that there is an element g 
in {t/> (u) ,t/> (v) }11 , which is contained neither in t/> (u) 11 nor 
in t/>(v)l1. As geC't/>({u,v}-), there is an element w in 
{u,v} - and ceC such that ct/> (w) = g. It is easy to see that w 
is a minimal superposition of {u,v}. D 

Since by Corollary 4.2 in Ref. 1 any two representations 
of a tas are unitarily equivalent, it follows that if SSP holds 
for a tas (S,A), then the condition (ii) is satisfied for any 
representation of (S,A). 

Theorem 3.4: If a total tas (S,A) satisfies the strong su­
perposition principle, then the set Y (S) is orthoisomorphic 
with the set Y (H) of all closed subspaces of a Hilbert space 
H. 

Prool Let t/>: S-H be any representation. Set 
C· t/> (S) = {ct/> (x): ceC, xeS}. Here SSP implies that C· t/> (S) 
is a linear subspace of H. Moreover, C·t/>(S) endowed by the 
scalar product inherited from H becomes an inner product 
space. Since (S,A) is total, every maximal orthonormal set in 
C·t/>(S) is a base, which by Ref. 6 implies that C·t/>(S) is 
complete, and therefore C·t/>(S) = H. 

For XeY (S) let 

p(X) = t/>(X)l1. 

Since (S,A) is total, we have t/>(X) = t/>(X)l1nt/>(S), and 
since C't/>(S) = H, we obtain that 

C·t/>(X) = t/> (X) 11 =p(X). 

For X, YeY (S) we have 

p(X 1\ Y) = C·t/>(X 1\ Y) = C·t/>(X) I\t/>( Y) 

= C·t/>(X) I\C·t/>(Y) =p(X) I\p(Y), 
and 

p(Xo) = C·t/>(Xo) = C·t/>(X)lnt/>(S) = t/>(X) I 

= (C·t/>(X»)I =p(X)I. 

If p(X) = p( Y), then t/>(X)l1 = t/>( Y)11 implies that 
t/>(X) = t/> (X) 11 nt/>(S) = t/>(Y)11 nt/>(S) = t/>( Y). Now 
IA (x,y) I = 1 implies that x = y. Therefore t/> (X) = t/> ( Y) 
implies that X = Y. This shows that p is an injective ortho­
isomorphism of Y (S) into Y (H). It remains to show that 
p is onto. For VeY (H) let 

X = {xeS: C·t/>(x) C V}. 

Since C·t/>(S) = H, we obtain that C·t/>(X) = V. Moreover, 

XO = {yeS:ylx for any yeX} 

= {yeS: t/>(y)lt/>(x) for any xeX} 

i.e., 
= {yeS: t/>(y)lV}, 

t/>(Xo) = vint/>(S). 

This implies that 

C·t/>(X o) = VI. 

Now if xeX, then xly for all yeX0, which implies that 
t/>(x)lt/>(Xo). But then t/>(x)lVl, i.e., t/>(x)eV. This shows 
thatxeX, and henceXeY(S). This completes the proof. D 

We close with some open questions. 
( 1) Do we obtain, by applying Theorem 2.1, that 

(c ll
)" = c", where an overbar denotes complex conjuga­

tion? This problem can be reduced to the following question: 

S. Pulmannova and S. Gudder 2398 



                                                                                                                                    

Is (Lx,Ly) in 0'( IP) for any x, yE V? If yes, then we define 
g(x,y) = (Lx,Ly)CT-I. We have!(x,y) = 0 if and only if 
IP ·xlIP .y, and this holds if and only if t(IP ·x)lS(IP .y), 
i.e., if and only if (Lx,Ly) = O. From this we obtain that 
g(x, y) = 0 if and only if lex, y) = 0, and g is a Hermitian 

form with respect to B defined by CO = ( cCT ) CT - I. We then 
obtain, from the von Neumann and Birkhoff theorem, that 

B = () and! = g, and hence (c8 )CT = CCT. 
(2) Is the tas in example 2 total if its dimension is infi­

nite? 
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In general, the less degeneracy the less transition. A principle for time­
dependent Hamiltonian systems in quantum mechanics 
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A principle in quantum mechanics is proposed: "In general, the less degeneracy the less 
transition." Mathematical support of this principle is given in a setting of a slowly varying 
time-dependent Schrodinger equation via a theorem of asymptotic decomposition. Formulas 
that quantitatively relate transition and degeneracy are developed. Ramifications of those 
formulas are discussed. 

I. INTRODUCTION 

In this paper we discuss the following question. To what 
extent does a general setting of quantum mechanics support 
the following principle: "In general, the less degeneracy the 
less transition?" Much of our effort revolves about support­
ing the above somewhat vague statement by an appropriate, 
concise mathematical analysis. We will derive an innocent 
mathematical formula that will produce, among other 
things, the principle mentioned above. It will be shown in the 
sequel that our analysis could be associated with the Jahn­
Teller effect, 1 with the adiabatic approximation theorem in 
quantum mechanics (see Born and Fock2

), and with a cer­
tain admissibility criterion of self-adjoint time-dependent 
Hamiltonian systems. 

The basic ideas are as follows. We will consider a setting 
of time-dependent slowly varying Hamiltonian systems that 
evolve in time according to Schrodinger's equation. The 
qualitative phenomenon of degeneracy will be associated 
quantitatively with the "amount" of degeneracy present in 
our system. Using a method of asymptotic decomposition 
proposed by Gingold3 and developed by Gingold and 
Hsieh,4,5 we will derive an asymptotic formula for the transi­
tion probabilities of evolving states. The "asymptotic size" 
of the transition probabilities as a function of the amount of 
degeneracy present in our evolving system will be indicated 
by some mathematical formulas. The asymptotic size of the 
transition probabilities will indicate for us the "amount of 
transition" present in a Hamiltonian system. Their interpre­
tation will lead us to the desired conclusions. 

The setting is as follows. Consider the evolution of the 
system 

ifzy' = H(lt)y, i =.J=T, d 
dt' 

(1.1 ) 

where fz is Planck's normalized constant. We make the fol­
lowing assumption. 

Assumption 1.1: l is a positive smallness parameter, 
O<l< 00. Let 

r=€t, H(r):=H(lt). (1.2) 

Here H ( r) is an n X n Hermitian analytic matrix function on 
the closed interval 0..;; r..;; 00 . 

Notice that for each finite time t, O..;;t < 00 we have 
Iim i _ O+ H(lt) = H(O). However, we allow H(O) =l=H( 00 ). 

It is in this sense that our system is "slowly varying." Evi­
dently, the Hamiltonian system (1.1) is equivalent to the 
system 

Notice that E -0+ if l-O+ orif fz-O+. 

d 

dr 
(1.3 ) 

An immediate consequence of our assumption is Rel­
lich's theorem.6 

Rellich's Theorem 1.2: Let Assumption 1.1 hold. Then 
H( r) possesses n orthonormal analytic eigenvectors 
ul(r),,,,,u n (r) on [0,00] that correspond to n real analytic 
eigenvalues (energy levels) EI (r), ... ,En (r). 

Thus the unitary transformation U(r) = [ul(r), ... , 
Un (r)], where U l (r), .... ,un (r) are column vectors, satisfies 

H(r) = U(r)E(r)U*(r), 

E(r) = diag[EI(r), ... ,En (r)], 

where lis the n X n identity matrix. 

(1.4 ) 
UU*=I, 

The state that evolves will be a column vector solution to 
( 1.3). Specifically we will be concerned with the set of states 
that evolve from the initial eigenstates. 

Apology: We intend to study Hamiltonians with multi­
degenerate energy levels. This is in spite of certain works like 
Hund7 and Von Neumann and Wigner8 which argue in a 
mathematical manner that level crossing or degeneracies of 
energy levels is an exceptional phenomenon. Let us point out 
the possible benefits of studying systems with degeneracies. 
First, if indeed degeneracies are exceptional we expect the 
exceptional to illuminate the common systems without de­
generacies. Second, transition probabilities for systems with 
close energy levels (even if noncrossing) can be better un­
derstood mathematically by assuming a limiting situation of 
degeneracies. Third, symmetry plays an important role in 
physics. Certain symmetries show up as degeneracies in cer­
tain configurations. Fourth, there is an interest in symmetry 
and degeneracy by physicists and chemists. The lahn-Teller 
work l is just one article on this subject area. For more details 
one can consult Knox and Gold,9 Nikitin,1O and Pearson. II 

The order of events in this article is as follows. In Sec. II 
we measure quantitatively the amount of degeneracy present 
in a Hamiltonian system. In Sec. III we classify Hamiltonian 
systems according to the type of degeneracy present and we 
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mention the availability of asymptotic decompositions. In 
Sec. IV we provide an asymptotic decomposition theorem 
which is a refinement of a theorem of Gingold and Hsieh.4 In 
Sec. V we derive our principle from certain mathematical 
relations. In Sec. VI we elaborate on a key mathematical 
relation and its ramifications. 

II. MEASURING DEGENERACIES AT EACH INSTANT 

In order to be able to relate transition and degeneracy 
we need to measure the degeneracies in our system ( 1.3) and 
to obtain an asymptotic decomposition for its solutions. To 
this end we introduce certain indices whose significance will 
become clear in the sequel. 

First we introduce an index d that will be associated 
with a pair of energy levels (E/ r), Ed r», j,k = l, ... ,n, 
j =/= k, at each ("scaled") instant 7 of the interval [0,00]. 
These indices will help us measure the amount of degeneracy 
present in a Hamiltonian system ( 1. 3 ). 

The index d is defined as the order oflevel crossing in the 
following precise way. 

Convention 2.1: Let (j,k ) be a fixed ordered set of in­
dicesj,k = l, ... ,n withj=/=k. We say that d = d( j,k,7) is the 
order of the (turning point) level crossing at Hor (j,k ) if in 
a neighborhood of a finite time 7, 

Ej(r) -Ek(r) = (r-7)dh(r). 

The mapping h ( r) is analytic at 7 and 

h(7) =/=0. 

(2.1 ) 

(2.2) 

We say that d is the order of the (turning point 00) level 
crossing at 7 = 00 if 

Ej(r) -Edr) =r-dh(r). 

The mapping h ( r) is analytic at 7 = 00 and 

h(oo)=/=O. 

(2.3 ) 

(2.4) 

In other words d is the order of zero of [E j ( r) - E k ( r) ] 
at 7. 

If 

Ej(r) -Ek(r)=O, 

we set 

d(j,k,7) = 00 

for all times 7, 0.;,;; 7';';; 00 . 

(2.5) 

(2.6) 

Notice that by the above convention d = 0 at 7 implies 
that at 7 no level crossing occurs. Let 

R = (rjk ) = - U*U', j,k = l, ... ,n. (2.7) 

For a given ordered pair (j,k), we denote by e = e(j,k,7) 
the order of zero of rjk (r) at 7. If rjk (7) =/=0 we set e = o. If 
rjk (r) =0 on [0,00] we set e = 00 for all points 7 of [0,00]. 

It is an easy exercise to verify that rjk ( r) = - r kj ( r) , 
j,k = l, ... n, since Uis a unitary operator. Therefore e(j,k,7) 
= e(k,j,7). 

Finally we denote by m an "index oflocal perturbation" 
for each pair (j,k ) at each time 7, 0.;;; 7';';; 00, as follows: 

m = (e + l)/(d + 1). (2.8) 

If e = 00 and d = 00 then we define m to be m = 00. Thus 
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our index oflocal perturbation is defined for all e and d in the 
range 

III. CLASSIFICATION OF SELF-ADJOINT 
HAMILTONIAN SYSTEMS 

(2.9) 

It is natural to distinguish among a few classes in the 
family of systems (1.3) with discrete e~ergy levels. The dis­
tinction could be based on the index d defined in Sec. II. 
Given a Hamiltonian system (1.3) together with (1.4) we 
distinguish among the following classes. _ 

Convention 3.1: Class I: Nondegenerate. Namely d = 0 
for all times 0';';;7';';; 00 and allj,k = l, ... ,n,j=/=k. 

Class II: Accidentally degenerate. Namely, for at least 
one pair of energy levels Ej (r) and Ek (r),j,-k = l, .. ,n,j=/=k 
we have at least one time 0.;,;; 7';';; 00 such that d> O. However, 
we never have d = 00. 

Class III: Partially totally degenerate. Namely, at least 
one pair of energy levels Ej (r) and Ek (r),j,k = l, ... ,n,j=/=k 
are identical for all times. At least one pair of energy levels 
are not identical. 

Class IV: Totally degenerate. Namely, all energy levels 
are identical to one value E 1 ( r) for all times. It is easily 
verified that then H( r) = EI (r)l, where 1 is the identity 
operator. 

Even though one may believe that classes III and IV 
rarely occur in applications, the above classification is useful 
for the sake of the completeness of a mathematical discus­
sion. It is evident that for dimensions n>2 the classification 
above divides all Hamiltonian systems into four mutually 
exclusive classes. 

An asymptotic decomposition theorem for solutions of 
Hamiltonian systems (1.3) as E ...... O+ could be instrumental 
to the understanding of the evolution of time dependent self­
adjoint Hamiltonian systems. However, such a theorem, 
which comprehensively covers all four classes of Hamilto­
nians, has not been seen in the literature until recently. 

If a Hamiltonian system (1.3) belongs to the class of 
nondegenerate or the class of totally degenerate Hamilto­
nians then a comprehensive asymptotic decomposition for 
their solutions can be extracted from the available literature. 
Moreover, even in the case thatH( r) is infinite dimensional 
and is twice continuously differentiable such that 

(3.1) 

a combination of methods that includes a tool of Kato l2 can 
be used to obtain a comprehensive asymptotic decomposi­
tion. Compare also with Messiah, 13 Chap. XVII. Evidently 
the case of a totally degenerate Hamiltonian is trivial. All 
solutions of 

iEY' = E\ (r)ly 

have the form 

y = (exPUE)-\ iT E\(rJ}d'Y] )IC, 

(3.2) 

(3.3 ) 

where c is a constant initial vector. An asymptotic decompo­
sition for special cases of Hamiltonians that pertain to class 
II, namely of accidental degeneracy, can be extracted from 
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Born and Fock,2 Kato,12 and Friedrichs. 14 The most diffi­
cult class that remains is the class of partially totally degen­
erate Hamiltonians. 

Recently Gingold3
•
15 provided a comprehensive asymp­

totic decomposition for two-dimensional Hamiltonian sys­
tems. "Invariant" asymptotic formulas and asymptotic de­
compositions in a generalized sense were developed. 
Gingold and Hsieh4 managed to obtain a complete asympto­
tic decomposition for most general accidentally degenerate n 
dimensional self-adjoint Hamiltonian systems. A formula­
tion of an asymptotic decomposition theorem that covers all 
four classes of Hamiltonians including the class of partially 
totally degenerate Hamiltonians can be found in Ref. 16. 
The details of the proof are given in Gingold and Hsieh.5 The 
analysis in Refs. 3, 4, 5, and 15 reinforces the fact that 
asymptotic expansions infractional powers of E playa basic 
role in systems with accidental degeneracies. It also points 
out the fact that traditional asymptotic decompositions 
could be impossible to get in systems which belong to the 
partially totally degenerate class. An alternative to the tradi­
tional method of stationary phase is also developed in those 
articles. This alternative method does not resort to integra­
tion in the complex plane. 

A refinement of the theorem in Gingold and Hsieh4 will 
be elaborated upon in the next section. It will serve us in our 
present study. 

IV. A THEOREM OF ASYMPTOTIC DECOMPOSITION 

Given a system (1.3) we have the following theorem. 
Theorem 4.1: Let the slowly varying Hamiltonian sys-

tem 

iEY' =H(r)y (4.1 ) 

satisfy Assumption 1.1 and be accidentally (or non-) degen­
erate. Then the general solution of ( 4.1) is given by 

y= U(r) [exP(iE)-1 f D(1])d1]](I+p(r,E))C, (4.2) 

where U( r) is a unitary analytic matrix function on [0,00] 
which satisfies the relations (1.4). Here D( 1]) is a certain 
real valued diagonal matrix to be elaborated upon in the 
sequel, and I + P( r,E) is an n X n invertible and continuous 
matrix function in the domain 0..; r..; 00, O";E < 00, such that 

P(O,E) = 0, IIP(r,E)II..;KEm for O<E< 1, (4.3) 

where II II is the induced Euclidean norm. Here K is a non­
negative fixed number independent of rand E, and m is char­
acterized by 

m = inf[ (e + 1 )/(d + 1)] = inf(m). (4.4 ) 

The infimum is taken over all pairs of indicesj,k = 1, ... ,n, 
j =/= k, and all points 7, 0";7"; 00, according to Sec. II. 

Proof The proof follows by a slight modification of the 
treatment in Gingold and Hsieh.4 Rather than repeating the 
details we will outline here the basic features. One may dis­
tinguish two stages in the process of asymptotic decomposi­
tion. In the first stage a linear transformation is applied. 
Thanks to Rellich's theorem6 the existence of a linear uni­
tary and analytic transformation U( r), which satisfies 
( 1.4 ), is guaranteed. Then the transformation 
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y=U(r)v 

takes the differential system (4.1) into 

iED' = [E(r) - iEU·U']V, 

(4.5) 

(4.6) 

where v is an n column vector. The coefficient matrix of the 
differential system (4.6) is rearranged into a diagonal and an 
off-diagonal part as follows. The diagonal part D( r) is given 
by 

D(r) = D = E + iE Diag[gl, ... ,gn], 

where 

Diag [gl, ... ,gn]: = - Diag( U·U'). 

The off-diagonal part is given by 

(4.7) 

(4.8) 

R = (rjk ) = - U·U' + Diag( U·U'), j,k = 1, ... ,n. 
(4.9) 

Notice that by this arrangement 

E-iEU·U'=D+iER, rjj=O, j=I, ... ,n. (4.10) 

In the second stage of an asymptotic decomposition we first 
solve for an approximate n X n fundamental diagonal matrix 
solution V, 

iEV'=DV, V=exp(iE)-1 fD(1])d1]. (4.11 ) 

Then we set 

v = V(l +P)c, (4.12 ) 

where c is a constant vector and P is a certain n X n "small 
perturbation matrix" as E -+ 0+. Consequently P satisfies the 
matrix differential equation 

(l + P)' = V-1RV(l + P). (4.13) 

Moreover, it can be shown that the existence of a solution to 
the initial value problem determined by ( 4.13) and 
P(O,E) = 0 is guaranteed if the integral equation 

P=L1+L 21+L 2p, (4.14) 

with 

LP(r) = foT V- 1RVPd1] (4.15 ) 

possesses a solution with the desired properties. Indeed this 
is the case under our assumptions. It turns out that L 2 is a 
contraction and that L1 and L 21 tend to zero uniformly for 
O";r"; 00 as E-+O+. Those conclusions can be shown by esti­
mates on terms of the form 

f(r) = iT rjk (s) {exP(iE- 1) f[(Ej(U) -Ek(u)) 

+ iE(gj(U) -gk(U))]dU}dS, ( 4.16) 

j,k = 1, ... ,n,j=/=k, as E-+O+. It is from such terms that the 
role of the indices d, e, and m is revealed. For more details see 
Ref. 3 and Gingold and Hsieh.4 The entries of the matrix P 
can be approximated to any level of accuracy by ~~ ~ ~L vI, 
where N is a non-negative integer. 

A good estimate on the size of the transition probabili­
ties depends on estimates on the entries of the matrix P. They 
are provided by Theorem 4.1. 

We stress again that the importance of relation ( 4.3) lies 
in the fact that the bound K~ is uniform for all 0..; r..; 00 . 
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V. SMOOTHNESS OF EIGENSTATES, TRANSITION, 
AND DEGENERACY 

The purpose of this section is twofold. The first task is to 
show rigorously that although we need to assume an amount 
of smoothness on the entries of H( 1') in order to carry out an 
asymptotic analysis, we need not assume from the outset 
that the eigenstates themselves are smooth. This is relevant 
to our second task, which is to relate quantitatively in an 
asymptotic sense the concepts of transition and degeneracy. 

Assume that the n normalized eigenstates of H( 1') are 
the column vectors of the unitary matrix 

U(T) = [U I (T),U2 (t) •... ,Un (T)] 

which satisfies 

H(T) = U(T)E(T)U*(T). 

Then, the solution to the initial value problem 

icy} =H(T)Yj' Yj(O) =uj(O) 

is given by 

Y j (1') = U( 1') [exp IT UE) -ID(S)dS] 

X (l + P) U*(O) U(O)ej , 

where e j is thej column of the identity operator. 

(5.1 ) 

(5.2) 

(5.3 ) 

(5.4 ) 

It is an easy exercise to verify that the matrix function 
U*(T)U(T) is unitary and diagonal. This is thanks to the 
assumption that H( 1') belongs to the accidental degeneracy 
class. Thus 

U( 1') = U( T)exp(iO( 1')], 

where 

0(1') = diag[OI(T), ... ,On (1')]. 

(5.5) 

(5.6) 

The mappings OJ (T).j = 1, ... ,n. are certain real-valued map­
pings. 

Let us combine (5.5) with (5.4). Then the solution 
Yj (1') to the initial value problem (5.3) is given by 

Yj(T) = U{t)[exp{iO(T)}] [exPUE)-1 [ D(S)dS] 

X [/ + P ][exp - iO(O) ]ej" (5.7) 

One may question why it IS that from the outset we did 
not produce the transformation 

Y = U(T)V (5.8) 

rather then the transformation (4.5). To answer this we 
need to remember that U( 1') was guaranteed to be analytic. 
This was crucial for the derivation of (4.6). However. it will 
tum out that we need not restrict ourselves from the outset 
with the assumption that the eigenstates themselves are 
smooth or analytic. 

From (5.7) we conclude that for certain scalar coeffi­
cients C j/ (T,E), 1= 1, ... ,n, we have 

n 

Yj(T) = I Cj/(T,E)U/(T), j= 1, ... ,n. (5.9) 
/=1 

Let us calculate the probability q~ of the statejto continue to 
evolve in the statej. Let us also calculate the transition prob­
ability q~ of the state j to evolve into the state k. Combining 
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the superposition principle (see, e.g., Liboffl7 Chap. 5) with 
our formulas (5.9) we obtain 

. 2 11jl211 +Pii1
2 

q~=ICii(T,E)1 = - 2 2 - 2 
IAjl 11 + Piil + 1:7= tlA/pljl 

/ ""j 

(5.11 ) 

The denominators in (5.10) and in (5.11) are identically 1 
because 

(y1( T),y j (1'») =( yj (O)'Yj (0») = (u1(0),uj (0») = 1. 
(5.12) 

The entries 11"")n are given by 

diag [ll"")n] = exp(iE) -I iT D(s)ds. (5.13) 

Notice that by our assumptions [E( 1') - iEU*( 1') U t
( 1')] is 

also a Hermitian operator and therefore 

11jl = 1, j= 1, ... ,n. (5.14) 

By (4.3) we conclude that each entry P jk of the matrix P 
satisfies 

(5.15) 

It is evident from formulas (5.10), (5.11), and (5.15) that 
the larger m is the closer to 1 is the probability q}, in an 
asymptotic sense as E ...... O+ , for each statey j (1') to stay in the 
eigenstate U j ( 1'). This is so because (5.15) implies that 

q~ = 1 - o(~m), q~ = o(~m), k =/=j, j,k = 1, ... ,n. 

(5.16) 

Evidently at l' = 0, 

q~ = 1, q~ = 0.. (5.17) 

It is the size of the transition probabilities and their variation 
with l' and their dependence on E which we intend to utilize 
as a measure of the transition in a slowly varying time-depen­
dent quantum mechanical system. Thus we can refer to the 
transition of one particular eigenstate uj by analyzing q~. We 
can refer to the transition of the Hamiltonian system as a 
whole by refering to all the eigenstates uj (1') and to their 
probabilities q~,j = 1, ... ,n. We discuss the simultaneous 
transition of all eigenstates. Before we continue with our 
discussion it is worthwhile to point out that a straightfor­
ward well-known calculation reveals that the values of the 
transition probabilities q~, q; are independent of the value of ° ( 1') in (5.5). Since, from now on, we will mainly be con­
cemed with the values of the transition probabilities of non­
degenerate or accidently degenerate Hamiltonians, we will 
assume without loss of generality that 

0(1')=0, U= U. (5.18) 

We are ready now to justify our principle: "In general, 
the less degeneracy the less transition." 

Consider first the class of Hamiltonians (1.3) for which 
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the off-diagonal entries of U * ( r) U' ( r) are identically O. In 
such a class, regardless of the amount and order of level 
crossings, it is an easy exercise to verify that the transition 
probabilities are independent of time and that 

q}=I, qf=O, j=/=k, j,k= 1,2,.... (5.19) 

"In general" means that in the larger family of Hamiltonian 
systems (1.3) the above class of systems is exceptional. 

We turn to the" general case. " We view now a Hamilto­
nian H( r) given by (1.4) as composed of two independent 
parts. The one is a set of n orthonormal eigenvectors that 
make up the unitary operator U( r). The second part is the 
matrix of energy levels E ( r). 

Consider two Hamiltonian systems (1.3) with coeffi­
cient matrices HI (r) and H 2( r), respectively, such that 

HI(r) = U(r)EI(r)U*(r), H 2(r) = U(r)E2(r)U*(T). 

(5.20) 

Then HI ( T) and H2 ( T) share the same set of eigenstates 
but they could differ in their energy levels in a manner to be 
specified below. Also, thejth states that evolve are, respec­
tively, 

Yj = U(T) [exP(iE)-1 f' D('T/)d1]] (l+ PI)ej , (5.21) 

Yj = U(r) [exP(iE)-1 iT D(1])d1]](l+P2 )ej" (5.22) 

The matrix PI = (P}k) pertains to the initial value problem 

iEYj=HtYj' Yj(O)=Uj(O). (5.23) 

The corresponding transition probabilities will be denoted 
by q}l, q~I' In an analogous and obvious manner we will 
have the matrix P2 = (P]k ),j,k = 1, ... ,n, together with the 
transition probabilities q~2 , q~2 related to 

iEY; = HlYj' Yj(O) = uj(O). (5.24) 

Moreover, with" " denoting the induced Euclidean 
norm we have 

(5.25) 

where m l and m 2, KI and K2, have, respectively, the same 
meaning as in (4.4). Denote by dl (j,k,r) and by d2 (j,k,-T) 
the order oflevel crossing in (5.23) and (5.24), respectively. 
Assume that for allj,k,r we have 

dl (j,k,r) <d2 (j,k,r), (5.26) 

and that for one specific tripletj,k,r, we have 

d l (j,k,r) < d2 (j,k,r), e(j,k,r) =/= 00. 

By the definition of the indices m I' m2 we have m 2 < m I and 
therefore for 0 < E « 1 we have Em, > ~'. Obviously, 

n 

I qt = D(em
,), j,k = 1, ... ,n, 

j= I 
j'1'k 

n 

(5.27) 

I q~2 = D(em
,), j,k = I, ... ,n, (5.28) 

2404 

j=1 
j'1'k 

q}1 = 1 - D(em
,), q~2 = 1 - D(em

,), as E-+O+. 
(5.29) 
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It is in this sense that we propose the principle: "In general, 
the less degeneracy the less transition." It is in this sense that 
Gingold and Hsieh4 proposed: "In general, the less degener­
acy the closer is the state which evolves to its initial eigen­
state." 

The index m in (4.3) could be too crude a yardstick to 
relate degeneracy and transition quantitatively. The fact 
that P = 0 in (4.2) implies that the transition probabilities 
satisfy q} = 1 and q~ =O,j,k = l,oo.,n,j=/=k, and consequent­
ly See) defined by 

(5.30) 

is a good measure of the amount of transition in a Hamilto­
nian system. However, P( T,E) is a solution of an integral 
equation and in general is obtained via a laborious process of 
approximations. Mathematical considerations show that 
LI = Oin (4.14) impliesP = O. Moreover, all of the degener­
acy indices d, the indices e, m, and the index m can be ob­
tained (read off) from LI. This can be seen in detail in Refs. 3 
and 4. Therefore we suggest the following measure of degen­
eracy SI (E): 

SI(E) =E- 2 ± If'" rjdT,E) [exP(iE)-1 r [(E j (1]) 
j,k= 1 Jo Jo 
j'1'k 

- Ek (1])) + iE(gj (1]) -gk (1]))]d1] ]dT12 

(5.31) 

Recall that the entries r jk ( T,E) are defined by (2.7) and that 
theentriesg j are defined by (4.8). We remark on the follow­
ing. IfH( r) is nondegenerate then m> 1 in (4.3) andSI (E) is 
a bounded function of E as E -+ O. In general, if the off diag­
onal entries of U*U' are not all zero andH( r) isnondegener­
ate then m = 1 and SI (E) is a bounded function of E as 
E-+O+. If H(r) is degenerate then in general SI(E) is an 
unbounded function of E as E -+ 0 + . If the off-diagonal entries 
U*U' are identically zero then m = 00 andSI (E) =0. 

Our analysis seems to reinforce the Jahn-Teller effece if 
we are willing to accept that less transition implies more 
stability. Jahn and Teller l investigated the conditions under 
which a polyatomic molecule can have a stable equilibrium 
configuration when its electronic state has orbital degener­
acy, i.e., not arising from the spin. They applied group the­
ory to perturbation calculations and concluded that "orbital 
electronic degeneracy and stability of the nuclear configura­
tion are incompatible unless all the atoms of a molecule lie on 
a straight line." It is interesting to note that our principle is 
obtained in a general and different setting using different 
methods. In addition we produced a quantitative relation 
which associates transition and degeneracy. 

VI. RAMIFICATIONS OF A MATHEMATICAL FORMULA 

The asymptotic decomposition (4.2) is associated with 
the mathematical relations 

IIPII<K~, P=(Pjk)' iPjkl<K~, j,k=l,oo.,n, 

(6.1 ) 
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where Pmay be considered in (4.2) as a transition probabili­
ty matrix by virtue of the relations 

q~ = ICii(-T,E) 12 = 11 +PiiI 2 = 1 +O(cm
), (6.2) 

q~ = Icjdr,E) 12 = IPjkI 2 =0(cm
), I=I=k. (6.3) 

The clue to the derivation of the principle "In general, the 
less degeneracy the less transition" is an innocent looking 
relation 

m = Inf[ (e + 1) / (d + 1)], (6.4 ) 

where the infimum is taken over all pairs of energy levels 
(Ej (r),Ek (r» and entries r jk, 

(r jk ) = - U*U' + Diag( U*U'), j=lk, j,k = 1, ... ,n, 

(6.5) 
at all points 7, 0';;;7';;; CIJ, as explained in Secs. II-V. It seems 
that the relation (6.4) [together with (6.2) and (6.3)] is 
capable of generating several additional clues. 

(i) The relation (6.4) indicates by the presence of e that 
"the transition in a slowly varying system (1.3) depends on 
the smoothness properties of one set of orthonormal eigenvec­
tors of H( r)." This statement is better understood by recall­
ing that e denotes an order of zero of r jk' j =I k in (6.5). 
Notice that the r jk depend on the smoothness of U. 

(ii) The exceptional case, which is termed in our princi­
ple "in general," is also adequately described by (6.4). Be­
cause then we have r jk = 0 for j =I k and by the convention of 
Sec. II we have e(j,k,7) = CIJ for all j,k,:r. Consequently, 
m = CIJ and ~ = 0 is the right interpretation for 0 < E < 1. 
This indeed implies that for all times q~ = 1 and q~ = O,j =I k. 

(iii) The formula (6.4) establishes the validity of the 
adiabatic approximation theorem in quantum mechanics for 
nondegenerate and accidentally degenerate Hamiltonians 
H ( r). This theorem can be traced back to Ehrenfest 18 and to 
Born and Fock. 2 We recall that a version of the adiabatic 
approximation theorem in quantum mechanics states the 
following: "In a slowly varying time-dependent Hamilto­
nian, a state Y j which evolves from an eigenstate uj (0) will 
continue to evolve asymptotically as E -+0+ in the eigenstate 
uj (7) for all times." Compare, e.g., with Mesiah,13 Chap. 
XVII and with Liboff,17 Chap. 5. Proof of the theorem for 
special cases of degeneracies were given by Born and Fock,2 

Kato12 and Friedrichs. 14 A complete proof in the case that 
H( r) is finite dimensional and belongs to the class of acci­
dentally degenerate Hamiltonians was given in Ref. 3 and 
Gingold and Hsieh.4 The proof boils down to showing that 
asymptotical-ly q~-O,j=lk, q~-l as E-+O+. The proof is 
indicated by (6.4) where we have under the above circum­
stances 

M = Inf(~ + 1) = Min(~ + 1) = ~t + 1 >0 (6.6) 
d+1 d+l d t +l 

for a certain pair of numbers d t and et . 
(iv) But is the adiabatic approximation theorem true 

for all four classes of Hamiltonians? A hint towards its inva­
lidity is given again by our innocent relation (6.4). If not all 
e(j,k,7) satisfy e = CIJ we could obtain m = 0 if some 
d(j,k,7) = CIJ. In other words we may have q~ -0(1) as 
E-+O+ rather than qk -0(1) as E-+O+ iffor some choice of J _ 

the parameters j,k,7 we have d(j,k,7) = CIJ. By Sec. II, 
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d = CIJ ifforj=lk we have E j (7) - Ek (r) =0. Indeed, Gin­
gold 16 took up this hint and produced a counterexample to 
the adiabatic approximation theorem for a Hamiltonian that 
possesses two identical energy levels. A generalized version 
of the theorem was also offered in Ref. 16. It is then natural 
to ask what indications we can get from (6.4) if H ( 7) is an 
infinite-dimensional Hermitian operator operating on ~ Hil­
bert space? It will be shown elsewhere that then if Sup d < CIJ 

(namely the total order of degeneracy is bounded) and if 
certain additional conditions hold then we will still have 
m > 0 in (4.6). Otherwise, we would speculate that m = 0 
and that the adiabatic approximation theorem may not hold 
even if H ( r) belongs to the class of accidentally degenerate 
Hamiltonians. 

(v) Admissibility of H ( r). Assume that we deal with an 
evolving Hamiltonian system that pertains to a quantum me­
chanical system which satisfies the following. 

Postulate 6.1: The quantum mechanical system is such 
that it tends after a long time to settle into a "most stable" 
configuration. 

In other words our principle "In general, the less degen­
eracy the less transition" is not a consequence of mathemat­
ical manipulations but is a result of the characteristics of 
mother nature. What use can we make of (6.4) then? As­
sume that our Hamiltonian is such that e(j,k,7) =I CIJ for 
j,k,7. Let the matrix U( r) be fixed in advance. Assume that 
we are willing to accept "more stability" as "less transition." 
Then, in order to guarantee more stability after a long time 
the combination of Postulate 6.1 with (6.4) indicates a re­
striction on the values of d(j,k,7) at times 7 large en<,?ugh. 
For 7 large enough, d need not exceed the values of d for 
0,;;; 7 = Et,;;; y, where y is a certain finite number. Thus (6.4) 
could be used for obtaining admissibility conditions on 
H(r). 

(vi) Design of quantum mechanical systems can be aid­
ed by (6.4) and in particular by the principle proposed. As­
sume that we need to design certain quantum mechanical 
systems that evolve according to (1.3). Suppose that our 
systems are such that we can write the Hamiltonians H( r) 
for various possible 'designs. If we are interested in a most 
stable design we would choose an H ( r) that is either nonde­
generate or possesses accidental degeneracies and is such 
that the off-diagonal entries of U * U' are identically O. If this 
is impossible, we will create a design with energy levels that 
are separated as much as possible, to make m in (6.4) the 
largest. This is in accordance with the principle proposed. 

It is worthwhile to mention that Theorem 4.1 and (6.4) 
could be related to problems regarding adiabatic invariants 
discussed in Wasow. 19 A recent research text on linear turn­
ing point theory is Ref. 20. 
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General properties of the transmission coefficient of an ideal, one-dimensional potential barrier 
of arbitrary shape are studied. It is proved that an arbitrary symmetric barrier is perfectly 
transparent for at least one energy in each energy band of the related band problem, where the 
barrier potential is periodically continued on the whole real axis. Recursion relations are 
obtained for transmission coefficients of barriers consisting of 2k structural units. They are 
used in a simple proof showing that transmission coefficients of finite barriers composed of m 
identical arbitrary structural units have chaotic behavior for almost all energies for m -+ 00 in 
each energy band. There exists, however, becoming more dense with m, a countable set of 
energies in each energy band where finite repeated barriers are perfectly transparent. The 
results are illustrated by a numerical example. 

I. INTRODUCTION 

The problem of quantum particle passage through a po­
tential barrier still receives considerable attention, mostly 
due to the continued progress in tunneling spectroscopy 
methods and the possibility of creating a large variety of 
artificial layered microstructures (quantum devices). 1 Be­
sides the well-known studies of tunneling through some 
model random potentials originated by Lifshitz and co­
workers,2 recent theoretical investigations have been con­
centrated on tunneling in superconductors3 and the related 
general tunneling problem with energy dissipation.4 Much 
attention has also been paid to the tunneling dynamics in the 
presence of external electric and magnetic fields. 5

-8 

It may seem that the simplest, nondissipative stationary 
tunneling problem with its mathematics essentially coincid­
ing with the more than 100 year old Sturm-Louville prob­
lem is a closed subject to be presented in introductory quan­
tum-mechanical texts, discussing standard exact solutions 
and equally well-known approximate methods like quasi­
classical approximation. However, the group structures re­
lated to ideal one-dimensional barriers were only very re­
cently investigated9 with interesting applications. The 
one-dimensional Schrodinger equation also remains a sub­
ject of continuous mathematical investigations, 10 with many 
quite recent important results. 

In this paper we prove five simple lemmas describing 
analytic properties of the transmission coefficient for a gen­
eral class of one-dimensional potentials with compact sup­
port. Section II contains necessary preliminaries. Although 
its contents can hardly be claimed new, it still gives, in our 
opinion, the most concise description of the tunneling prob­
lem (see also Sec. VI where some other pedagogical advan­
tages of this approach are clearly seen). In particular, we 
emphasize the relation between the tunneling problem and 
the band problem for a periodic potential with a "unit cell" 
coinciding with the single barrier shape. Two comparison 
lemmas in Sec. III describe analytic properties of the trans-

mission coefficient at low energies (below the lowest poten­
tial energy in the barrier region). Section IV is devoted to an 
elementary discussion of the necessary and sufficient condi­
tions for a complete barrier transparency at some energies. 
The main result (Lemma 3) shows that the localization of 
the complete resonances (transparency equal to 1) on the 
energy axis furnishes some information concerning the band 
structure of the related infinite periodic solid. The complete 
resonances are also always present for barriers composed of 
2k identical structure units. They are discussed in Sec. V, 
where a two-variable iterative map is obtained for such a 
sequence of barriers, with one component being just a logis­
tic map in the chaotic and ergodic regime. This implies that 
the approach to the perfect transparency in the allowed ener­
gy bands for such sequences of barriers is quite specific, with 
a dense set of complete resonances interlocked by local mini­
ma. The concluding Sec. VI contains some applications and 
numerical illustrations for some model potentials. 

II. PRELIMINARIES 

A. Transfer operator In terms of fundamental solutions 

Consider the one-dimensional Schrooinger equation 

"'" + (€ - U(x»)", = 0 (fill2m = 1, xeR), (1) 

where the potential U is an arbitrary, piecewise continuous, 
real, bounded function with compact support (U(x) =0 out­
side of a given interval [O,L]). The tunneling problem con­
sists of finding all C I solutions of Eq. (1), parametrically 
dependent on Ee(O, + 00), and behaving as expUEI/2x) 
+aexp( -iEI/2X) forx<Oandascexp(i€1/2x ) forx>L 
(the case of a normalized particle particle beam incident 
from the left). Introducing the variable: 5: = 1//, one may 
consider the equivalent canonical system 

"" = 5, 5' = (U(x) - E)"', 

or, in the matrix notation, 

(2) 
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",' = G(X;E)"', '" = (~,), (3) 

where the generator G is the traceless 2 X 2 operator 

G(X;E) = (U(~) _ E ~). (4) 

Together with G one may also consider "evolution" or 
"transfer" operators defined on the solution set by 

",(x): = M(X,xo;E)"'(Xo)' (5) 

[Below we will often set Xo = 0, x = L and then use an ab­
breviated notationM(L,O;E) =M(E) for this type of transfer 
operator and other related quantities.] OperatorsM(x,xo,E) 

are real and unimodular. The simplest way to prove it is to 
consider the fundamental solutions of Eq. (3) obeying the 
initial conditions 

(6) 

[and thus having the Wronskian W(¢I,¢2) = 1]. It is well 
known that these solutions are both real, for real E and U. As 
¢I and ¢2 form the natural, canonical basis in the solution 
space at the point xo, the transfer operator can be written in 
terms of these solutions 

(7) 

which completes the proof. 
Representation (7) reduces the tunneling problem to 

the solution of the Cauchy problem at x = ° or, if conve­
nient, for some other intermediate points, with a product 
transfer operator and an automatic solution matching at 
these points. The resulting group structure of transfer opera­
tors (in several different forms from the above-presented 
representations) has been thoroughly investigated in Ref. 9. 
Below we will show that this representation is extremely use­
ful in studying the analytic properties of the transmission 
coefficient lel z (also called the "barrier transparency"), as 
well as in the numerical calculations. 

B. Transfer operator in terms of arbitrary solution basis 

Let 4>1,4>2 be two arbitrary, linearly independent solu­
tions ofEq. (1) in the [O,L] interval. The fundamental solu­
tions ¢I' ¢z and their derivatives (matrix elements of the 
transfer operator) can be easily expressed in terms of 4> I and 
4>2: 

¢I(X;E) = W- I(4)I,4>2H4>2 (O,E)4>I(X;E) 

- 4>; (0;E)4>2(X;E»), 

¢2(X;E) = W- I(4)I,4>2)(4>1(0,E)4>2(X;E) 

- 4>2(0;E)4>; (X;E»), 

¢; (X;E) = W -I (4)1,4>2)(4>2 (O,E)4>; (X;E) 

- 4>; (0;E)4>2(X;E»), 

¢2 (X;E) = W -I (4)1,4>2)(4>1 (0,E)4>2 (X;E) 

- 4>2(0;E)4>; (X;E»). 

(8) 

Formulas (8) are useful when 4>1,4>2 are originally known or 
have some known additional properties (like Bloch solu-
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tions). They can also be used in examining the properties of 
the transfer operator at the energies corresponding to the 
allowed and forbidden energy intervals (see below, Sec. 
n D). 

c. Barrier transparency 

The transmission coefficient of the barrier, u: = lel 2, is 
obviously a function of the energy parameter E and a func­
tional of U. Here U can be obtained by solving the equation 

( 1 + a) . 1/2 (I) 
M(E) . 1/2( 1 = e exp(IE L) . 1/2 . 

IE - a) IE 
(9) 

This immediately leads to the following expression for u in 
terms of fundamental solutions: 

U(E) = 1/[,u2(E) + V(E)], 

where 

and 

(10) 

(11 ) 

VeE): = 1(EI/2¢2(L;E) - E- 1/2¢; (L;E»). (12) 

In some considerations below, an expanded version of the 
formula (10) will be useful: 

U(E) = 4(t/lt (L;E) + ¢22(L;E) + Et/li (L;E) 

(13 ) 

It follows that U is an analytic function of E for E> 0. Due to 
the current [Wronskian W(¢*,¢)] conservation we have 
lal 2 + lel 2 = 1, and hence,u2(E) + v(E»1 andu(E),I, as 
expected. Both functions,u and v have obvious high energy 
asymptotics for bounded potentials U: ,u(E) -cos E1/2L, 

VeE) -sin E1/2L, and the transparency is arbitrarily close to 
unity for sufficiently high energies. 

D. Equivalence classes of the transfer operator and 
relations with the band structure problem 

Representation (7) allows immediate listing of all the 
equivalence classes of the transfer operators M ( E) (with re­
spect to complex transformations). For any set of real uni­
modular matrices M, these are determined by the solution 
type of the eigenvalue problem, 

.,1,2_ (Tr M)A + 1 = 0, (14) 

where, in our case, 

(15) 

For the reader's convenience we list once again these well­
known classes: (a) for III I > 1, Eq. (14) has real distinct 
roots and 

(16) 

(b) for l,u I < 1, Eq. (14) has complex roots on the unit circle, 
.,1,1.2 = exp( ± iO(E»), and 

M(E) _(eXP(iO(E») 0 ) . 
o exp( - iO(E») ) (17) 

and (c) for Il = 1 (Il = - 1), Eq. (14) has double root 
A = I (A. = - 1) and M(E) is either diagonal matrix 
[M(E) = ±I] or equivalent to 
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( ±Ol r) ± 1 (r#O). (18) 

The properties of ft as a function of E were investigated 
in classical papers by Kramers,II James,I2 and Kohn,I3 in 
the context of the band structure problem for an arbitrary 
periodic potential with period L. There the solution can be 
constructed from "cellular" solutions in an arbitrary inter­
val oflength L, with the eigenvalues of the transfer operator 
uniquely determining a class of "self-matching" (in the 
sense of James) solutions obeying the condition 

(19) 

These are the solutions ofEq. (3) on the [O,L] interval with 
an eigenvector ofthe transfer operator M(E) taken as a vec­
tor of initial conditions. For complex A these are the usual 
Bloch solutions. Solutions with real eigenvalues A lying out­
side the unit circle are subsequently excluded in the periodic 
problem as physically unacceptable (exponentially increas­
ing for x--- + 00 or x- - 00). 

The most important property of the ft function is that 
the zeros of its derivative aftl aE may only occur13 for 1ft I ~ 1. 
It follows that for any energy E such that 1ft (E) I.;;;; 1, there 
exists a whole interval (an energy band) on the energy axis 
where ft is a one-to-one function of energy, mapping this 
interval onto [ - 1, + 1] interval (see Fig. 1). Different en­
ergy bands may still have common end points. This may 
happen if and only if 1ft I = 1 and aftl aE = 0 for some energy. 
As usual, for a fixed energy band one can parametrize com­
plex roots setting 

cos k(E)L = ft(E) (20) 

and choosing, e.g., k(E)e[O,17"IL], Al = exp(ik(E)L), 
A2 = exp( - ik(E)L). So defined, k(E) is a one-to-one func­
tion of energy for a given band. As for k #0 and k #17"IL 
there are always two linearly independent solutions of the 
Bloch type, in the standard approach one considers k as a 
quasimomentum varying within [- 17"IL, 17"IL] interval 
and E(k) = E( - k) by definition. Then there is exactly one 
Bloch-type solution for each ke [ - 17"1 L, 17"/ L] (with k = 0 
corresponding to the band center and k = ± 17"1 L to the 
band edges in the k-E plane). 

It is obvious that all these general considerations remain 
relevant in the tunneling problem, for a potential barrier 
consisting of a single or any finite number of identical struc­
tural units. Of course, real exponential solutions are physical 
here and contribute to the barrier characteristics. It is also 
clear in this context that frequently discussed resonant tun­
neling (usually associated with the existence of an almost 
localized, or indeed localized in a "shifted" barrier, energy 

+1r-4-------~~~------~~-----

E 
-lr---~--~------~~~----~Z--

FIG. 1. Qualitative behavior of the p function for nonoverlapping energy 
bands. Hatched regions indicate forbidden energy intervals. 

2409 J. Math. Phys., Vol. 28, No.1 0, October 1987 

level, see, e.g., Refs. 1 and 2) can also be considered in terms 
of the band limit, where intuitively one may expect a perfect 
transparency for band energies and a vanishing one for for­
bidden energy intervals. Below we investigate the resonances 
and the existence of the band limit for arbitrary finite size 
structures, without any additional approximations, like the 
quasiclassical one used in Ref. 14. At present, an immediate 
consequence of representation (10) is that O"(E) < 1 inside 
the forbidden energy intervals. Hence a complete resonance 
[O"(E) = 1] may only happen at some energies from the al­
lowed energy bands. Before further discussion of complete 
resonances (Secs. IV and V) we will consider first the behav­
ior of E in the low energy limit for some general subclass of 
barrier potentials. 

III. NONRESONANT TUNNELING: COMPARISON 
LEMMAS 

Representation (10) yields two simple lemmas for the 
specific case of potential with UI = inf[o,L J U(x) > O. 

Lemma L' Given the two tunneling problems 

t/J" +(E- U(x»)t/J=O, t/J" +(E- U(x»)t/J=O, (21) 

where U(x) ~ U(x) on [O,L]. Then for 0 < E < UI (see Fig. 
2), 

0"( E; [ U] ) ';;;;O"( E; [ U] ). (22) 

Proof" Let t/J], t/J2' and 1pI' 1p2 be fundamental solutions of 
Eqs. (1) for, respectively, potentials U and U. For 0 < E < UI 
all these solutions are increasing on the [O,L] interval. (It 
follows from the fact that they have the same sign as their 
second derivatives in the indicated energy interval and spe­
cific initial conditions.) From the Wronskian theorem we 
have 

W(t/J; (x), 1p; (x») = f (U(t) - U(t) )t/J; (t)1p; (t)dt 

(i = 1,2). 

Hence 

1p;(x) t/J;(x) 
-_--~--, x>O. 
t/J; (x) t/J; (x) 

Integrating_the last inequalityI5 we obtain 1p;(x»t/J;(x) 
and hence t/J; (x) > t/J; (x), as well. Inspection of the expres­
sion for transparency in the form (13) completes the proof. 

Lemma n· Given the tunneling problem 

t/J" + (E - U(x») = 0, UI = inf[o,L J U(x) > 0, (23) 

0" is an increasing function of E for 0 < E < UI. 

u 

U(x) 

u, 

E 

o L 

FIG. 2. First comparison lemma. Potential barrier U and its majorant U. 
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Proof: It can be carried out along the same lines as for 
Lemma I. Alternatively, for two arbitrary energies EI > E2, 

from the indicated interval and such that E2 > E I' one may set 
E = E2, U(x) = U(x) + (E2 - EI ), and use Lemma I. 

Lemmas I and II characterize the so-called2 "nonreso­
nant" regime in tunneling, where local extrema in transpar­
ency are absent. Lemma I can be used in uniform estimations 
of the barrier transparency using, e.g., piecewise constant 
majorants and minorants of a given potential U. 

IV. COMPLETE RESONANCES 

Let us investigate the necessary and sufficient condi­
tions for a complete barrier transparency at some resonant 
energy Er • We already noticed that it may happen only for 
energies from the allowed bands, where IL(E) = cos k(E)L 

with real k(E)E[ -1TIL,1TIL]. Hence at a complete reso­
nance there exists such a wave vector k(Er ) that 

,pI (L;Er) + ,p~ (L;Er) = 2 cos k(Er )L, 

EI
/
2,p2(L;Er ) - E- I

/
2,p; (L;Er) = 2 sin k(Er)L, 

and, as always, 

,pI (L;Er ),p~ (L;Er) - ,p2(L;Er ),p; (L;Er) = 1. 

(24a) 

(24b) 

(24c) 

It is easy to check that the only real solution to the system 
(24) is 

,pI (L;Er) = ,p~ (L;Er) = cos k(Er )L, 

,p2(L;Er ) = E- I
/
2 sin k(Er )L, 

,p; (L;Er) = - EI/2 sin k(Er)L. 

Thus at a complete resonance the transfer matrix must be of 
the form 

Conversely, for any M(E) of the form (25), O"(E) = 1. 
The same result can be obtained more simply if we note 

that at a complete resonance the vector 

CE~/2) (26) 

is an eigenvector ofthe real transfer matrix M(Er ), belong­
ing to an eigenvalue on the unit circle (a = 0 and I c I = I). 

For an arbitrarily shaped potential U Eqs. (24) need not 
be satisfied and complete resonances may be totally absent. 
However, for symmetric potentials, U(x + L 12) 
= U(x - L 12), and one can prove that ,pI (L;E) = ,p~ (L;E) 

(see Refs. 12 and 13). Then as the only nontrivial condition 
of the complete resonance at some band energy we have 

,p; (L;Er )/,pl (L;Er) = - E~/2 tan k(Er)L. (27) 

The rhs of Eq. (27) considered as a function of the wave 
vector assumes all values from the ( - 00, + (0) interval 
for kE( - 1T12L, 1T12L). We obtain the following lemma. 

Lemma IlL· A symmetric barrier is completely trans­
parent for at least one energy from each allowed energy band 
of the related periodic structure. 

It is clear from the above considerations that at a com­
plete resonance the transfer matrix need not be of the form 
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± I, where I is the identity matrix. If it happens, however, 
the barrier is certainly completely transparent at this energy. 
A transfer matrix of this type may occur, on the other hand, 
only for the energies corresponding to the band edges on the 
energy axis, if additionally the matrix has two linearly inde­
pendent eigenvectors [i.e., case of the Jordan form (17) is 
excluded]. Kramers,13 in his analysis of the band structures, 
has shown that it may happen if and only if III (E) I = 1 and 
alLlaE = 0 at the given energy, i.e., for the case of overlap­
ping energy bands. He also pointed out that this type of situ­
ation will certainly happen if one works with the IL function 
defined not for the original unit cell but for a doubled one, 
and gave the relation between these two types oflL functions 
(which is nothing but the "logistic map" see Sec. V below). 
These observations are even more relevant in the tunneling 
problem, where the period doubling means working with 
subsequences of barriers composed of 2k identical struc­
tural units (k-positive integer) and where IIL(E) I = 1 and 
alLlaE = 0 simultaneously satisfied always lead to a com­
plete resonance. It follows also that O"(E) < 1 at the "nono­
verlapping" band edges, as matrix (18) is not of type (25). 

V. FINITE SEQUENCES OF IDENTICAL BARRIERS 

In this section we consider barriers composed of m iden­
tical structural units, each of them having the same potential 
shape and length L. In particular, we will study the behavior 
of the {O" m (mL;E)} sequences for fixed values of energy E. 

Let us consider first the case when the energy E belongs 
to a forbidden energy interval. In accordance with intuitive 
expectations one may prove the following lemma. 

Lemma IV: For any energy from a forbidden energy 
interval 

lim O"m (mL;E) = o. (28) 
m-oo 

Moreover, sequences 0" m become monotonically decreasing 
for sufficiently large m. 

Proof: Here we exploit the properties of the self-match­
ing solutions in a forbidden energy interval where the trans­
fer operator has real, distinct eigenvalues A and A -I. For 
any energy from this interval there exist exactly two linearly 
independent self-matching solutions ¢JI (X;E), ¢J2(X;E), 

which can be continued on the [O,mL] interval to give 

¢JI (mL;E) = A m¢JI (O;E), 
(29) 

(1..1 I> 1). 

Using representation (8) we obtain 

,p;(mL) = aiA 2m + biA -2m + Co 

,p;2(mL) =a;A2m+b;A -2m+c; U= 1,2), 
(30) 

where primed and unprimed coefficients aj' b j , and Cj can be 
expressed in terms of ¢Jj (O,E) components and energy E, and 
where non-negative coefficients ai' a;, a2, a~ are not all zero 
(otherwise using their explicit form one may show that at 
least one of the solutions ¢Jj would be trivial, which is impos­
sible). Statement (28) follows then from Eq. (13). One can 
also easily show that a sequence aA 2m + {3A - 2m + y, with 
a > 0, {3 > 0, is monotonically increasing for sufficiently 
large m, which completes the proof. It essentially reduces to 
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the observation that a transfer matrix equivalent to 

(
Am 0) 
o A- m 

must have at least one term proportional to A m. This type of 
reasoning will be exploited below also, for energies from the 
allowed energy bands, where the behavior of {um (mL;E)} 
happens to be much more complex. Passing to the investiga­
tion of this case, we begin with an elementary remark. 

Remark I: If an arbitrary barrier of length L is com­
pletely transparent at some energy E = E" then all finite bar­
riers composed of its m>2 replicas are also completely 
transparent at this energy. Indeed, if vector (26) is an eigen­
vector of the transfer matrix M(ET ), it will also be an eigen­
vector of the Mm(E,) matrix. A constructive version ofthe 
proof starts with the transfer operator at complete resonance 
written as 

M(E,) =cosk(E,)L'I+iux ( -iE1/2)sink(E,)L 

= exp[iux ( - iE~/2)k(E,)L ], (31) 

where the generalized Pauli matrix U x (d) is defined as 

ux(d):=G~1 ~, (32) 

and still 0; (d) = 1. It follows that 

Mm(E,) = exp[imux ( - iE~/2)k(Er)L ] 

and hence U m (E,) = 1 for any m>2. 
As the next step, we investigate the {um (mL;E)} se­

quences at the end points of allowed energy intervals. If two 
such intervals have a common end point Ec' M(Ec) = ± I 
(see above, Sec. II) and trivially um (mL;Ec) = 1 for all m. 
For an end point not overlapping with end points of other 
bands one has 

and Mm(E) always contains an element linearly increasing 
with m. Thus limm _ oo Um = 0 there. 

For energies within a given energy band let us notice 
first that for all wave vectors of the form 

k(E) = n1rlmL, n = 1,2, ... ,mL - 1, 

the transfer matrix is equivalent to 

(
eXP(ik(E)L) 0 ) 

o exp( - ik(E)L) . 

(33) 

(34) 

Hence after m steps it will become equivalent and thus coin­
ciding with the matrix ± 1. When rephrased this observa­
tion is equivalent to the following remark. 

Remark fl' For sufficiently large m a repeated barrier 
will become completely transparent for all energies corre­
sponding to Bloch waves exp(ik(E)X)Uk (x) with the half­
period 1Tlk(E) of the phase factor commensurate with the 
barrier length. All these energies form a countable, dense set 
in each energy band. In particular, discrete sets of energies 
obtained via imposing the Born-von Karman conditions be­
long to it. However, the measure of this set is zero in each 
energy band and it is interesting to investigate how se­
quences behave for all other allowed energies. We will see 
that they are divergent for almost all energies in each band. 
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Here it is sufficient to consider the subsequences of 
{um (mL;E)}, corresponding to the barrier size doubling at 
each step. 

Recursion relations/or transparencies: Let us consider a 
barrier composed of two identical structural units, each of 
them having the same potential shape and length L. Notice, 
first, that the simple algebraic identity (A - 1 + A ) 2 

= A -2 + A 2 - 2 can be generalized to an identity for an 
arbitrary unimodular matrix A, 

Tr A 2 = (Tr A)2 - 2. (35) 

This, in turn, leads to the recursion relation for the Kramers 
functions Il 

1l(2L;E) = 2p,z(L;E) - 1, (36) 

or more generally, to 

fl.1+ 1 (E) = 2f1.7(E) - 1, 

fl.1(E):=1l(2 /- IL;E), 1= 1,2, ... , 

if we continue the doubling procedure. 

(37) 

Interesting enough, the recursion relation can also be 
obtained for the correspondingly defined functions VI ( E) 

= v(2 /- IL;E). Indeed, for any 2X2 matrix we have 

(A2)12=A12TrA, (A2>ZI=A2ITrA, (38) 

which immediately leads to 

VI+ 1 (E) = 2fl.I(E)VI(E). (39) 

A straightforward algebra with U I defined as (M + V7) -I 
gives the following lemma. 

Lemma v.. For a size-doubling sequence of barriers, the 
barrier transparencies can be calculated from the two-vari­
able iterative map 

u l + 1 (E) = UI (E)/[ 4M(E)(1 - UI (E») + UI (E>], (40) 

(41) 

assuming that fl.l ( E): = Il (E) (the "band structure") and 
U 1 (E): = u( E) (single barrier transparency) are known. 

For arbitrary finite structure, the transparency is always 
greater than zero for all E > O. (This follows from the expres­
sion for u used in the proof of Lemma I.) For positive ener­
gies one may then define the resistances,ol (E) as 

,o1(E):=ul-
l (E)-I, (42) 

being just the ratio of the reflection to transmission coeffi­
cients. In terms of the,o, J.t variables the map (40) and (41) 
simplifies to 

,01+ 1 (E) = 4M(E),oI(E), 

fl.1 + I (E) = 2f1.7(E) - 1. 

(43) 

(44) 

Previous general statements can be easily checked here: 
u = 1 is an obvious fixed point of the map (40) (compare 
Remark 1) and in any forbidden energy interval where 
III II > 1 the map for Il along obviously diverges; Eqs. (43) 
and (44) show then that PI tends monotonically to infinity 
for I .... 00 (ul tends monotonically to zer<r-Compare 
Lemma IV). At the band end points with UI < 1 (PI #0) we 
havePr~ + 00. 

To investigate the {U/} sequences for all other, internal 
band energies we note that the transformation (37) coin-
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cides, after the linear transformation,ul = - 2x1 + 1, with 
the logistic map in its canonical form: x I + I = qx 1(1 - X I) 

for q = 4. Hence it exhibits chaotic and ergodic behavior on 
the [0,1] interval. For a given value of q, it is also a doubling 
transformation in terms of the angular variable (J defined by 

,u(E) = cos (J(E), (JE[O,1T]. (45) 

So defined, (J is a single-valued function of energy in each 
band, which coincides in the L = 1 length scale with the non­
negative quasimomentum in the reduced-zone scheme. We 
have 

jil(E) = cos 21(J(E). (46) 

Maps (40) and (41) or, equivalently, (43) and (44) in 
angular parametrization (46) allow reconstruction of all 
complete resonances at internal band energies occurring in 
barriers composed of 21

-
1 structural units. We already 

know that they have to occur for all (J of the form 

n1T/21-I, n=1,2,oo.,21
-

1 -1. (47) 

The same result may be obtained by noticing that ji k _ I = 0 
necessarily leads to Uk = 1. Moreover, all angles (JE(O,1T), 
leadingtojik_ I = o under the transformation (46), are giv­
en by 

(Js,k = (2s+ l)1T/2k-l, s=0,1,oo.,2k - 2 -1. (48) 

It is clear that the sum of the sets (48) coincides with the set 
( 47), as each element of the set (47) can be written (J s,k for 
some k < L and vice versa. 

A more interesting observation is related to the exis­
tence of the other (besides,u = - 1) fixed point ofthe map 
(44), ,u = -~. Sets of all (JE(O,1T) that will give jik (8) 
= -! for some k have elements 

(J !,~ = 21 - k(2s + 2/3 )1T, (J !,r = 21 - k(2s + 4/3 )1T, 

s = 0,1,oo.,2k - 2 - 1. (49) 

For all such (J the resistance will become frozen at its 
Pk _ I (E( (J)) value equal to 

k-2 
Pk- dE((J)) = II 2ji.(E((J))2p{E((J)). (50) 

s= I 

Once again, the sum of all sets (47) is a countable, dense set 
on [0, 1T ]. The transparencies for the corresponding energies 
will preserve some fixed value, smaller than unity, for all 
sufficiently long doubled barriers. 

Finally, it is not difficult to prove, using a representation 
like (50), that P sequences are divergent for almost all ener­
gies from a given band. Indeed, the infinite product 

(51) 

(where we can now assume that all jis #0) diverges for al­
most all E. This is because the sequence {lnl2,us(E)I} does 
not converge to zero for almost all energies, due to the ergo­
dic character of the map (36). 

To summarize, for almost all energies from an allowed 
energy band {urn (mL;E)} sequences will have an erratic, 
oscillatory behavior for increasing m, in contrast to naive 
expectations. However, the "amplitude" of these oscillations 
should, in general, decrease with energy for bounded poten­
tials (compare Sec. II C). 
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VI. EXAMPLES, NUMERICAL ILLUSTRATIONS, AND 
FINAL REMARKS 

A. Rectangular barriers 

For the simplest "rectangular" barrier with constant 
potential U on [O,L] the generator G does not depend on x: 

G(E) = C ~), K2: = U - E, 

and Eq. (3) can be integrated leading to 

M(X,Xo;E) = exp[G(E) (x - x o)]' 

Writing G(E) as 

G(E) = KUx (K) 

(52) 

(53) 

(54) 
with, as before, Ux (K) belonging to the equivalence class of 
the Pauli matrix ux ' 

(0 -I) 
Ux(K):=\x KO 

= ( K01/2 0) (K- 1/2 

K-1/2 Ux 0 

~(K) =J, 

we obtain 

M(X,Xo;E) = exp{K(x - xo)ux (K)) 

(55) 

= cosh K(X - xo)·J + Ux (K)sinh K(X - x o)' 

(56) 

The fundamental solutions can be read from (56): 

¢I (X,Xo;E) = cosh K(X - x o), 

¢2(X,Xo;E) = sinh K(X - x o)' 
(57) 

The unimodularity property reduces here to the simple trig­
onometric identity, which, conversely, may be considered as 
a very special case ofWronksian-type identities for pairs of 
fundamental solutions of second-order, linear differential 
equations. The relationship between the unimodularity and 
the traceless character of the generator G is particularly 
clear here, as for any matrix A, det A = exp (Tr A ). 

One can immediately write the transfer operator for 
a finite array of rectangular potential barriers, i.e., for a bar­
rier with piecewise constant potential U: U = Uk for 
XE(Xj _ l , x k ), O<xO<xI,.oo,Xn _ 1 <Xn =L. Continuously 
extending potentials Uk onto closed intervals [Xk _ I' x k ] 

we have 

u 

u, ~--. 

u, 

L -0 --
2 

;-----, 
, I 

I , , , , , , , , 

L+o 

2 

1 

L 

FIG. 3. Symmetric double barrier. Here K7: = U; - ~, i = 1,2. 
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FIG.4. Solving numericaIly the Cauchy problem on [O,L] one can find fundamental solutions 1/1, and I/Izanddeterminep(e) and vee). Thenul andu/ can be 
found using recurrence relations (40). (a)-(I) numericaIly calculated ,aI' u/ (l = 0,1 ..... 5) for the asymmetric model potential (61) (xo = 0.7). Note that 
each zero of the ,al function generates one complete resonance after period doubling [compare Eq. (40) ]. At given energy scale fastitl oscillations soon cause 
the loss of graphical resolution in the first narrow energy band and then close to the band edges in higher-energy bands (shadowed regions). Here Uo does not 
have much structure for a single asymmetric barrier and complete resonance are absent in the considered energy intervals. However. the U5 plot (for a barrier 
composed of 64 structural units) allows one to localize. quite precisely. the band-edge energies and shows the peculiar behavior inside each band. (m)-(x) 
the same for the symmetric potential (61). Note the presence of a complete resonance in each indicated energy band (Lemma III) for a single-unit barrier. 
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N 

M(L;€) = II Mk (lk;€)' Mk (lk;€k) 
k-I 

= cosh Kklk + U x (Kk ) sinh Kklk , 

lk:=xk-xk_I' Kk:=(Uk -€)1/2. (58) 

Products of this type can be used to approximate uniformly 
transfer operators for arbitrary potential. This also furnishes 
an independent proof of the unimodularity property of 
transfer operators for traceless generators. 
. Repre~entation (58) reduces to a minimum the algebra­
~c calculations for rectangular barriers (still rather lengthy 
m most quantum-mechanical textbooks), and may be used 
in obtaining systematic density expansions for disordered 
barriers of the A, D, etc. type. As a simple illustration let us 
consider a symmetric double barrier structure (Fig. 3). Just 
multiplying three binomials 

(cosh K2[ (L - a)/2] + U x (K2) sinh K2[ (L - a)/2]) 

X (cosh Kia + U x (KI)sinh Kia) 

X (cosh K2[ (L - a)/2] + U x (K2) sinh K2[ (L - a)/2]), 

we have 

Mll (€) = M 22 (€) = J.l(€) = cosh KIa cosh K2(L - a) 

+ !(K/K2 + K2/KI)sinh Kia sinh K2(L - a) 
(59) 

and 

M 12 (€) = K2"I[ cosh Kia sinh K2(L - a) + sinh Kia 

X(KI sinh2 KI L - a + K2 cosh2 KI L - a)] , 
K2 2 KI 2 

M21 (e-) = K2[ cosh Kia sinh K2(L - a) + sinh KIa 

X(K2 sinh2K2 L -a + KI cosh2K2 L -a)]. 
KI 2 K2 2 

(60) 

Explicitly known matrix elements of the transfer opera­
tor allow one to write an expression for the transparency of a 
double barrier [Eq. (13)]. The equationJ.l(€) = cos k(€)L 
with J.l (€) given by (59) coincides, of course, with the im­
plicit dispersion relation of the Kronig-Penney model (with 
the U2 barriers of length L - a separated by U I wells of 
width a). 

Another almost trivial application is a kind of Ram­
sauer effect for finite disordered sequences of rectangular 
barriers of two types, where tunneling phenomena depend 
on four parameters: LA' LB and KA, KB. From representa­
tions (59) and (60) it is obvious that a disordered barrier 
will behave as a uniform, shorter barrier of the A type for all 
energies such that KALA = in1T. 

B. Numerical example 

For graphical and numerical illustration we have cho­
sen a barrier of the form 

(61) 

with parameters a = 100, b = 2, and Xo = 0.7 and 0.5 (for 
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asymmetric and symmetric barriers, respectively). Results 
for single and double barriers (up to 25 structural units) are 
presented in Figs. 4 and 5. 

c. Final remarks 

The above-presented band-type characterization of 
transparencies for single barriers and for sequences of identi­
cal barriers may have some practical application in electron 
spectroscopy and in designing quantum tunneling devices. 
Here we stress again the localization of complete resonances 
in symmetric barriers (Lemma III), and erratic transparen­
cy behavior in allowed energy bands. 

The numerical examples clearly show that chaotic 
transmission fluctuations have some lower-bound envelope, 
most likely analytic in each energy band. It will be interest­
ing to investigate this problem closer. 

All described phenomena should be common for other 
systems with similar mathematics such as transmission lines 
or layers of inhomogeneous dielectric transmitting electro­
magnetic waves. The "perfect transparency" Lemma III can 
also be used there. In particular, the wave equation in a layer 
region with symmetric permittivity profile can be trans-
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FIG. S. Here v functions are for a single barrier (61): (a) asymmetric case, 
(b) symmetric case. 
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formed into a Schrodinger-like equation with an effective 
symmetric potential. This problem and some related ques­
tions (the case of an oblique incidence, curvilinear dielectric 
layers) will be considered in a separate paper. 

Realistic sequences of barriers can hardly be considered 
as made of identical units. Therefore, it will be interesting to 
investigate the influence of some barrier shape or energy 
noise, e.g., on the two variable map (43) and (44). Random 
effects are usually studied in the L - 00 limit. They are cer­
tainly important, however, for finite microscopic layers and 
lead to interesting mathematics. As a preliminary result in 
this direction we can announce another simple lemma stat­
ing that the potential noise about some given average poten­
tial U can only decrease the average barrier transparency. 
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In this paper a reformulation of the inverse scattering theory for a three-dimensional 
Schrodinger equation is given in terms of the standing wave solutions and the reactance 
matrix. A counterpart of the generalized Marchenko equation is given as well as a trace-type 
formula for the potential. Derivations are based on the a method in the complex k plane. 

I. INTRODUCTION 

The standard formulation of the inverse scattering prob­
lem for the three-dimensional Schrodinger equation is to re­
construct the underlying scattering potential from the 
asymptotic amplitude of the outgoing scattered wave. As 
was shown by Newton,1 a generalized Marchenko equation 
can be derived from the fact that the outgoing and incoming 
solutions of the Schrodinger operator are related to each 
other via the scattering amplitude. 

The aim of the present paper is to show that the inverse 
scattering theory can also be formulated in terms of the so­
called standing wave solutions and the corresponding reac­
tance matrix. The direct scattering theory for standing 
waves was developed by Kouri and Levin.2 (See also New­
ton3 and references therein.) The main tool in this paper will 
be the a equations, introduced to scattering theory by Beals 
and Coifman4

,5 and later successfully developed by 
Ablowitz and Nachman. 6,7 

In Sec. II, we shall summarize some results from the 
standing wave scattering theory. In Sec. III, the main results 
are given. We derive a counterpart of the generalized Mar­
chenko equation and give a reconstruction formula for the 
potential from the standing wave solution and the K matrix. 
Finally, the necessary a equations are briefly summarized in 
the Appendix. 

II. STANDING WAVE SOLUTIONS 

To fix the notations, we shall consider the Schrodinger 
equation 

( - A + V)t/J = K 2t/J, 

in JR3. Generalizations to other dimensions are straightfor­
ward. In this paper K means complex wave number and kits 
real part, i.e., K = k + iqEC, k,qElR. The scattering potential 
V is real and assumed to satisfy 

II VIIL' + !~f, 1, [Ixll: ~~( afl V(y) Idy< 00, (2.1) 

for some constant a> O. This class of potentials was intro­
duced by Newton.8 

The principal value Green's function G P is defined 
through the formula 

( 
1 )3 i e''x'~ GP(x,k) = - P.V. 2 2 d; 

21T R' k -I; 1 

a) Permanent address: Department of Mathematics, University of Helsinki, 
Hallituskatu 15,00100 Helsinki, Finland. 

= J.. (_1_)3 f dO C" _t _ eitO-x dt, (2.2) 
2 21T Js' 1- 00 k - t 

where kER and; = I; IOER3
, and f stands for the Cauchy 

principal value integral. It is very well known3 that 

GP(x,k) = G ± (x,k) ± iA(x,k), (2.3) 

where G ± are outgoing ( + ) and incoming ( - ) Green's 
functions, respectively, i.e., 

G ± (x,k) = (2~r 1, k 2 ± ~~.~ I; 12 d; 

1 e±iklxl 

41T Ixl 

and A(x,k) is given by 

= (~r k 1, eik9
'
X dO. (2.4) 

Formula (2.2) gives also the simple relation 

GP(x,k) = !(G + (x,k) + G - (x,k») (2.5) 

between Green's functions. 
To discuss the principal value Green's function further, 

we recall some basic facts from the standard scattering the­
ory. 

Let t/J+ (x,K,O) denote the outgoing scattering solution 
of the Schrodinger equation with plane wave incidence, i.e., 
t/J+ satisfies the Lippman-Schwinger equation 

t/J+ (x,K,O) = t/Jo(x,K,O) + :5 + ( Vt/J+ )(x,K,O). (2.6) 

Here t/Jo (x,K,O) = exp (iKO' x) denotes the plane wave, and 
:5 + is the convolution operator with kernel G +. The solv­
ability of (2.6) has been discussed by several authors under 
various assumptions on the potential V. (See, e.g., Refs. 
8-10.) Here we shall refer to Ref. 8, where it was shown that 
under assumption (2.1), Eq. (2.6) has a unique solution for 
all KEC+ = {KEqIm K;;;'O} except possibly for a finite 
number of values on the imaginary axis, K = ixl, ... ,ixm , 

0.,;;; x 1 < ... < x m • Throughout the paper, we shall assume 
that K = 0 is nonexceptional, i.e., 0 < x I' 

Similarly, the incoming scattering solution t/J- (x,K,O) , 
KEC-, is defined in terms ofG-. 

For fixed kER, the scattering operator ..Y: 
L 2(S2) --+L 2(S2) is defined by 
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Y(tP)(O) =tP(O) +~ r A(k,O,O')tP(O')d()" 
21T JS2 

(2.7) 

where the kernel A (k,O,O') is obtained as the scattering am­
plitude of the outgoing wave tP+: 

A (k,O,O') = - _1_ r e - ike·x V(x)tP+ (x,k,O ')dx. 
41T JS2 

(2.8) 

The following theorem relates the existence of the standing 
wave solutions of the Schrodinger equation to the properties 
of the 5 operator and the underlying potential. 

We shall use the notation II VIIR for the Rollnik norm of 
V, i.e., 

IIVlli = r IV(x)IIV~)1 dxdy. 
JR" Ix - yl 

Further, we use the notation [1P«(J)(x) 
= JR3 GP(x - y,k)(J(y)dy, and tPo(x,k,O) = expUkO'x) 

denotes the plane wave. 
Theorem 2.1: The equation 

tPP(x,k,O) = tPo(x,k,O) + [1 P( VtP P) (x,k,O) (2.9) 

has a unique solution tP P if the potential satisfies (2.1) and 
the corresponding scattering operator does not have the 
eigenvalue - 1. Especially, a unique solution exists if one of 
the following conditions is fulfilled: (i) VeL! nR, R denot­
ing the Rollnik class and IWIIR <41T; (ii) W(x)I';;;C(1 
+ Ix I ) -I' for some constants C> 0 and It > I, and I k I is 

large enough. 
Proof: Factorizing first the right-hand side ofEq. (2.3) 

one gets 

1 - [1 P V = 1 - [1 + V - i!1 V 

= (1 - [1 + V)(l + Uk 141T)vR), 

where vR is an integral operator with kernel 

M(x,y,k) = __ 1_ r tP+(x,k,O)e- ikfJ'Y V(y)dO. 
41T JS2 

Following the argument in Ref. 8 we notice that 

Tr vRn = Tr .sfn
, 

.sf being the integral operator L 2(5 2) -L 2(5 2) with the 
kernel A (k,O,O '). Hence, using the product formula for 
modified Fredholm determinants,3 denoted as det2, we have 

det2 (1 - :9P V) = det2 (1 - :9 + V)det (1 + Uk /41T)vR) 

X exp ( - Tr (1 - :9 + V) Uk 141T)vR) 

= det2 (1 - :9 + V)det (1 + Uk /41T) .sf) 

Xexp (~ r V(X)dX) , 
41T JR3 

which proves the first part of the theorem. 
The special cases (i) and (ii) are treated as follows: In 

the standard way, Eq. (2.9) is transformed to a Fredholm 
equation by multiplication with W(xW 12• Result (i) fol­
lows by Theorem XI 43 in Ref. 9 and representation (2.5). 
Result (ii) is a consequence of a theorem of Saito": The oper­
ators :9 ± are compact operators 
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y ±:L~ (lR3)_L~c5 (R3) , !<8.;;;1, 

with norm less than C Ilk I for large Ikl. Here 

L ~ (R
3

) = {feL?oc (Rn) I J If(xW(1 + IX/)2c5 dx < oo} . 
We shall skip the details of the proof. 0 

The solution tPP is called the standing wave solution. 
The connection between tPP and tP+ is given in terms of the 
scattering amplitude. We have 

tPP(x,k,O) = tP+ (x,k,O) 

-.! I, tPP(x,k,O')A(k,O',O)dO'. 

(2.10) 

This result can be found in Refs. 2 and 3. 
Defining the reactance matrix K (k,O,O ') by the formula 

K(k,O,O') = --I-Je-ikfJ'XV(X)tPP(x,k,O')dX, 
41T 

we also have 

tP+ (x,k,O) = tPP(x,k,O) 

ik 1 A A A A + - tP+ (x,k,fJ ')K(k,fJ ',fJ)dfJ'. 
41T S2 

(2.11 ) 

Integrating (2.10) with e-ikfJ'xV(x) we arrive at Heider's 
integral equation 

K(k,O,O') =A(k,O,O') 

- 4ik r K(k,O,O")A (k,O" ,0 ')dO". 
1T JS2 

This equation takes a simple form, if written in terms of the 
scattering operator and the reactance operator %: 
L 2(5 2) -L 2(5 2), 

%(J(O) = -~l K(k,O,O')(J(O')dO'. 
41T S2 

We have 

%(1 + Y) = (1- Y), 

i.e., % is the Cayley transformation of the unitary operator 
Y: 

% = (1- Y)(1 + Y)-!. 

Remark 2.2: The above discussion gives the following 
denseness result as a corollary: If {tP n I neN} is a dense set in 
L2(52) and assumptions (i) or (ii) of Theorem 2.1 hold, 
then {tPn + YtPn IneN} also form a dense set. This type of 
denseness result may have some significance in fixed energy 
inversion schemes. 

III. THE aEQUATIONS 

The definition and a brief summary of the a operator in 
C is given in the Appendix. 

We start by defining the Green's function for 
K = k + iqeC by the formula 

G(x,K) = (2~Y 13 K2e~'~t 12 dt· 

Erkki Somersalo 2417 



                                                                                                                                    

Obviously, G(x,K) = G ± (x,K) for KeC± = {K = k + 
iql ± q > O} and G(x,K) = GP(x,k) as q = O. 

Using Eq. (A2) we get 

aG(x,K): = ~ G(x,K) 
aK 

=(2~r L32~gla(K~ltl-K;ltl)eu., 
( 

1 )2 r dt 
= 41r JR3 III (8c (K - It I) 

- 8c (K + It I> )eiX" = 8(q)a(x,k), 

where a(x,k) is defined in (2.4). This is simply a manifesta­
tion of the fact that a of a sectionally holomorphic function 
results in a density i/2 times the jump of the function along 
the cut. 

Next, let t/J(x,Ki)) be the solution ofthe equation 

t/J=t/Jo+ff(Vt/J), (3.1) 

where we assume that V is a potential that allows a unique 
solution of the above equation for all Kec' The bound states 
are especially excluded. Clearly, t/J = t/J ± for KeC ± , t/J ± de­
noting the outgoing and incoming solutions, respectively, 
and t/J = t/JP for K real. Applying a on both sides of the equa­
tion one gets 

at/J(x,Ki)) - ff (Vat/J) (x,K,O) 

= aff (Vt/J) (x,K,{}) 

= 8(q) (_1_)2 k r dO' r dye2k6'<X-Y l V(y)t/J(y,k,O) 
41T JS2 Jft' 

= - 8(q) ~ r eikiJ"x K(k,O I,O)dO I, 
41T JS2 

which yields, by the assumption of V, 

at/J(x,K,() = -8(q) - t/JP(x,k,()I)K(k,(J',()d(J I. 
A ki A AAA 

41T S2 

To reconstruct t/J we need information of the large IK I behav­
ior of the solution t/J. Let us assume that the potential V 
satisfies 

r / Vex t y) /2 dy < 00 
Jft3 1 + (J.y 

(3.2) 

for all xeR3, oeS 2
• Then, with a minor modification of the 

proof o! Newton, II we see that the mappings 
K ..... e- iK8.xt/J± (x,K,() - 1 are in H2(C± ), the Hardy 
classes of the upper and lower half-spaces, respectively. [In 
Ref. 12, it is shown that e - iK8-xt/J(x,K,f)) - 1 behaves like 
( 1I1K I) under more restrictive conditions on V than (3.2).] 
Therefore we can use formula (AI) with n. = {IK I <R} 
with R ..... 00. However, one has to be careful on the real axis, 
since the reconstruction formula holds originally only for 
CI(O) functions. Weshalldenotebyx(x,K,(J) the outcome 
of (AI), i.e., 

X(x,K,O)e -1K6'x - 1 

= _1_ r a(e- iK '9'Xt/J(x,K,0) - 1) iK ' !\dK' 
21Ti Jc K -K' 
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_ 1 Joo k' -ik'9'x - -- e 
4~ -00 K -k ' 

X r t/JP(x,kl,OI)K(kl,OI,O)dO ' dk'. (3.3) 
JS2 

If q =1= 0, we get X (x,K,O) = t/J(x,K,O). On the real axis, the k I 

integral has to be interpreted as a principal value integral; 
therefore 

X(x,k,O) = !(t/J+ (x,k,O) + t/J- (x,k,O») 

=l=t/JP (x,k,O). 

The solution X appears also in the paper of Kouri and Levin. 2 

They give the relation 

t/JP(x,k,O) 

=X(x,k,O) +~ r X(X,k,OI)K 2 (x,01,O)dO ', 
41T JS2 

(3.4) 

which is a direct consequence of (2.11 ). Here K 2 is under­
stood in the operational sense. Combining the results, we 
have the following theorem. 

Theorem 3.1: Assume that the potential admits a unique 
solution of (3.1) for all KeC and satisfies the condition 
(3.2). Then we have the inverse scattering equations 

X(x,k,(J)e -lk9-x - 1 

=-- --e 1 foo k' -lk'9'x 
W -ook-k' 

X r t/JP(x,k ',0 ')K(k ',0 I,O)dO I dk I, 
JS2 

t/JP(x,k,O) = X(x,k,O) 

k 2 i A 2 A" A + - X (x,k,(J ')K (k,(J I,O)d(J I, 
41T S2 

for the reactance matrix K. 
Equation (3.3) may be viewed as a counterpart of the 

generalized Marchenko equation of Newton. This interpre­
tation has the following ground: if the jump of t/J on the real K 
axis were expressed in terms of A matrix and t/J+, as usually 
in inverse scattering theory, i.e., 

at/J(x,K,() = -~8(q) r A( -k,O,O') 
81T JS2 

Xt/J+ (x,k,O ')dO I, 

the reconstruction formula (AI) would yield exactly the 
Fourier transform of the Marchenko equation. 

Equation (3.3) gives the following reconstruction for­
mulas for the potential. 

Theorem 3.2: Assume that V satisfies the assumptions of 
Theorem 3.1. Then Vadmits a representation 

Vex) = __ 1_' o.vfOO k' r e-lk'9'xt/JP(x,kl,O') 
21T - 00 JS2 

XK(kl,OI,O)dO ' dk'. (3.5) 

Proof: We use the fact that X satisfies the SchrOdinger 
equation. Applying a + K2 to X in (3.3) we get 
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In the above equation, the identity 

(a +K 2 )(e- i(K-k') ih/(x») 

= ei(K - k')i'i-x(a + k '2) I (x) 

+ 2i(K - k')eiKihO'V(e- ik'9'" I(x») 

was used. Comparing the large Ik I behavior of both sides in 
(3.5) we get the desired representation. 0 

This trace-type formula should be compared to the one 
given by Newton in Ref. 13, which is obtainable from the 
generalized Marchenko equation in the same way as done 
above. Note that Eq. (3.5) is "miraculous," of course, in the 
sense that the apparent 0 dependence of the right-hand side 
does not show up on the left-hand side. 

Equation (3.5) together with the integral equation 
(2.9) may be viewed as an alternative formulation of the 
inverse problem for standing waves. 
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APPENDIX: THE a OPERATOR 

This short Appendix provides the basic a equations used 
in the text. For further details and proofs see, e.g., Hor­
mander. 14 

Let K = k + iqeC, k and q real. The antiholomorphic 
derivative a with respect to K is defined as 

a= ~= ~ (:k +i ~). 
Here K denotes the complex conjugate of K. 

Let neC be a bounded domain with C 1 boundary an 
and I eC 1 (n). Then for Ken we have the generalization of 
the Cauchy integral formula, 

I(K) = - _1 r I(K') dK' 
21Ti Jan K -K' 

+ _1_ r al(K') dK'l\dK'. (Al) 
21Ti Jo K -K' 
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(3.6) 

Furthermore, since a applied to any holomorphic function 
vanishes, we get in n the equation 

al(K) =~ r aK./(K')aK(K -K,)-I)dK' I\dK'. 
2m Jo 

On the other hand, the a equation al(K) = u(K), Ken, 
has a solution for all ueCoo (n) and dK' 1\ dK' = 2i dk ' dq', 
we may identify 

aK(K _K,)-l) = 1ToC<K -K') 

E1TO(k - k ')o(q - q'). (A2) 
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The possibility o~ expanding the S matrix in a multiple-reflection series (Debye expansion) is 
sho~n for ~n arbltr~-~hape short-range potential. Ambiguity in the definition of outgoing 
~nd l~comlllg waves lllsl~e the potential leads to an infinity of expansions. These are analyzed 
III a sImple example (square well or barrier) in order to characterize the correct choice of 
outgoing and incoming waves. 

I. INTRODUCTION 

Classical and semiclassical methods have turned out to 
be very useful in the description of heavy-ion elastic scatter­
ing. 1 They fail, however, in the explanation of heavy-ion phe­
nomena, like rainbow and glory, where interference effects 
are important. These phenomena can, nevertheless, be ana­
lyzed without abandoning the appealing picture oftrajector­
ies. The procedure consists in writing the exact quantum 
mechanical S matrix as a series, known as Debye expansion, 
whose terms can be viewed as due to multiple reflections of 
the incident wave in the interaction region: an incoming 
spherical wave partially transmitted to the interior of the 
potential is totally reflected from the origin, then partially 
reflected to the interior at the potential surface, and so on, to 
be finally transmitted, in part, to the exterior. 

That procedure, applied by Debye2 to the scattering of 
electromagnetic waves from a circular cylinder and by van 
der Pol and Bremmer3 to the case of a sphere, has been suc­
cessfully utilized by Nussenzveig4 in the treatment of light 
scattering from water droplets. Its application to heavy-ion 
elastic scattering has been considered by Anni, Renna, and 
Taffara in a series of papers5 dealing with analytically solv­
able potentials or with JWKB approximations, and by 
Agassi and Avishai6 in the "staircase" approximation to the 
potential. The second term of the Debye expansion, for sev­
eral realistic ion-ion potentials, was considered by Brink and 
Takigawa 7 in their analysis of the barrier penetration effects 
in the semiclassical theory of elastic scattering. 

The usefulness of the Debye expansion in the explana­
tion of rainbow and glory effects was already emphasized by 
Nussenzveig.4 Our purpose in a current research was to ap­
ply the Debye expansion in the analysis of the phenomenon, 
in heavy-ion physics, known as ALAS (anomalous large an­
gle scattering) and reviewed in a report by Braun-Mun­
zinger and Barrette.8 However, as we were trying to develop 
our program, we encountered an ambiguity in the definition 
of the Debye expansion. 

We show in Sec. II that a Debye expansion of the S 
matrix is always possible for a spherically symmetric poten­
tial, independently of its shape: one needs only to specify 
which solutions of the wave equation are to be interpreted as 

aJ On leave of absence from Universidad de Zaragoza, Zaragoza, Spain. 

outgoing and incoming spherical waves. Their radial parts, 
which we shall denote, respectively, by tfJ and tfJI, can be 
expressed as linear combinations of Ilf and r/I, the regular (at 
the origin) and the irregular solutions of the radial Schro­
dinger equation, with the only limitation that the sum of the 
outgoing and incoming waves must produce the stationary 
one, i.e., the regular solution. Therefore, 

tfJ = !r/f + iar/l, tfJI = !r/f - iar/l, ( 1.1 ) 

where a is a parameter measuring the "component" of the 
irregular solution in the traveling waves. The ambiguity 
mentioned above stems from the fact that the parameter a 
can be arbitrarily chosen. An infinity of Debye-like expan­
sions can be obtained in this way. 

In the case of a step potential, as considered by N ussenz­
veig,4 one infers which is the "orthodox" choice of traveling 
waves inside and outside the potential from the motion of 
their wave fronts. In the more realistic case (in heavy-ion 
elastic scattering) of an attractive nuclear potential with a 
Coulombian tail, the behavior at large distances makes it 
possible to recognize the outgoing and incoming waves in the 
outside region; but there is no a priori guidance to distinguish 
the orthodox choice from the heterodox ones inside the po­
tential. 

The continuity of the radial current as one passes from 
the external to the internal region does not help to eliminate 
the ambiguity in the choice of tfJ and tfJI. Weare going to 
show [see Eqs. (2.11 )-(2.14) below] thatthe continuity of 
the radial current is guaranteed by the continuity of the loga­
rithmic derivative of the scattering solution of the Schro­
dinger equation, that is assured if the correct expression of 
the S matrix is taken. But the S matrix [Eq. (2.2) below] 
does not depend at all on the outgoing and incoming waves 
in the internal region. 

To illustrate the preceding considerations, let us assume 
that 'ff and rfI in Eq. (1.1) have been taken to be real (always 
possible for energies above the barrier) and the parameter a 
also real. The radial current associated to tfJ is then given by 

J = (fz/2m)aW(r/f,if/), ( 1.2) 

where W means the Wronskian. Obviously, ifl and r/I could 
be redefined by multiplying them by arbitrary factors. In 
particular one could choose the same factor, let us say 2, for 
both r/f and r/I. The Wronskian would then become multi-
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plied by 4 and the parameter a should be divided by 4 to 
obtain the same current. The new f so obtained would be 
different (i.e., linearly independent) than the previous one, 
so making evident the existence of the ambiguity. 

In order to obtain some criteria which are helpful in 
removing such ambiguity, we consider in Sec. III the case of 
a step potential, for which the orthodox choice of outgoing 
and incoming waves is evident. An analysis of the conver­
gence of orthodox and heterodox Debye expansions is made 
as well as a comparison of the corresponding reflection coef­
ficients. 

Finally, some conclusions are mentioned in Sec. IV. As 
long as our step potential is an oversimplification of the real­
istic heavy-ion ones, the possibility that some of our conclu­
sions are valid only in the case under consideration cannot be 
discarded. The ambiguity in the Debye expansion, seen in 
evidence in this paper, should be analyzed for more general 
(complex) potentials, preferably analytically solvable, in or­
der to draw more general conclusions. 

II. DEBYE-LIKE EXPANSION 

Let us consider scattering by a spherically symmetric 
potential such that two regions, interior and exterior (la­
beled, respectively, by 1 and 2), are clearly distinguished. 
The spherical surface of radius b separating the two regions 
will be referred to as the potential surface. In the external 
region the potential is assumed to be constant or purely Cou­
lombian, so as to yield an unambiguous definition of outgo­
ing and incoming waves in that region. Due to the spherical 
symmetry of the potential, the scattering can be analyzed in 
terms of partial waves of definite angular momentum. In 
what follows, a labell denoting the angular momentum is to 
be understood although it is not explicitly displayed. 

The wave function inside and outside the potential sur­
face is given by 

{

r/f..egUlar (r), 

f/!(r) = t/i2ncominS(r) _ StMutgOinS(r), 
r<b, 
r>b, 

(2.1 ) 

where S represents the I-wave component of the S matrix. By 
imposing continuity at r = b of the logarithmic derivative of 
the wave function one obtains 

(2.2) 

where all intervening functions are to be taken at r = b. For 
brevity we write 

(2.3) 

These two functions are well known in both cases of poten­
tial with constant or Coulombian tail. 

Let us now consider in the internal region "outgoing" 
and "incoming" waves, tft (r) and tftl(r) , arbitrarily chosen 
with the only restriction 

f/!~ (r) + tftl(r) = tf/(sular(r). (2.4) 

The S matrix given by Eq. (2.2) can then be written, after 
some straightforward manipulations, in the form 
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1/4
1 

{ tft ~ (R 1ltft)P } 
S = - 1/4 R22 + T21 tftl p~o ~ T 12 , (2.5) 

with the notation 

R II = - (In'1/4 -In'tft)l(ln'1/4 -In'tftl), (2.6) 

T 12 = (In' tft -In' tftl)/(ln' 1/4 -In' tftl), (2.7) 

R 22 = - (In' 1/41 -In' tftl)/(ln' 1/4 -In' tftl), (2.8) 

T2I =(ln'1/4 -In'f/!~I)I(ln'1/4 -In'tftl), (2.9) 

and provided the geometrical series in the right-hand side of 
Eq. (2.5) is convergent, i.e., 

IR IItft Itftll < 1. (2.10) 

If one associates the coefficients Rw TI2, R 22, and T2I, re­
spectively, with internal reflection on, transmission to the 
exterior through, external reflection on, and transmission to 
the interior through the potential surface, the expansion on 
the right-hand side ofEq. (2.5) can be interpreted in terms 
of multiple reflections, just like the Debye expansion,4 no 
matter whether tft and tftl are the true outgoing and incom­
ing waves or not. An infinity of Debye-like expansions can, 
therefore, be considered. 

The reflection and transmission coefficients are not in­
dependent. They satisfy relations that are formally the same 
for orthodox and heterodox choices of tft and tftl. From Eqs. 
(2.6) and (2.7) one immediately obtains 

1 +RII = T 12, 

In' ft + RII In' ftl = T12 1n' 1/4. 

(2.11 ) 

(2.12) 

These relations merely express the continuity at r = b of the 
function and its derivative for a wave incident from the inte­
rior on the potential surface. Analogously, for a wave inci­
dent from the exterior, one has 

1 + R22 = T21 , 

In' 1/41 + R22 In' 1/4 = T21 In' tftl, 

trivially deduced from Eqs. (2.8) and (2.9). 

(2.13) 

(2.14 ) 

Until now no limitations, apart from Eq. (2.4), have 
been imposed to ft (r) and tftl(r). It seems, however, con­
venient to restrict these functions to be solutions of the wave 
equation, since they are interpreted as traveling waves. The 
Schrodinger equation in the internal region has two indepen­
dent solutions, for instance r/f..egular and t/irregUlar, in terms of 
which tft and tftl can be written as 

tft (r) = !r/f..egular (r) + atP;rregular (r), (2.15a) 

tftl (r) = !r/f..egular (r) - at/irregular (r), (2.15b) 

the parameter a being complex for the moment. In the case 
ofa real nuclear potential r/f..egular(r) and t/irregular(r) are solu­
tions of a differential equation with real coefficients and can 
be taken as real functions. 

In the case of a constant potential the outgoing and in­
coming waves are complex conjugates of each other. It 
seems, therefore, plausible to impose in our heavy-ion prob­
lem the condition 

(2.16) 

at least at energies above the barrier. This condition is satis-
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fied if the parameter a in Eqs. (2.15) is taken to be purely 
imaginary. 

Finally, another requirement in analogy with what hap­
pens for free waves could be 

,,//( - r) = (- 1)1~ (r), (2.17) 

associated with the fact that an incoming wave is totally 
reflected from the origin to give an outgoing wave. 

As stated above, the validity of the Debye-like expan­
sion in Eq. (2.5) is conditioned by the convergence of the 
geometrical series 

00 

L 1"', (2.18 ) 
p=o 

where 

p=R lI ~/tfl/· (2.19) 

We shall refer to this parameter p as the Debye parameter. In 
order to analyze its magnitude, we are going to obtain some 
useful relations. 

The product ofEq. (2.12) times the complex conjugate 
of Eq. (2.11) gives 

In' ~ + RlIln' ~I + RlIln' ~ + IRlI121n' ~I 

= ITd 2 1n' ¢1. (2.20) 

If the condition expressed in Eq. (2.16) is satisfied, one ob­
tains from the real and imaginary parts ofEq. (2.20), 

ITd2 Re{ln' ~ -In' ¢1} + 2 Im{RlI}Im{ln' ~} = 0, 
(2.21) 

1 -IRllI2 - ITd2 Im{ln' ¢1}/Im{ln' ~} = O. (2.22) 

Analogously, from Eqs. (2.13) and (2.14), it follows that 

In' ¢1I + R22 1n' ¢1 + R22 In' ¢1I + IRd21n' ¢1 

= IT2I121n' ",~I. (2.23) 

In the case where 

¢1 (r) = ¢1I(r) (2.24) 

(as it happens for constant or Coulombian potential tails), 
Eq. (2.23) gives 

IT2112 Re{ln' ¢1 -In' ~I} - 2 Im{R22}Im{ln' ¢1} = 0, 
(2.25) 

(2.26) 

Equations (2.22) and (2.26) are what we need to analyze 
the convergence of the Debye-like expansion. Bearing in 
mind the definitions of TI2 and T2I and Eqs. (2.16) and 
(2.24), these equations can be written in the form 

1-IR 12= / W{~I,,,,~} /2 W{¢1I,¢1} (2.27) 
II W{~I,,,,n W{~I,,,,n' 

(2.28) 

where W stands for the value of the Wronskian of the two 
corresponding functions at r = b. Except for the trivial case 
of the parameter a in Eqs. (2.15) being zero, the outgoing 
and incoming waves are independent in both the internal and 
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external regions and, therefore, the Wronskians in the nu­
merators of the right-hand sides of Eqs. (2.27) and (2.28) 
do not vanish. We can then conclude that 

IRl1l < 1, IR221 < 1, 

if the parameter a has been chosen such that 

sgn(iW{¢1I,¢1}) = sgn(iW{~"~ }), 

whereas 

IRlll > 1, IR221 > 1, 

in the case 

(2.29) 

(2.30) 

(2.31 ) 

sgn(iW{¢1\¢1}) =sgn( _iW{~I,~}). (2.32) 

Since, due to Eq. (2.16), the Debye parameter and the inter­
nal reflection coefficient have the same modulus, 

(2.33) 

the convergence or divergence of the Debye-like expansion 
depends on the choice of the parameter a in Eqs. (2.15) so as 
to give, respectively, Eq. (2.30) or Eq. (2.32). 

Some other interesting relations among the reflection 
and transmission coefficients can be written whenever Eqs. 
(2.16) and (2.24) are satisfied. From Eqs. (2.22) and 
(2.26) it is immediate to obtain 

2 -
1 - IRlll - T12T21 = 0, (2.34) 

(2.35) 

Equations (2.34) and (2.35) imply that the product TI2T21 
is real and, therefore, 

T12T21 = T12 T21 · (2.36) 

Comparison ofEqs. (2.34) and (2.35) allows us to conclude 
that 

IRlIl = IRd· (2.37) 

To end this section a brief comment concerning bound 
states and resonances is in order. As is well known, both 
bound states and resonances are associated with poles of the 
S matrix at negative or complex energies. In both cases one 
has 

In' t/f..egular = In' ¢1 

and, in consequence, 

p=l. 

(2.38) 

(2.39) 

Notice that this result is compatible with the inequalities 
(2.29) or (2.31). The latter have been obtained by assuming 
the validity ofEqs. (2.16) and (2.24), which obviously do 
not hold at negative or complex energies. 

III. AN EXAMPLE: STEP POTENTIAL 

In order to illustrate the ambiguity in the Debye expan­
sion pointed out in the preceding section, we consider here 
the scattering ofa particle of mass m and energy Eby a short­
range spherically symmetric potential of radius b and con­
stant intensity V (positive for a barrier, negative for a well). 
The internal and external dimensionless wave numbers are, 
respectively, 

zl=b[2m(E-V)]II2IIi, z2=b(2mE) I12IIi. (3.1) 
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In the external region the outgoing and incoming I waves 
are, obviously, 

fz (r) = h 1 (Z2r/ b ) , fzI(r) = h ;(Z2r/b). 

In the internal region we take 

~ (r) = jl (zlr/b) + iaYI (zlr/b), 

~I(r) = jl (zlr/b) - iaYI (zlr/b). 

(3.2) 

(3.3a) 

(3.3b) 

In these expressions hi' jl' and YI represent the spherical 
Bessel functions.9 The parameter a could be an arbitrary 
function of the energy. For our purposes it is enough to con­
sider it as a constant. Moreover, we restrict it to real values in 
order to have Eq. (2.16) satisfied. Obviously, the orthodox 
choice is a = 1. The Wronskians of the internal and external 
waves at r = b turn out to be 

W {~I,~} = 2ia/z1b, 

W {fzI,fz} = 2i/z2b, 

(3.4) 

(3.5) 

and, therefore, Zl and Z2 being real and positive, the Debye­
like expansion is convergent for a > 0 and divergent for a < O. 

I 

In our subsequent discussion of the reflection and trans­
mission coefficients we do not need to consider both signs of 
a, in view of the existing relations among coefficients corre­
sponding to opposite values of a. If we label with a superin­
dex ( + ) the waves and coefficients for positive a and with 
( - ) those for the opposite a, we have 

.1)( - ) _ .1)1( + ) .1)1( - ) _ .1)( + ) 
Ifl - Ifl 'If 1 - Ifl , (3.6) 

and, in consequence, 

R ~I-) = l/R ~I+)' (3.7a) 
R (-) - (R (+) +R (+) + 1)/R (+) 22 - - 22 11 11 , 

T\2-) = Tl2+)/R ~t), Til-) = - Til+)/R ~I+)' 
(3.7b) 

p( -) = l/p( +). (3.7c) 

In what follows we shall consider only positive values of a. 
By substitution of the explicit form of the outgoing and 

incoming waves, given in Eqs. (3.2) and (3.3), into the cor­
responding definitions, one obtains for the Debye parameter 

Z2h 1'(Z2){h I(Z2) + ej(zl)} - zlh 1 (Z2){h 1'(Zl) + ej'(Zl)} 

p = Z2h 1I(Z2){h 2(Zl) + ej(Zl)} - zlh 1(Z2){h 2'(Zl) + ej'(Zl)} , 
(3.8) 

and for the reflection coefficients 

R11 = p{h 2(Zl) + ej(zl)}/{h l(ZI) + ej(zl)}, 

R _ z2{h 2'(Z2)/h 2(Z2)} {h 2(ZI) + ej(zl)} - zl{h 2'(ZI) + ej'(zl)} 
22 - - zz{h 1, (Z2)/h 1(Z2)} {h 2(Zl) + ej(Zl)} -zl{h 2'(ZI) + ej'(zl)} , 

where 

e=(l-a)/a. 

(3.9) 

(3.10) 

( 3.11) 

For simplicity of notation, the subscript I for the Bessel functions has been omitted. Approximate expressions of those 
coefficients can be obtained in the limits of high and low energies. 

A. High energies 

Let us assume that E -+ + 00. This implies 

Z I = Z2 (1 - V / E) 112 -+ 00, Z2 -+ 00 • 

By defining 

o=V/2E, 

approximating 

ZI=Z2(1- V /2E) , 

(3.12) 

(3.13) 

(3.14 ) 

retaining only the first terms of the Taylor expansion of the Bessel functions h(zl) andj(zl) about Z2' and making use of the 
differential equation they satisfy,9 we find 

p= - W{h2,hl}+eW{j,hl}-Z20{hl'(h2'+ej') +hl(h2+ej)}' 

R11 =p{h 2 + ej - z2o (h 2, + ej')}/{h 1 + ej - z2o(h I, + ej')}, 

hi eW{j,h Z} _ z2o [h 2'(h 2, + ej') + h 2(h 2 + ej)] 
R22= - -,;z W{h 2,h I} + eW{j,h I} _ z2o [h I'(h 2, + ej') + h I(h 2 + ej)] , 

(3.15 ) 

(3.16) 

( 3.17) 

where all Bessel function are to be taken at Z2' To the lowest 
order, the above expressions can be approximated in the 
form 

R (1 + a)/(1 - a) + exp[i28 ] 
11- exp[ - i28 ]p, 

(1 + a)/(1 - a) + exp[ - 128] 
(3.19) 

(3.18 ) R22= [(1 - a)/(1 + a) ]exp{;28}, (3.20) 
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with 

()='Z2 - (l + 1 )17'/2. (3.21 ) 

All these expressions have been obtained under the assump­
tion that a=/= 1, i.e., in the case of a heterodox choice of the 
outgoing and incoming waves in the inner region. For the 
orthodox choice one has 

p=exp{i(2z1 -117')}V 14E, 

Rl1= - VI4E, 

R22= V 14E. 

(3.22) 

(3.23) 

(3.24) 

(1 + l){h I(ZO) + cj(zo)} + zo{h V(zo) + cj'(zo)} 

p= - (1 +1){h 2 (zo) +cj(zo)}+zo{h 2 ,(zo) +cj'(zo)} ' 

The transmission coefficients are trivially obtained from the 
reflection ones in view of Eqs. (2.11) and (2.13). 

B. Low energies 

Let us consider now the case E -+ 0, i.e., 

(3.25 ) 

By retaining only dominant terms in the expressions of the 
Bessel functions and their derivatives,9 one has from Eqs. 
(3.8)-(3.10), 

(3.26) 

Rl1= _ 1 + I +zo{h I,(ZO) + cj'(zo)}/{h I(ZO) + cj(zo)} 

1 + 1+ zo{h 2,(zo) + cj'(zo)}/{h 2(ZO) + cj(zo)} , 
(3.27) 

(3.28) 

In the case of a potential well (zo real) it is immediately 
obvious that IR 111-+ 1 as E -+ 0, whereas for potential barrier 
(zo purely imaginary) R II tends to a real constant. 

C. Intermediate energies 

We have evaluated numerically the expressions given in 
the right-hand side ofEqs. (3.8)-(3.10) as functions of the 
energy E for the orthodox value of the parameter a (a = 1) 
and for two heterodox ones (a = 2 and a = !). Two different 
values of the angular momentum (l = 0 and I = 5) have 
been considered for both cases of well ( V = - 251f 12mb 2) 
and barrier (V = 25,,2/2mb 2). The results are shown in 
Figs. 1-8. 

I 

R22I\ / 
i i 
i I 
, I 
\ , 

... -- ..... 

O~~ ____ ~ ____ ~ __ ==I=~=== 
!_E)l12 5 o 5 10 

FIG. 1. Moduli of the Debye parameter and the internal and external reflec­
tion coefficients for S wave (I = 0) scattering by a square well potential of 
range and intensity as given in the text. The continuous line corresponds to 
the orthodox choice of the outgoing and incoming internal waves. The 
dashed and dash-dotted lines result for two different heterodox choices, 
corresponding, respectively, to values a = 2 and a = ! for the parameter on 
the right-hand side of Eqs. (3.3) in the text. 
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Equations (3.8)-(3.11) allow us to define reflection 
and transmission coefficients at energies at which one of the 
regions becomes classically forbidden. It is interesting to re­
mark that, the wave number being purely imaginary, the 
reduced logarithmic derivative of the wave function is real in 
a classically forbidden region. Therefore, in the case of a 
potential well one has 

Ipi = IRl1l = 1 for V <E <0, (3.29) 

the particular value p = 1 corresponding to bound states, 
whereas in the case of potential barrier 

1T 

o 

-1T 
TT 

o 

-TT 
1T 

o 

-11' 

IRd = 1 for 0 <E < V. (3.30) 

~--j//~>;<»>,,::: 
Arg R22 / / /' // // // " 

o 5 10 El/2 

FIG. 2. Phases of the Debye parameter and the internal and external reflec­
tion coefficients whose moduli have been shown in Fig. 1. The continuous, 
dashed, and dash-dotted lines correspond to the same cases as before. The 
arguments have been reduced to the interval [ -17',17') by adding or sub­
tracting a multiple of 217'. 
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I~I ,IRIII 

oL-~ ____ ~ ____ ~ ____ ~==~ 
(_E)112 5 0 5 10 E1I2 

FIG. 3. Moduli of the Debye parameter and the reflection coefficients for 
H-wave (l = 5) scattering by the same square well potential as in Fig. 1. 

IV. CONCLUSIONS 

As we have seen in Sec. II, there are an infinity ofpossi­
ble choices of outgoing and incoming waves in the nuclear 
region, all of them leading to convergent Debye-like expan­
sions of the S matrix. Although these expansions are correct 
from a mathematical point of view, a physical meaning could 
hardly be assigned to their successive terms if the choice of 
outgoing and incoming waves is not the correct one. It is, 
therefore, interesting to find signatures of the orthodox elec­
tion. 

From the example considered in Sec. III, it turns out 
that the most relevant features of the orthodox choice appear 
in the high-energy behavior of the Debye parameter and the 
reflection coefficients. In the orthodox case, the moduli 
Ipi = IRl1l = IRnl decrease monotonically to zero as the 
energy increases, and Arg{ p} increases monotonically 
whereas Arg{R II} and Arg{R22 } remain nearly constant 

IT 

o 

-IT 
IT 

o 

-IT 
IT 

o 

-IT 

(-E)1!2 5 o 5 10 

FIG. 4. Phases of the Debye parameter and the reflection coefficients whose 
moduli are shown in Fig. 3. The same convention as in Fig. 2 has been 
adopted. The discontinuity (of value - 1T) in Arg {Rn} corresponds to a 
poleofR22• 
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I~I 
~ .. --------~-----

o 5 10 

FIG. 5. Moduli of the Debye parameter and the reflection coefficients for S­
wave scattering by the square barrier mentioned in the text. The comments 
in caption for Fig. 1 are also valid here. 

and equal to a multiple of 'fT. In the heterodox cases, the 
moduli tend, with oscillations of decreasing amplitude, to a 
finite constant, and Arg{ p} varies slightly around a multi­
ple of 'fT whereas Arg{R 11} decreases and Arg{R22} in­
creases monotonically. 

Another feature that allows us to distinguish the ortho­
dox Debye parameter from the heterodox ones is the behav­
ior at resonances. All parameters become real at resonant 
energies, but, whereas the phase of the orthodox p varies 
rapidly as the energy passes the resonant value, the phases of 
the heterodox ones remain nearly stationary, and, whereas 
the modulus of the correct p decreases uniformly, those of 
the incorrect ones present relative maxima or minima. 

The potential well considered in our example has two S­
wave, one P-wave, and one D-wave bound states. At the cor­
responding energies, p = 1 independently of the choice of 
outgoing and incoming waves. However, we can see in Fig. 2 
that, for negative energies and 1=0, Arg{R l1} and 
Arg{R22} have a smooth dependence on the energy in the 
orthodox case and an oscillatory behavior in the heterodox 
ones. 

o 5 10 

FIG. 6. Phases of the Deby parameter and the reflection coefficients whose 
moduli can be seen in Fig. 5. 
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FIG. 7. Moduli of the Debye parameter and the reflection coefficients for 
the H-wave scattering by the same square barrier as in Fig. 5. 
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A greatest lower bound for the total (integrated) energy of closed timelike curves in GOdel 
space-time is derived. (Here "energy" is determined relative to the velocity field of the major 
mass points of the universe.) The derivation is then used to reconstruct and extend a remark of 
Gooel's concerning total (integrated) acceleration requirements for "time travel" in his model 
universe. 

I. INTRODUCTION 

Gooel space-time,1 of course, is not a live candidate for 
describing our universe. But it is an interesting geometric 
structure, and a source of insight into the possibilities al­
lowed by relativity theory. 

In this paper we present an elementary, but perhaps 
somewhat curious, proposition concerning the geometry of 
closed timelike curves in G6del space-time (Proposition 2). 
It establishes a greatest lower bound for the total (integrat­
ed) energy of such curves (where "energy" is determined 
relative to the velocity field of the major mass points of the 
Universe). The proposition turns on the possibility of reduc­
ing questions about total energy (of closed timelike curves in 
Gooel space-time) to more tractable questions about area 
enclosure by curves in the hyperbolic plane (Proposition 1). 

By way of application, we also invoke the proposition to 
reconstruct and extend a remark of Gooel's2 concerning to­
tal (integrated) acceleration requirements for "time travel" 
in his model universe. It was this remark that first suggested 
our question about total energy. We close with a brief discus­
sion of a conjecture on minimal total acceleration require­
ments. 

II. PRELIMINARIES 

In this section we recall several basic facts about G6del 
space-time and introduce some notation.3 

We take G6del space-time to be the pair (M, gmn ) 
where M is R4 and gmn is a Lorentz metric on M character­
ized by the condition that for some point (and hence, by 
homogeneity, any point) p in M, there is a global adapted 
(cylindrical) coordinate system t, r, tp, Y on M in which 
t(p) = rep) = yCP) = 0 and 

gmn = 4jl2[(dt)m(dt)n - (dr)m(dr)n - (dY)m(dY)n 

+ (sh4 r - sh2 r) (dtp)m (dtp)n 

+ 2{2 sh2 r(dtp) (m (dt) n) ]. 

(We use sh rand ch r, respectively, to abbreviate sinh rand 
cosh r.) Here - 00 <t< 00, - 00 <Y< 00, O<r< 00, and 
O<tp < 21T with tp = 0 identified with tp = 21T. The metric 
gmn is a solution to Einstein's equation 

Rmn - ~ gmn R = 81TK[P17m 17n - p(gmn -17m 17n)] 

for a perfect fluid source with four-velocity 17m 

= (a /at)m /2p" mass density P = 1/( 161TKjl2) , and pres­
sure p = 1/(161TKjl2).4 

Here, 17m is a unit timelike Killing field, and defines a 
temporal orientation on (M, gmn ). The integral curves of 
the field, characterized by constant values for r, tp, andy, will 
be called matter lines. The (a / alP ) m is a rotational Killing 
field with squared norm 4jl2(sh4 r - sh2 r). Its (closed) in­
tegral curves, characterized by constant values for t, r, andy, 
will be called Godel circles. G6del circles with critical radius 

r c = In (1 + {2) are closed null curves (since sh r c = 1). 
Those with radius r> r c are closed timelike curves. Here 
(a / ay) m is a covariantly constant field with squared norm 
_ 4p,2. 

Let S be a t = const, Y = const submanifold of M. Or­
thogonal projection of gmn induces a (negative definite) 
metric 

hmn =gmn -(72

)[(:tt(:Jn -(~t(~)J 
onS.5 Now 

and 

So 

hmn = -4jl2[(dr)m(dr)n +lsh22r(dtp)m(dtp)n]' 

Once hmn is presented in this form it is not difficult to verify 
that the pair (S, - hmn ) is a complete two-dimensional Rie­
mannian manifold with constant curvature - 1/jl2.6 

In what follows we use the following notation. Given a 
timelike curve7 yin (M, gmn ), we take its four-velocity (Le., 
unit tangent vector field) to be sm , and set 

am = snVnsm (the acceleration ofy), 

a = ( - am am) 1/2 (the magnitude of r's acceleration) 

E=sm17m 

(r's energy with respect to the unit Killing field 17 m 
). 

We also use the parameter s for arc length ( = elapsed prop­
er time) along y, and set 

PT( y) = i ds (total elapsed proper time of y), 
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T A ( y) = i a ds (total acceleration of y) , 

TE(y) = i Eds (totalenergyofy). 

Note that E> 1 (since sm and 1Jm are both future directed, 
unit timelike vectors), and that E = 1I( 1 - v2

) 1/2, where v 
is the speed of y relative to matter lines. In terms of the 
coordinates above, E is given by 

In the special case where y is a Godel circle of radius r> r e, 
we have 

sm= (ds)(~r 
where 

d(j'J 1 
ds = 2jL(sh4 r - sh2 r)I/2 ' 

and hence,S 

E =..{i sh2 r/(sh4 r - sh2 r) 1/2, 

a = (1I4jt)sh 2r(2 sh2 r - 1)/(sh4 r - sh2 r), 

PTe y) = 41Tjt(sh4 r - sh2 r) 1/2, 

TA (y) = 1T sh 2r(2 sh2 r - 1)/(sh4 r - sh2 r) 1/2, 

TE( y) = 4.J21Tjt sh2 r. 

III. ENERGY AND AREA 

Clearly,4.J21Tjt is the (unrealized) greatest lower bound 
of TE(y) as y ranges over G6del circles of radius r> re. In 
this section we prove that it is actually the greatest lower 
bound as y ranges over all closed timelike curves. The first 
step in the argument is to give TE( y) an intuitive geometric 
interpretation. 

In what follows let y be some closed timelike curve, let S 
be some t = const, y = const submanifold of M, and let y* be 
the closed (at least piecewise smooth) curve that results 
from projecting y into S. Notice first that since y is closed, we 
have (using our coordinate expression for E) 

TE(y) = 2..{ijt i sh2 rd(j'J. 

The integrand on the right depends only on rand (j'J. So we 
may perform the integration over y* rather than y. Thus 

TE(y) = 2~2jL fr" sh2 rd(j'J. 

We can evaluate the right-hand integral using Stokes' 
theorem. Let S be assigned the orientation, say, determined 
by the field (a / a(j'J) m . Assume for the moment that y* is a 
simple (i.e., non-self-intersecting) curve. Then it forms the 
boundary of an (oriented) region Gin S, and we have 

r sh2 rd(j'J = r d(sh2 rd(j'J) 
Jr- JG 

=1 sh2rdrd(j'J =~ r dA, G 2jL JG 
where dA is the area element 2jt2 sh 2r dr d(j'J on S. Now no-
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tice that the formula, suitably interpreted, holds even in the 
case where y is allowed to be self-intersecting. For in this 
case y* can be decomposed as a "sum" of simple closed 
curves, and we can associate with it a corresponding sum G 
of oriented regions bounded by these curves. To extend the 
formula we simply apply it to each element in the sum, and 
add. 

In what follows, "area" should be understood in the 
extended sense of "signed, summed area." On that under­
standing we can formulate our conclusion as follows. 

Proposition 1: Let ybe a closed timelike curve, and let G 
be the (oriented, summed) region obtained by projecting y 
into any t = const, y = const submanifold S. Then 

TE( y) = (..{i/jt). the area of G. 

Now we determine a greatest lower bound for the right­
hand side of the equation. We do so using an "isoperimetric 
inequality." Consider any complete two-dimensional Rie­
mannian manifold of constant curvature k. Let L and A, 
respectively, be the length of, and area enclosed by, a (possi­
bly self-intersecting) closed curve in the manifold. Then 

L 2>(41T - kA)A, 

and equality holds iff the curve is a circle.9 (It follows that of 
all closed curves of given length, area is strictly maximized 
by circles.) The case of interest to us is that in which 
k = _lIjt2. 

Let y, y*, and G be as above, let sm be the four-velocity 
of y, and let a'" be the component of sm orthogonal to 
(a /at)m and (a /ay)m. Then 

-cT"um =E2_Ey2_1, 

where Ey = sm (a / ay) m /2jt. So if L is the length of y* andA 
is the area of G, we have (by Proposition I) 

L= i (E 2-E/-1)1/2 ds<i Eds= (..{i/jt)A. 

Combining our two inequalities (with k = - IIjt2) we ar­
rive at our principal result. 

Proposition 2: Let y, y*, and G be as above. Let L be the 
length of r*, and let A be the area of G. Then 

(a) A > 41Tjt2 and L > 4.J21Tjt. 

Hence (by Proposition 1), 

(b) TE(y»4.J21Tjt. 

Given our previous remarks about G6del circles, it fol­
lows that 4.J21Tjt is the greatest lower bound of TE( y) as y 
ranges over all closed timelike curves. It also follows that the 
two lower bounds in (a) are greatest. For this we need only 
observe that G6del circles y of radius r> re have area and 
length 

L= L (E2_1)1/2ds= (E2_1)1I2pT(y) = 21Tjtsh2r. 

We can think of clause (a) as asserting, simply, that no 
closed timelike curve has an associated area, after projection, 
that is as small as the area of a disk of critical radius r e (or a 
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length, after projection, as small as the circumference of that 
disk). 

IV. GODEL'S REMARK 

In a paper devoted to a discussion of the philosophical 
significance of his discoveries in general relativity, GOdel 
cites a calculation of "fuel requirements" for travel along 
closed timelike curves in his universe: 
"Basing the calculation on a mean density of matter equal to 
that observed in our world, and assuming one were able to 
transform matter completely into energy, the weight of the 
"fuel" of the rocket ship, in order to complete the voyage in t 
years (as measured by the traveler), would have to be of the 
order of magnitude of 1022 It 2 times the weight of the ship (if 
stopping, too, is effected by recoil). This estimate applies to 
t « 1 OIl yr. Irrespective of the value of t, the velocity of the 
ship must be at least 1/.J2 of the velocity oflight.,,2 

It seems likely that Godel was considering time travel 
along Godel circles, and calculated the fuel required to acce­
lerate from zero velocity to the velocities characteristic of 
those circles, and then back again. 10 (Here "velocity" is un­
derstood to mean "speed relative to matter lines.") That is 
why he can refer to the (unchanging) velocity of the ship. II 

Using Proposition 2, it will be possible for us to recover Go­
del's numbers without assuming that the time traveler tra­
verses Godel circles (or sections thereof). 

We make use of a lemma 12 that connects total accelera­
tion to changes in energy value. 

Lemma 3: Let r be a timelike curve connecting points p 
andq. Then 

TA(r) > IlnE(q) -lnE(p)l· 

[Here, of course, E(q) is the value ofE that rassumes atq.] 
Proof: Let g'",n = g mn - 5 m 5 n be the (negative definite) 

metric that results from projecting gmn orthogonal to sm. 
Since ",m is a Killing field, we have 

~~ = 5 nv nE = 5 nsm V n "'m + "'n an = "'nan = g'",n ",man. 

Hence, by the Schwarz inequality (applied to - g'",n)' 

I ~~ I = I - g'",n nma
n I 

<;;; ( _ g'",naman ) 1/2( _ g'",n ",m",n ) 1/2 

=a(E 2 -1)1/2<aE. 

So a > IdOn E)/dsl, and therefore 

TA(r) = iads>llnE(q)-lnE(p)l. • 

The corollary we now state concerns closed timelike 
curves that have initial (and perhaps final) four-velocity 
",m . They represent the trajectories of time travelers who 
start out (and perhaps end up) at rest relative to the major 
mass points of the Universe. 
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Corollary 4: Let r be a closed timelike curve. 
(a) If r has initial four-velocity ",m, then 

TA(r) > Iln(4.j21TILIPT(r»)I. 

(b) If r has both initial and final four-velocity ",m , then 
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TA(r) > 2 Iln(4.j21TILIPT(r») I· 
Proof: Let p be the initial ( = terminal) point of r, and 

let q be a point on r at which E achieves its average value. By 
Proposition 2, 

E(q) 'PT(r) = i E ds>4.j21Tf-l' 

LetE(p+) andE(p-) be the initial and terminal values of E 
atp. In case (a) we have E(p+) = 1, and the assertion fol­
lows immediately if we apply the lemma to that stretch of r 
running from p to q. In case (b) we have E(p -) = 1 as well, 
and so we can apply the lemma, in addition, to the return 
stretch of r running from q back to p. • 

Now we establish the connection between total accelera­
tion and "fuel consumption." 12 Suppose r represents the 
trajectory of a point particle "rocket ship." Let m be its mass, 
and./" the energy momentum of its exhaust. Let us assume 
that the rocket is suitably isolated during its trip. (It is not 
refueled, nor hit by meteors.) Then the energy momentum of 
the rocket's exhaust must balance precisely the rate at which 
the rocket itself loses energy momentum, i.e., 

./" = - sPVp (msn) = - (snsPVpm + man). 

And the mass of the rocket must be nonincreasing (i.e., 
tpVpm<;;;O) since the rocket is consuming fuel. Hence, since 
./" is causal (i.e., rJn ;;;'0), 

a<;;;( - snVnm)lm = - dOn m)/ds. 

Let m be the mass of the rocket's payload (the rocket with 
empt; fuel tanks), and let mf be the mass of the fuel with 
which it starts. Assuming that the rocket arrives with empty 
fuel tanks, we have (by integration) 

(mp + mf)lmp ;;;'eTACYl. 

Now let us insert some numbers. Recall that the param­
eter f-l is correlated with cosmic mass density p by the rela­
tionp = 1/( 161TKf-l2). Ifwe take for p the value 10-30 g/cm3 

(the estimated mass density of our universe), then f-l:::: 1010 
yr, and 4.j21Tf-l:::: lOll yr. Hence, in our two cases (a) and 
(b), assuming PT(r) « lOll yr, 

case (a): mflmp;;;'lOllIPT(r), 

case (b): mflmp;;;'1022/(PT(r)f 
[where PT( r) is given in years]. 

V. A CONJECTURE 

Corollary 4 applies only to closed timelike curves r that 
are initially tangent to matter lines. And even within this 
restricted class, it places no lower bound on T A (r). It leaves 
open the possibility that T A ( r) can be made arbitrarily 
small if PT(r) is allowed to be arbitrarily large. (A suffi­
ciently patient time traveler might not need much fuel for his 
rocket ship.) 

It seems natural to ask what the greatest lower bound of 
TA ( r) is as r ranges over all closed timelike curves. Let 
GLB be this number. 13 In earlier work we showed that 
GLB>0.3 It now seems to us overwhelmingly likely that 
GLB = 21T(9 + 6/3)1/2::::28. (This would yield a fuel con­
sumption ratio mflmp larger than 1012

.) 
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One arrives at that particular number by considering 
G6del circles. As noted in Sec. II., G6del circles r of radius 
r> r c have total acceleration 

TA(r) = 1Tsh 2r(2 sh2 r-l}/(sh4 r- sh2 r)1/2. 

This expression assumes a minimal value of 21T( 9 + 6J3) 1/2 
when sh2 r = (1 + {3)/2. 

One might hope to prove the conjecture using ideas re­
lated to those in Sec. III, i.e., by reducing it to an assertion 
about closed curves in the hyperbolic plane, and then invok­
ing the "isoperimetric inequality" (or something similar). 
But we have not been able to do so. The best we have done so 
far,14 is to show that Godel circles of the required special 
radius are the only closed timelike curves that minimize total 
acceleration against local variation. So if the value GLB is 
realized by any closed timelike curve, the conjecture must be 
true. It seems overwhelmingly likely that the value is real­
ized (because of the nature of the sectional curvatures of the 
G6del metric). 
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A model of anisotropic fluid with three perfect fluid components in interaction is studied. Each 
fluid component obeys the stiff matter equation of state and is irrotational. The interaction is 
chosen to reproduce an integrable system of equations similar to the one associated to self-dual 
SU(2) gauge fields. An extension of the Belinsky-Zakharov version of the inverse scattering 
transform is presented and used to find soliton solutions to the coupled Einstein equations. A 
particular class of solutions that can be interpreted as lumps of matter propagating in empty 
space-time is examined. 

I. INTRODUCTION 

Anisotropic fluids are found in general relativity when 
electromagnetic fields or a viscous term are present. I But 
they may also be found using two perfect fluid compo­
nents2

-4 or even ~ore components. 5 

Models with multifluid components are increasingly be­
ing used in cosmology,6.7 in the description of coJIapsing 
spheres,S and in the problem of halo and hole formation9

•
10 

in expanding universes to represent inhomogeneous zones 
that develop galaxies and voids. II 

In the present paper we study a model of anisotropic 
fluid with three perfect fluid components in interaction. 
Each fluid component obeys the stiff matter equation of state 
and is irrotational. The interaction is chosen to reproduce an 
integrable system of equations similar to the one associated 
to the Yang equations 12 for self-dual SU (2) gauge fields 
with axial symmetry. For instance, these equations can be 
solved using a simple generalization of the Belinsky-Zak­
harov solution generating technique13 (BZSGT). 

The application of the BZSGT opens the possibility of 
finding solitonlike solutions for the fluid. In particular, we 
can describe lumps of matter coupled to gravity propagating 
in empty space. The description of lumps is greatly simpli­
fied in the three-fluid model, since we only need a two-soli­
ton solution, i.e., a scattering matrix with two complex 
poles. 13 For the two-fluid model we need four complex poles, 
a fact that makes the analysis of the solutions quite compli­
cated. 

These solutions may be generalized to represent the col­
lision of cylindrical lumps which may show some features of 
the merging of galaxies. These generalizations will be treated 
in a future paper. 

In Sec. II we present a summary of the main formulas 
for the model of anisotropic fluid with multifluid compo­
nents, of Ref. 5. In Sec. III we examine a three-fluid model 
with potentials interacting via a Yang-type of equation. In 
Sec. IV we study the Einstein equations coupled to the three­
fluid model for cylindrically symmetric space-times. In Sec. 
V we present a class of two-soliton solutions for the self-

gravitating anisotropic fluid of Sec. III and analyze a partic­
ular subclass that describes the propagation of a lump of 
matter on a flat space-time. In the Appendix we extend the 
usual BZSGT valid for symmetric matrices to the case of 
Hermitian matrices. 

II. A MODEL OF ANISOTROPIC FLUID WITH 
MULTI FLUID COMPONENTS 

The stress-energy tensor for the anistropic fluid is 
formed from the sum of three tensors, each of which is the 
energy-momentum tensor of a perfect fluid, in the particular 
case that the fluids' four-velocities are linearly dependent,5 

i.e., 
3 

T IlV ~ tllV = k (i)' 
i= I 

t1;; = (Pi +Pi)u1i)U~i) _PigIlV. 

The four-velocities u1i) are restricted by 

u1i) U (i)1l = 1, 

(2.1 ) 

(2.2) 

(2.3) 

and the existence of quantities bi different from 0 such that 
3 

L bi u1i) = O. (2.4 ) 
;=1 

The functions Pi andpi are the fluids' rest energies and pres­
sures, respectively. 

With the transformations5 

Il *Il Il (P+YEI2)1I2. Il 
P(l) -+u(l) = cos ¢u(l) + sm ¢U(2l' (2.5a) 

p+aE l 2 

(
p + aEl2 )112. Il Il 

U12) -+uff> = - sm ¢U(I) + cos ¢U(2l' 
P+ yEl2 

(2.5b) 

where 

tan(2¢) =2[(P +aEI2)(p +YEI2)]I12/(a-p), (2.6) 

and the condition (2.4), we find that the energy-momentum 
tensor (2.1) can be cast in the form 

Tllv= (P+1T)UIlUv+ (U-1T)X"XV_1TgIlV. (2.7) 
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The quantities E 12' a, y, and/3 are related to the fluid compo­
nents by 

Eij = Eji = u~i) u(j)/L' i,j = 1,2,3, 

a= (PI + PI) + (P3 + P3)( EI; -=-~2E12r ' 

Y= (P2 + P2) + (P3 + P3)( E2; -=-~22EI3 r ' 

/3= ( + ) (E13 - E23E12) (E23 - EI2E13 ) • 

P3 P3 (1 _ Ef2 ) 2 

(2.8) 

(2.9) 

(2.10) 

(2.11 ) 

The symbols U/L, X', P, u, and 1T represent the fluid flux 
velocity, the direction of anistropy, the fluid rest energy, the 
pressure along the anisotropy direction, and the pressure on 
the "perpendicular directions" to X', respectively. These 
quantities are related to the perfect fluid components by 

U /L */L I( *a * ) 1/2 = u(I) u(I) u(l)a , 

X' = uri> I( - Ur2~ Ur2)a) 1/2, 

P =! (a + y + 2(JE12 - 21T) 

+ ! [(a - y)2 + 4(/3 + aE12 ) (/3 + YE 12 )] 1/2, 

u = -! (a + y + 2(JEI2 - 21T) 

+ ! [(a - y)2 + 4(/3 + aE12) (/3 + YE 12 )] 1/2, 

(2.12) 

(2.13 ) 

(2.14) 

(2.15) 

1T=PI+P2+P3' (2.16) 

Also, we have that 

(2.17) 

p=T/LVU/LUv, u=T/LVX/LXv' (2.18) 

In general, it is necessary to add supplementary condi­
tions to close the model; this point was treated in some detail 
in Ref. 2. 

III. A SPECIAL CASE OF MUL TIFLUID WITH 
IRROTATIONAL COMPONENTS 

A simple closed model of fluid is obtained by assuming 
that each fluid four-velocity component is irrotational, i.e., 

/L ""'/L 1("" ""W ) 1/2 uri) = 'f'(i) 'f'(i),a 'f'(i) , (3.1) 

where, as usual, tP(~ = g /LatP (i) ,a and tP(i),a = aatP(i); and 
obeys the simple equation of state 

_ _ I ""-2",, ""w Pi -Pi -Z'f'(I)'f'(i),a'f'(i)' (3.2) 

i.e., each fluid obeys the stiff matter equation of state. Note 
that for the first component we recover the well-known 
Tabensky-Taub l4 relations for the stiff fluid in terms of the 
potential A=ln tP(I)' Thus the multifluid with fluid compo­
nents obeying (3.2) can be considered as the interaction of a 
Tabensky-Taub fluid with other two irrotational fluids. The 
case tP(3) = ° corresponds to the fluid studied in Ref. 4. 

The condition of linear dependence of the fluids' four­
velocities in this case reads 

b·cI>·/L = 0, (3.3) 

where we have introduced the notation 
3 

A·B = L A(i)B(i). (3.4 ) 
;=1 
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From (2.1), (3.1), and (3.2) we find 

T/Lv = tP(l} (cI>'/L·cI>,v - !g/LvcI>,a·cI>,a). (3.5 ) 

The energy-momentum tensor (3.5) can also be derived, in 
the usual way, from the Lagrangian density 

!t' =! f=gtP(I)2c1>,a·cI>,a. (3.6) 

The simpler condition to determine the fields tP(i) is to 
impose that they satisfy the Euler-Lagrange equations ob­
tained from (3.6), i.e., 

(f=g ~fJtPilN(I),fJ),a + f=gtP(J}cI>,a·cI>,a = 0, (3.7a) 

(f=g ~fJtP(lN(2),fJ),a = 0, (3.7b) 

(f=g ~fJtP(lN(3),fJ),a = 0. (3.7c) 

The energy-momentum tensor (3.5) obeys 

(3.8) 

as a consequence of (3.7). And for each fluid component we 
have 

V/Ltf,; #0. (3.9) 

The relations (3.8) and (3.9) tell us that the whole fluid is a 
closed system with "internal" fluid components in interac­
tion. Also, the anisotropic fluid is completely determinated 
by the fields tP(i) and their evolution equations (3.7), i.e., no 
other extra equation like an equation of state is needed. As a 
matter off act, the anisotropic fluid is completely determined 
by the quantities a, /3, y,1T, and EI2 that in terms of tP(i) can 
be written as 

1T = (1/2tP~ I) )cI>,/L .cI>,/L, 

Ei} = Ai}l P·;;Ajj , 

where 

Ai} = tP(i) ,/LtP(j)'/L . 

(3.10) 

(3.12 ) 

(3.13 ) 

(3.14 ) 

(3.15 ) 

IV. EINSTEIN EQUATIONS COUPLED TO MATTER 

The Einstein equations 

R/Lv - !g/LvR = - T/Lv (4.1) 

coupled to the energy-momentum tensor (3.5) are equiva­
lent to 

(4.2) 

The integrability of (4.1) is guaranteed by the field equa­
tions (3.7). 

We shall consider a space-time with the cylindrically 
symmetric metric 

d~ = e"'(dt 2 - dr) - Yab dxa dxb
, (4.3) 

where the sum convention is assumed in the indices a and b 
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that take the values 2 and 3; (XO,X I,x2 ,x3) = (t,r,{),z), Yab 
and cu are functions of t and r only, and 

(4.4) 

dety=t 2. (4.5) 

From (4.2)-( 4.5) and the fact that cylindrical symme­
try implies that the ¢J U ) are functions of t and r only, we get 

- (Roo+Rll) 

= cu.,!t + lit 2 + l tr( Y.t Y:; I + Y.r Y:; I) , 

= ¢J(l}(cV,t·cV.t + cV,r'cV,r)' 

- 2Rol = cu,r lt +! tr(Y,tY,; I), 

= 2¢J(l;cV,t'cV,r' 

and 

where Y- 1 == (Y- I ) . 
,jJ. ,jJ. 

( 4.6a) 

(4.6b) 

(4.7a) 

(4.7b) 

(4.8) 

The field equations (3.7) in space-time with the metric 
(4.3) reduce to 

¢J(l),tt + ¢J(l),,!t - ¢J(l),rr + ¢J(l,'(¢J~2),t - ¢J~2),r + ¢J~3),t 

- ¢J~3).r - ¢J~l),t + ¢J~l),r) = 0, 

(t¢J('}¢J(2),t).1 - (t¢J(1 N(2),r) ,r = 0, 

(t¢J(IN(3),')" - (t¢J(IN(3),r),r =0. 

(4.9a) 

(4.9b) 

(4.9c) 

These three equations can be written in a completely equiva­
lent form as the single matrix equation 

(tQ.IQ-I),1 - (tQ,rQ-I),r =0, 

where 

t ( 1 Q=-
- ¢J{l) ¢J(2) + i¢J(3) 

Note that 

Q=Qt, 

detQ=t2. 

( 4.10) 

(4.11 ) 

( 4.12) 

(4.13 ) 

By using definition (4.11) it is not difficult to prove the 
following useful identities: 

tr(Q,rQ,;I) = -2l/J(1)2cV.r'cV,r' 

tr(Q"Q ,; I) = _ 2(t -2 + ¢J(1)2cV,I'cV.t), 

tr(Q,rQ ,; 1) = - 2¢J(1)2cV,I'cV,r' 

From (4.6), (4.7), and (4.14) we get 

CU,I = - 21t - (t 14)tr(Y,tY,; 1 + Y,rY.; I) 

- (t 12)tr(Q.rQ ,; 1 + Q.IQ ,; 1), 

CU,r = - (t 12)tr(y.,y,; I) - t tr(Q,tQ,; 1). 

(4.14a) 

( 4. 14b) 

(4.14c) 

( 4.15a) 

( 4.15b) 

The existence of cu, i.e., CU,tr = CU,rt, is a direct consequence of 
Eqs. (4.8) and (4.10). Thus the solution of the Einstein 
equations (4.2) for the metric (4.3) reduces to the solution 
of (4.8) and (4.10), and the computation of a quadrature for 
the coefficient cu. [Compare Eqs. (4.15).] 

In the case under consideration we have that the condi­
tion (3.3) is automatically satisfied as a consequence ofthe 
dependence of the function ¢J U ) in only two variables, t and r. 
Then, we can have the anisotropic fluid interpretation of the 
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field equations (4.2). We find, after some algebra, that the 
quantities that appear in (2.8)-(2.12) can be written as 

P=(T=!¢J(1)2e- w
l cV,1 -cV.rllcV,t +cV,rl, (4.16) 

UjJ. = e-
w

/2 [ 2{)2 1/2' - ({)I - {)O)I12,O,O] , 
IfBo ({)I - ()o) 

xjJ. = e-
w

/

2 

[ 2{)2 1/2' - ({)I + {)O)I12,O,O] , 
~2{)o ({)I + ()o) 

( 4.17) 

(4.18 ) 

( 4.19) 

where the vertical bars indicate the usual Euclidean norm 
and 

{)o= IcV.I -cV.rllcV.1 +cV.rl, 

{)I = cV,I'cV,1 + cV,r'cV,r' 

{)2 = cV.I 'cV,r' 

Two useful identities are 

a + Y + 2{3€12 - 21T = 0, 

( 4.20a) 

(4.20b) 

(4.20c) 

(4.21 ) 

() ~ + 4{) ~ - () i = O. ( 4.22) 

Equation (4.21) is a consequence of (3.10)-(3.15) and 
(4.3), and (4.22) follows from (4.20). 

Also, we have 

¢J(l) = t IQ", 

¢J(2) = Re(QI2)IQll' 

( 4.23a) 

(4.23b) 

(4.23c) 

Expressions (4.16 )-( 4.19) can also be obtained directly 
by solving the eigenvalue problem for the tensor (3.5) with 
the metric (4.3) and ¢JU) functions of t and r only. In other 
words, the anisotropic fluid interpretation of (4.3) is inde­
pendent of the identifications (3.1) and (3.2). Thus, even 
though (3.1) is meaningless in the case that ¢Ju),a¢Ju) ,a <0 

the anisotropic fluid interpretation of (4.3) is still valid. The 
only problem that one has is that 1T < O. Note that the same 
problem occurs in the one-fluid case (Tabensky-Taub flu­
id).14.15 

Equations (3.7) can also be cast as a matrix equation in 
terms of the matrix Q whose elements are space-time scalars 
[cf. Eq. (4.11)]. 

(4.24) 

In the case of Euclidean metric gjJ.v = 8jJ.v, Eq. (4.24) is 
closely related to the equation for self-dual SU(2) gauge 
fields in the Yang gauge.12 For a cylindrically symmetric 
Euclidean space-time (4.24) reduces exactly to the Yang 
equation for axially symmetric instantons. 16 Hence (4.10) 
can be considered as the hyperbolic version of the Yang 
equation for self-dual SU(2) gauge fields. 

The real case, i.e., Q = Q T is equivalent to the case stud­
ied in Ref. 4. Note that in this case we also have p = (T, i.e., a 
stiff equation of state in the direction of anisotropy. 

V. PARTICULAR SOLITARY WAVE SOLUTION 

There are many different techniques used to solve Eq. 
( 4.10), the most commonly used are the Backlund transfor­
mations and the inverse scattering method. In this section we 
study a particular solution obtained using an extension of the 
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Belinsky-Zakharovl3 version of the inverse scattering trans­
form that we present in the Appendix. 

We shall focus our attention mainly in the matter con­
tent of the solution, for this reason we take the metric as 
being diagonal along the complete evolution of the space­
time, i.e., 

(5.1 ) 

The solution for the matter is generated using the Belinsky­
Zakharov solution generating technique with the diagonal 
seed solution 

Qo = 1 (e ~ A e~)' (5.2) 

In this case we have that the Einstein equations (4.8), 
(4.10), and (4.15) and the metric (4.3) can be written as 

ds2 = e"'''''(dl 2 - dr) - I(eo d() 2 + e - 0 dr), (5.3) 

Woo= -pnl+v[n] +2v[A], (5.4) 

v[n] ==+ J 1 [(n~, + n~r)dl + 2n"n,r dr], (5.5) 

n,u + n,JI - n,rr = 0, (5.6) 

A,u + A,JI - A.rr = O. (5.7) 

This particular solution to the Einstein equation for a 
single fluid component, i.e., 

¢l(i) = eA
, 

¢l(2) = ¢l(3) = 0, 

( 5.8a) 

(5.8b) 

obeying the stiff equation of motion PI = PI is studied in 
Refs, 15 and 17. Note that one recovers the vacuum solution 
(Einstein-Rosenls solution) in the case A = 0 (¢l{l) = 1) 
and ¢l(2) = ¢l(3) = O. 

The application of the one-soluton BZSGT to the seed 
solution (5.2), i.e., to the matter only, yields the solution 
(see the Appendix) 

WOI = Woo + 2ln t 1/21ILII (lp11
2
1 YI1

2 
+ Iql121 YII-

2
) 

[(/ILI1 2-1 2)IILi _121]1/2 ' 

Yk ==exp(Fk - A/2), 

X k == (ILk If) 112. 

(5.9) 

(5.11 ) 

( 5.12) 

By doing A = ql = o we have the solution characterized 
by 

W =~lnt+v[n] +In IILI-iLII 
01 2 I 2 21 ' ILI-I 

¢l(1) = IILllt I, 
¢l(2) = ¢l(3) = O. 
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(5.13 ) 

(5.14a) 

(5.14b) 

To derive (5.13) we have assumed that 1m ILl ;60 used the 
identity 

(IL2 - ILl )(ILJJ.L2 - t 2) = 2(a2 - a I)IL JJ.L2' (5.15) 

and disregarded a constant of integration, a practice that we 
shall follow without warning. 

A more interesting solution is obtained by applying the 
same one-soliton BZSGT to the diagonal one-soliton already 
found. We find the two-soliton solution 

W02 = l.-ln t + v[ n] 1 + In IILI - iLI! IILz - iL21 
2 IILi-t 2I1ILi-(21 

+ 2In(1P21 2IY2/ 2 + Iq212IY21-2), (5.16) 

¢l(1) =EJ ~212IY2122+ Iq21
2
/Y2 1-

2 
2' (5.17a) 

1 1P211Y21X2 1 +lq2I1Y2IX21-
¢l - - EJ (IX2 1

2 
- IX2/- 2)Re(P2q;Y2IY2) 

(2) - t Ip21 21 Y21X212 + Iq21 21 Y21X2 1-2 
(5.17b) 

¢l - IlL I I (IX21
2 -/X21-2)1m(P2q2Y2IY2) (5.17c) 

(3) - -(- 1P2121 Y21X2 /2 + Iq21 21 Y21X21-2 ' 

where 

Y
2 
= e(IL I - IL2 )(iLl - IL2) ) 1/2, 

IL21IL II 
andX2 is given by (5.12). 

The two-soliton solution (5.16) and (5.17) is a particu­
lar case of the complete two-soliton obtained from the vacu­
um as seed solution. 

The solution can be used to represent localized distribu­
tions of matter with cylindrical symmetry propagating in 
empty space. This is not possible with the one-soliton solu­
tion (5.13) and (5.14) because the fluid potential ¢l(l) di­
verges when r- 00. 

From the application of the BZSGT to some cosmologi­
cal solutions we know l9 that two independent complex pole 
trajectories are needed in order to obtain localized solutions 
(gravitational solitons). Moreover since the metric coeffi­
cients have to be real, for each complex pole its complex 
conjugate is also a pole l3

; so that we need four pole trajector­
ies in all. However in the present case, since the matrix Q 
describing the fluid potentials is not real, localized solutions 
can be obtained by using two complex pole trajectories only. 

The way by which localized solutions are obtained is by 
taking opposite signs in the square roots of the two pole tra­
jectoriesILI andIL2 [see Eq. (A6) ]. With such a prescription 
it is easy to see that the fluid potentials ¢l(i) (i = 1,2,3), from 
(5.17), approach the seed values (¢l(1) = I, ¢l(2) = ¢l(3) 
= 0) in the asymptotic regions in the following way. They 

approach the seed decreasing like r- I at (<(r- 00, they de­
crease like t - I at r « t _ 00 , and decrease like 1 -112 along the 
light cone r-I- 00 This behavior is typical of the gravita­
tional solitons in cosmological2O--

23 or cylindrical models24 

and is an indication that the anistropic fluid is localized 
around the light cone r = I. 

In Fig. 1 the fluid density P and pressure along the radial 
direction u( = p) of Eq. (4.16) is represented for the fluid 
potentials (5.17). We take a negative sign for the square root 
of IL I and a positive sign for that of IL2' The density is mainly 
localized around a cylinder that expands at the speed of 
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DENSITY 

FIG. 1. Density p and pressure along the radial direction are given in Eq. 
(4.16) with the fluid potentials (5.17). The parameters taken are 

P2 = q2 = 1 and a, = - 0.2i, a 2 = - O.li. The time and radial coordi­
nates, t and r, are both represented in the range (0.1,1 ). The relatively large 
value of la, - a21 has been taken to avoid sharp picks and to obtain a 
smooth figure. The background outside the wave is p = u~O, the space­
time axes are drawn on the origin of the vertical axis: p = O. The maximum 
value of pis 7.5. 

light. The shape of the wave (its amplitude and width) is 
controlled by the imaginary part of a 1 - a 2• The amplitude 
of the density wave decreases as the wave gets far from the 
origin. The wave propagates on an essentially empty back­
ground (p = 0). 

In Fig. 2 the pressure 11", Eq. (4.17), tangent to the cylin­
der is shown. As for the density we have a wave essentially 
localized along the light cone which propagates on an empty 
background (11" = 0). The peculiarity here is that 11" takes 
negative values on the region r~ t. As mentioned in Sec. IV 
the interpretation in terms of the fluid (3.1) is not possible 
although a fluid interpretation is still valid (see Ref. 15). 

This model can be used to represent lumps of matter 
coupled to gravity propagating on empty space. The qualita­
tive similarity of the waves of matter with the gravitational 
solitons,20.21 which are similar to the hydrodynamical soli­
tons, suggests that the collision oflumps of matter might also 

PRESSURE 

FIG. 2. Pressure 1T is tangent to the cylinder of Eq. (4.17), with the same 
parameters as in Fig. 1. The pressure takes positive and negative values in 
different regions of the space-time. The background value outside the "per­
turbation" is 1T~0; the space-time axes are drawn in the negative region of 
the vertical axis: 1T = - 5. 
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have a solitonlike character. Models representing such colli­
sions are being considered by the authors. 

A word should be said about the equality p = a. Al­
though this is not verified by the general three-fluid case 
(2.12)-(2.lS) it is a feature of the cylindrical case, already 
present in the two-fluid case.4 The stiff equation of state veri­
fied along the propagation direction seems to be a feature of 
systems which admit solitons.22 The reason may be traced to 
the fact that there is a unique velocity on the system in the 
direction of propagation of the wave, 24 in this case the speed 
of sound and the speed of the gravitational field are the same: 
It is known, for instance,25 that an initial perturbation with 
cylindrical symmetry on a perfect fluid coupled to gravity 
will disperse and form shock waves unless the fluid is stiff. 
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APPENDIX: EXTENSION OF THE BZSGT 

In this Appendix we present an extension of the BZSGT 
for the use of Hermitian matrices. This extension is already 
known for the elliptic case26 [SU (2) case]. Since the hyper­
bolic case can be treated in a completely similar way, we 
shall give only the results. 

The n-soliton solution constructed from the seed solu­
tion Qo is 

(Qn)ab = IT I~I (<Qo)ab - i N~/)(r-l)lkNbk)) 
k= I t k,l= I f-lkf-ll 

(Al) 

where, now the indices a and b take the values 1 and 2, and 

m~k)<QO)abm~ 
-----:::-:--'-=I'lk' 

f-l kf-ll - t (2) 

N~k)=mbk)(Qo)ab' 

m~k) =m~Z) M b:), 
M(k)=.,. -II 

-'/"O ;"=I-'k' 

f-lk =ak -r± [(ak -r)2_ t 2r12. 

(A2) 

(A3) 

(A4) 

(AS) 

(A6) 

The bar denotes complex conjugation, m~k) and a k are sets 
of complex constants. Here rpo = rpo(t,r,A) is the solution to 
the equations 

D,rpo = ((tUo +AVo)/(t2 -A 2»)rpO' (A7) 

Drrpo = ((tVo + AUo)/(t 2 - A 2) )rpo, 

where 

D,=a, +(Ut/(t2-A2»)a;.., 

Dr=ar + (U 2/(t2 - A 2»)a;.., 

U=tQo"Q 0 I, V = tQO.rQ 0 I. 

(AS) 

(A9) 

(AlO) 

(All) 

The coefficient OJ can be explicitly computed, we find 
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X(II (11lk -Illllilk -.ull)-I) 
k.l 

k>l 

( 

m Illk 12 _ t2)112 } 
X II det r , 

k= I Illi - t
2

1 

(AI2) 

where &0 denotes the lU function of the seed solution (metric 
and matter). 

For the diagonal seed (S.2) Eqs. (A7) and (A8) can be 
solved along the pole trajectories, we gee7 

.1. 1 1/2(eXp( - Fk ) 
'/"0 A = it. = (2a kll k ) 0 (A13) 

where 

where 

Fk =-J 2~k (llk.tA.t + Ilk.rA.r )dt 

+ (llk.tA.r + Ilk.rA.t )dr). (AI4) 

The existence of Fk is a consequence of (S.7) and that In Ilk 
satisfies the same Eq. (S.7). 

For the diagonal seed solution case27 the expressions 
(A2)-(AS) take the simple form, 

m\k) =Pk(llk)-1/2 exp F k , 

mik) = qk (Ilk) -1/2 exp( - Fk ), 

N \k) = Pkt(llk) -1/2 exp(Fk - A), 

Nik) = qkt(llk )-112 exp( - (Fk - A»), 

(AIS) 

(AI6) 

(AI7) 

(AI8) 

(AI9) 

qk =-m6~) 1(2ak ) 1/2, (A20) 

qk=-m6~)/(2adl/2· (A21) 

Note that the usual BZSGT relations, valid for real as well as for complex poles are obtained by letting .uk -Ilk' 
m6~) -m6~), F1-F1,Pk -Pk' and qk -qk in (AI), (A2), (AI2), and (AI9). 
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The imposition of the condition oflength invariance on a Wey1 manifold that does not lead 
uniquely to general relativity is shown. Rather, in this limit, the Weyl vector field can be 
interpreted as a Dirac current. The action is also the same as the Einstein Dirac one, if and 
only if, the spinor field is anticommuting. The allowed interactions are greatly restricted. They 
are only minimal gauge couplings and Yukawa interactions with a scalar field transforming 
according to the rules of Uti yam a [Prog. Theor. Phys. 53, 565 (1975)]. 

I. INTRODUCTION 

Recently, Tavakol and Van den Bergh) suggested that 
the postulates underlying general relativity2 permit more 
than just general relativity when the postulate of length in­
variance under translation is imposed. We give an explicit 
example of this that is also of physical relevance. 

One of the earliest attempts to unify electromagnetism 
and general relativity was that ofWeyl.3 In his model, invar­
iance of lengths under translations was given up to be re­
placed by covariance of four-vector lengths under transla­
tions. This weakening of restrictions allows extra structure 
to be associated with the manifold in the form of an intrinsic 
vector field. Weyl sought to identify this with the electro­
magnetic potential. There are some difficulties with this in­
terpretation. 

(a) As pointed out by Einstein,3 lengths of measuring 
rods or clock rates will depend on their history. 

(b) There is an ambiguity in the choice of sign of this 
field.4 With one choice, polar vectors transported clockwise 
around a loop will contract while, if they traverse the same 
path anticlockwise, they expand. With the opposite choice of 
sign of the intrinsic vector field, the above statement is re­
versed, clockwise transport causes expansion, etc. 

(c) An essential ingredient of scale covariant theories is 
that of invariance under the conformal group. This implies 
that only massless fields can exist in such a space-time. 

Subsequently, work has been done to circumvent these 
problems. Utiyama5 suggested incorporating a scalar field in 
a special fashion to maintain gauge invariance. Nishioka6 

has shown how to generate mass for the vector field using 
this. Lucey4 also independently discovered the scalar field 
method and has shown that if it is chosen to be a doublet, the 
parity ambiguity (b) mentioned above can also be circum­
vented. Other interpretations have also been suggested. 7.8 

The common feature of all these approaches is that scale 
covariance is retained and additional terms are introduced in 
order to achieve it. 

If instead scale ("length") invariance under transla­
tions is imposed on a Weyl manifold, then it does not trivially 
reduce to general relativity. The vector field (a doublet) re­
mains and is shown to be equivalent to a Dirac current in the 
next section. The additional terms in the Einstein-Hilbert 
action due to the intrinsic vector field are shown to repro­
duce the Dirac action in Sec. III. It is also shown there that 

the interactions are greatly restricted by the condition of 
length invariance. In the last section we summarize our re­
sults and remark on some possible consequences. 

II. EQUIVALENCE OF THE INTRINSIC WEYL FIELD AND 
THE DIRAC CURRENT 

The fundamental additional assumption of Weyl was 
that lengths are covariant under translation. That is, a four­
vector of magnitude I under translation through dx P 

changes in magnitude (length) by dl, where 

(1) 

Here, A P is any four-vector field and tPp is the Weyl vector 
field intrinsic to the manifold. Such a manifold is no longer 
pseudo-Riemannian and the connection on it is given by3 

f~" = r~" +gPU(gvutP" +gMtPv -gv"tPu)' (2) 

where r~" is the connection on the corresponding pseudo­
Riemannian manifold (i.e., if tPv = 0). We adopt the con­
vention from now on of denoting the quantities pertaining to 
the Weyl manifold by an overbar and omitting it in the corre­
sponding pseudo-Riemannian case. Thus to obtain length 
invariance, we must have 

(3) 

The trivial solution tPv = 0, of course, always exists. Nontri­
vial solutions, if they exist, must be representable as spinors, 
as these form the fundamental representation of the symme­
try group on the tangent space at every point if the equiv­
alence principle is to be satisfied. Thus after projection onto 
the local tetrad,9 we have 

g-+'T], tPa = U':/'~A"tB" 8a
p = ~u"AB'UpAB'. (4) 

Note that we have restricted ourselves to product represen­
tations as objects on a Weyl manifold are necessarily light­
like. Substituting from the above in Eq. (3), 

-AC...B'D' 
~B't- t- qUpCD,UYEF' + ~UYCD'UPEF' 

Jt7. F' -'T]PyECEED'F')~ 5 = o. (5) 

This is satisfied for nontrivial tPp if the factor within the 
brackets identically vanishes. Let 

TpyAB'cD' = !UpAB,UyCD' + !UyAB , u PCD , 

- 'T]pyEACEB'D" 

We use the identity9 

(6) 
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T:::A~:" = T:::(~'~) ... + !EABT:::C~::. 
to rewrite Eq. (6) as 

T ABCD ' = T(AC)(B'D') + ~EACTEEB'D' 

(7) 

F' EF' + !EB'D' T AC F' + !EACEB'D' T EF" (8) 

The last term identically vanishes. For the symmetric term 
to vanish, the Weyl current must necessarily be the direct 
sum of two independent intrinsic fields of opposite parity. In 
this case the middle two terms also vanish as they can be 
rewritten as the Dirac algebra as follows: 

(9) 

Thus we see that nontrivial solutions are indeed possible in 
the intuitively obvious case. Namely, this is when the Weyl 
manifold possesses two intrinsic fields of opposite parity, so 
that one promptly undoes any changes in length brought 
about by the other. This example may seem rather trivial but 
we see that the effects of this action lead to a possible phys­
ical interpretation. 

III. THE ACTION 

As we have imposed length invariance, the simplest pos­
sible action with the full symmetry of the tangent space 
group is linear in the Ricci scalar. From Ref. 1 this is 

s= fR~ -gd 4x= feR -t/JI-';J' -t/JI-'t/JI-')~d4X. 
( 10) 

First consider the covariant derivative term for the Weyl 
field. When we project onto the local tetrad the derivative in 
terms of spinor components is 10 

a I-' = VI-' a aa = Vl-'acfXAB , a AB '. (11) 

As we have two Weyl fields of opposite handedness, the de­
rivative operators acting on them must have opposite sign 
(due to the opposite orientation of the basis when projected 
back from spinor to tetrad consistently). Thus we see that 
instead of vanishing as a total derivative from the action, we 
have 

(12) 

Next consider the quadratic term in the Weyl fields. K.eeping 
in mip.d the fact that we wish to quantize the field at some 
stage, we rewrite this as 

f t/J I-'t/JI-'~ d 4
x = f fp(ax)t/J I-'(x + ax) 

xt/JI-'(X)~d4Xd4(ax), (13) 

where p(ax) is an appropriate smearing function normal­
ized to unity. We now confine ourselves to equal time separa­
tions and substitute from (9), 

f t/J I-'t/JI-'~ d 4x = f fp(ax)~(X + ax)yl-'r/J(xtax) 

X~(x)YI-'r/J(x)~ d 4xd 4(ax). 
(14) 

Imposing the canonical anticommutation relations 
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{r/J(x + ax,t),~(x,t)} = C~3(ax), (15) 

we see that Eq. (13) becomes 

ft/JI-'t/JI-'~ _gd4X=4Cf~d4X. (16) 

Thus substituting from (12) and (15) in (10), the action is 

S = fIR - (~I-' al-'r/J + 4C~r/J))~ d 4x. (17) 

We see, as promised, that under length invariance the Weyl 
action is equivalent to the Einstein-Dirac one. We can now 
use the appropriate Green's function in (15) to consistently 
extend our derivation to arbitrary infinitesimal separations. 

Next consider the case of possible interactions. All these 
must obey our cardinal principle of length invariance, Eq. 
(3). We can easily see that (3) is preserved under local uni­
tary transformations 

(18) 

where S is a constant unitary matrix and A is a Hermitian 
matrix field. This is, of course, the gauge principle and thus 
gauge interactions are allowed. 

The only other permissible interactions are with a scalar 
field introduced in the fashion of Utiyama. This has a very 
interesting consequence, the anticommutation relations in 
the presence of such a scalar field n are 

{r/J(x + ax,t),~(x,t)} = n(x,t)~3(ax). (19) 

When using this instead ofEq. (14), we obtain a Yukawa 
interaction in the Lagrangian and the spinor field remains 
massless. This is the standard prescription for a Higgs mech­
anism and indeed as Nishioka6 has already shown the scalar 
field possesses the necessary nonlinearity. 

IV. CONCLUSIONS 

We have shown here that the condition oflength invar­
iance usually imposed on Weyl space I has nontrivial conse­
quences. As this extra structure (the Dirac field) is observed 
it seems reasonable to retain it and the corresponding geo­
metrical interpretation. If the rule of introducing two Weyl 
fields seems artificial it does have some justification. In the 
path integral quantization of gravity we take a sum over 
manifolds. Here if CPT is to be a good symmetry, we expect 
the wave function to be a coherent sum over Weyl spaces of 
opposite parity contributing equally. 

For this it is normally convenient to add an extra bound­
ary term to the action. II An extension of the methods used 
here leads to these giving rise to Weyl spinors. Details of this 
and extensions of these results to space-times of higher di­
mensions will be demonstrated elsewhere. 
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Bell's inequalities are briefly presented in the context of order-unit spaces and then studied in 
some detail in the framework of C *-algebras. The discussion is then specialized to quantum 
field theory. Maximal Bell correlationsp(tP,d(&I), d(&2») for two subsystems localized in 
regions &1 and &2 and constituting a system in the state tP are defined, along with the concept 
of maximal Bell violations. After a study of these ideas in general, properties of these 
correlations in vacuum states of arbitrary quantum field models are studied. For example, it is 
shown that in the vacuum state the maximal Bell correlations decay exponentially with the 
product ofthe lowest mass and the spacelike separation of &1 and &2' This paper is also 
preparation for the proof in Paper II [So J. Summers and R. Werner, J. Math. Phys. 28, 2448 
(1987)] that Bell's inequalities are maximally violated in the vacuum state. 

I. INTRODUCTION 

Since Bell stated l
•
2 the first special case of what has 

come to be called Bell's inequalities, quite a bit of theoretical 
and experimental work has been invested in the attempt (1) 
to clarify the content of the inequalities, i.e., to find the prop­
er framework within which to formulate Bell's inequalities 
and to determine the consequences of their violation or non­
violation, and (2) to design and carry out experimental tests 
of these inequalities. For partial reviews of this work, see 
Refs. 3-5. This paper has the following objectives. (a) We 
wish to briefly present a formulation of Bell's inequalities in 
the context of order-unit spaces and then to study them in 
some detail in the framework of C *-algebras, in preparation 
for the discussion of Bell's inequalities and quantum field 
theory. (b) Then we specialize to a study of Bell's inequal­
ities in relativistic quantum field theory, formulated in the 
most general axiom system known to us-the so-called alge­
braic quantum field theory of Haag, Kastler, and Araki6

•
7 

(which subsumes, at least modulo certain regularity condi­
tions,8 standard quantum field theories satisfying the Wight­
man axioms9

•
lo

). Although we shall have something to say 
about Bell's inequalities in arbitrary states of the system, our 
main discussion here will concern the vacuum state. (c) Fin­
ally, we shall prove that Bell's inequalities are maximally 
violated in the vacuum state by suitable observables local­
ized in spacelike separated regions of space-time for both 
Bose and Fermi free quantum field theories. Some of these 
results have been announced in Ref. 11. Points (a) and (b) 
will be presented in this paper while (c) constitutes Paper 
II.12 

Bell's inequalities concern results of correlation experi­
ments, and in Sec. II we begin with that which one is con­
fronted with in correlation experiments-preparations, 
measurements (observables) on two subsystems, and the 
relative frequency of their outcomes. Following the ap­
proach due to Ludwig, 13.14 we model these with what we call 
correlation dualities (p,d,qj), which are comprised of two 
order unit spaces d and qj (real vector spaces with a vector 

ordering > and a unit 1), and a bilinear function p: 
d X qj - R. The observables of one subsystem are repre­
sented by partitions {a j liel} of the unit in d: l:jaj = 1 with 
aj >0 for each iel, and similarly for the other subsystem and 
qj. Each iel is interpreted as a possible outcome of the mea­
surement of the observable. The probability (relative fre­
quency) of the joint occurrence of the outcomes iel and jEJ 
in the two subsystems, respectively, is then p (aiJbj ). 

In the course of Sec. II we introduce what we call the 
maximal Bell correlationp(p,d,qj) for an arbitrary given 
correlation duality (p,d,qj) as mentioned above. It is de­
fined by 

P(p,d,qj) =!sup(P(X1,YI) + P(X I,y2) 

+P(X2'YI) -P(X2,y2»), 

where the supremum is taken over all XjEd, YjEqj with 
-l""<xj<l",, and -l@'Yj<l@, i= 1,2. Then the 

Clauser-Horne IS (CH) form of Bell's inequalities can be 
rewritten as 

P(p,d,qj) = 1. (1.1 ) 

In this form an implicit symmetry in the CH-Bell's inequal­
ities is made explicit and some additional calculational ad­
vantages accrue, as well. We also determine inequalities on 
P(p,d,qj) that serve the same metatheoretical purpose as 
( 1.1 ), but for larger classes of theories. In particular, 

P(p,d,qj ) <2 ( 1.2) 

must hold for any triple (p,d,qj) as described above, and 

P(p,d,qj) <.fi (1.3) 

must hold for any theory (such as quantum mechanics or 
quantum field theory) in which the order unit spaces d,qj 
modeling the observables of the subsystems are actually C *­
algebras. Theorem 2.1 gives some general results of this na­
ture and characterizes the elements XjEd, YjEqj for which 

the maximum .fi in (1.3) can actually be attained. 

Thus P(p,d,qj) = .fi is the maximum possible value 
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for the Bell correlations in quantum mechanics, and evident­
ly its attainment would be a violation of Bell's inequalities 
(1.1). It is known3 that quantum mechanics predicts triples 
(jJ,d,@) for which ,fi is attained, and it is known, up to 

experimental error, that in nature4 ,fi is attained. 
In Sec. III we discuss the triples (p,d,@) that arise in 

quantum field theory. There the observables that can be 
measured in a space-time region tJ C R4 are modeled by self­
adjoint elements of a C *-algebra d ( tJ ), and a given quan­
tum field model provides a net of such algebras 
{d (tJ)} ~CR' satisfying axioms that are naturally motivat­
ed by general physical principles. Section IV occupies itself 
with a general study of the maximal Bell correlation 
/3{jJ,d(tJ 1 ),d(tJ2 ») when .0 arises from a vacuum state. 
Among other things, we give a priori bounds on 
/3 {jJ,d ( tJ l),d ( tJ 2») in the vacuum in terms of the space­
like distance between tJ 1 and & 2' 

This paper is preparation for the proof that also quan­
tum field theory predicts the maximal violation of Bell's in-

equalities, i.e., it predicts /3 {jJ,d (tJ 1 ),d (tJ 2») =,fi for 
certain localization regions tJ 1 and tJ 2 C R4 and certain 
statesp. In Paper II (Ref. 12) we show, among other things, 
that if tJ 1 and & 2 are so-called complementary wedge re­
gions in space-time and if .0 arises from the vacuum state for a 
Bose or Fermi free quantum field theory [d ( tJ 1) and 
d (tJ 2) are then the observable algebras for the correspond-

ing free field theory], then/3{jJ,d(tJ l),d(tJ 2») =,fi, in­
deed. In further work in progress, we intend to show such a 
prediction holds for theories with interaction and for states 
other than the vacuum state, as well (see Note added in 
proof). 

II. BELL'S INEQUALITIES 
The aim of this section is to establish notation and the 

basic results on Bell's inequalities in general that we shall 
need in our discussion of Bell's inequalities in quantum field 
theory. We are obliged here to assume that the reader has 
prior familiarity with the discourse on Bell's inequalities in 
the literature. However, for a detailed discussion of the most 
general formulation and derivation of Bell's inequalities 
known to us (which is embedded in an approach to statisti­
cal theories due to Ludwig13,14) and the connection with that 
with which one is presented in the experimental situation­
preparations, measurements, and relative frequencies of 
their outcomes-see Refs. 16 and 17, the latter being the 
preprint of the original version of this paper. 

Bell's inequalities are a constraint on the statistical cor­
relations between measurements performed at two sites A 
and B or on two "parts" A and B of the same system. Follow­
ing Ludwig13,14,16,17 we shall assume that the possible mea­
surements at site A are described by an order-unit space18

,19 

(d,>,I), abbreviated by d, which is a vector space d or­
dered by a convex cone d + ={aEd/a>O} with a distin­
guished element lEd + whose multiples eventually domi­
nate every other element of d +. Preparations correspond to 
positive, normalized linear functionals on d, called (statis­
tical) states on d. An important subclass of theories with 
this structure is constituted by classical theories, for which 
d is the set of continuous, real-valued functions on a com-
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pact space X with pointwise ordering [i.e.,.!> g if/( x) > g(x ) 
for all xEX]. The points xEX are in one-to-one correspon­
dence with the pure (i.e., extremal states in the convex set 
of) states on d. In quantum mechanics d is the set of 
bounded Hermitian operators on a Hilbert space with the 
usual operator ordering, and in the quantum field theoretical 
setting described below in Sec. III d will be the Hermitian 
part of a C *-algebra20 with identity and with its usual order­
ing d + = {a*a/aEd}. In this general setting a measure­
ment with finitely many possible outcomes iEl is formalized 
by a finite family {aJ/El with a/Ed + and ~IElal = 1. A 
preparation is represented by a statistical state w on d, and 
w(al ) is the probability for obtaining the result iin an experi­
ment with preparing and measuring devices represented by 
wand {al }IEl' respectively. 

A set of correlation experiments is then described by the 
following structure. 

Definition: A correlation duality consists of two order­
unit spaces d and ~ together with a bilinear functional .0: 
d X ~ -- R such that aEd, bE~ , and a,b >0 imply 
p(a,b»O andp(l,l) = 1. 

Then .0 (a; ,bj ) is the probability for obtaining both the 
result i at site A and j at site B for measuring devices de­
scribed by {a I} ieI Cd + and {bj } jEJ C ~ + and a preparing 
procedure described by p. In the C * -algebraic setting (which 
actually subsumes all the examples mentioned above) d 
and ~ are typically elementwise commuting subalgebras of 
a larger algebra Crf and .0 is given by a state w on Crf by 
p(a,b) =w(ab). 

A crucial assumption about the correlation experiment 
being modeled is built into this structure. Consider two mea­
suring devices {aJIEl and {aj}jEJ at A. Then by definition 
l=~a,=~aj, so that for any bE@, ~;p(a;,b) 

= ~jp(aj,b) = p(l,b). Thus the probability for a certain 
outcome at B does not depend on the measuring devices cho­
sen at A. This is the typical "locality" assumption in deriva­
tions of Bell's inequalities. We emphasize that this assump­
tion is not to be confused with locality in the sense of 
relativistic causality. For the correlation dualities studied in 
this paper Bell's locality is indeed a consequence of Einstein­
ian causality, because the full causal structure of Minkowski 
space is built into algebraic quantum field theory (see Sec. 
III). But the locality assumption in the definition of correla­
tion dualities is valid in a much broader context. In particu­
lar, both the classical and quantum mechanical schemes for 
describing composite systems lead naturally to correlation 
dualities. 

The measurements considered in the standard ver­
sions3,15.21 admit two outcomes, say { + , - }, and are thus 
given by pairs {a+,a_}Cd with a+>O, a_>O, and 
a+ + a_ = 1. Clearly such pairs are in one-to-one corre­
spondence with the elements aEd with - 1 <a < 1, by set­
ting a ± =! (1 ± a). Two such measurements are consid­
ered for each of the two sites A,B. We shall say that 
(a I ,a2,b I ,b2 ) is an admissible quadruple if a I ,a2Ed, b l,b2E~ 
and -l ...... <a;<I ...... , i= 1,2 and -1.sw <bj <I.sw,j= 1,2. 

Definition: If (jJ,d,~) is a correlation duality and 
(a l ,a2,b l ,b2 ) is an admissible quadruple, the latter is said to 
satisfy Bell's inequality if 
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\p(al,bl ) +p(al,bz) +p(a2,bJ ) -p(a2,b2)1<2. (2.1) 

It is a triviality to see that (2.1) is equivalent to the version of 
Bell's inequality presented in Ref. 15. This inequality is 
usually derived assuming both d and f!lJ are classical. 

The following Theorem is the basic result of this section. 
Theorem 2.1: Let (p,d,f!lJ ) be a correlation duality, let 

wed* be the state w(a) =p(a,I), and let (a l ,a2,b l,b2 ) be an 
admissible quadruple. Setting 

X = !\p(al>bl + b2 ) + p(a2,b l - bz) I, 
one has the following: (1) X<2. (2a) If d is the Hermitian 

part of a C *-algebra, then X<{l. (2b) If X = {l in this case, 
the following identities hold for all aed and 1= 1,2: 
w ( [ai,a]) = 0, w(a;a) = w (a), w«a la2 + a2al )a} = O. (3) 
If anyone of the following conditions holds, then X < 1. (a) 
d is classical. (b) w is pure on d. (c) There are states 
Saed*, TJaef!lJ* and positiverealsAa such thatforallaed, 
bef!lJ ,p(a,b) = I.AaSa (a)TJa (b). 

Proof (1) If - l<a<1 and - l<b<l, then 1 - p(a,b) 
=! p(1 + a,1 - b) +! p(l - a,1 + b»O, and similarly 
1 +p(a,b) >0, so that each of the four summands inx is 
bounded by!. 

(2a) Let {1T"" K""n} be the cyclic Gel'fand-Nai­
mark-Segal (GNS) representation20 of d associated with 
thestatew. Then for each bef!lJ with - l<b<l, the equation 
Wb (a) =p(a,b) defines a linear functional Wb on d with 
- W<Wb <W. Thus there exists a unique be1T '" (d)' [the 

commutantof1T", (d) in f!lJ (K",) J with - I<b<I (lis the 
identity operator on Kw) such that p(a,b) =wb(a) 
= (n,1T '" (a)bn) for all aed. Let A =!1T '" (a l + la2 ) and 

B=(1/2{l) (bl + b2 + f(b l + b2 »). Then 

A *A +AA * =!1T",(ai +a~)<1 

and 

B * B + BB * = ! (b i + b ~ ) < 1. 

Moreover, 

{lX = 4 Re(n,A *Bn) 

= 2 Re(An,Bn) + 2 Re{B *n,A *0.) 

= IIAnll2 + IIBnW -II (A - B)n1l2 + liB *0.11 2 

+ IIA *0.11 2 -II (B * - A *)0.11 2 

«n,(A *A +AA * +B*B +BB*)n)<2. (2.2) 

(2b) Suppose that equality obtains in (2.2). Then 
An = Bn, A *0. = B *0., and <n,!1T", (ai + a~ )0.) 
= (n,(A *A +AA *)0.) = 1. Since a;<I, this implies 

1T '" (a;) 0. = 0. for i = 1,2 as well as (A * A + AA *) 0. = n. 
Hence for arbitrary aed, 

and 

w(a(a l + ia2» = 2 (n,1T", (a)An) = 2 (n,1T", (a)Bn) 

= 2(B *n,1T", (a)n) = 2(A *n,1T", (a)n) 

=w(al +ia2)a). 

Since b ~ 0. = b ~ 0. = 0., we have 
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1T", (a la2 + a2a l )n = (21i)(A 2 - A *2)0. 

= (21i)(B 2 -B*2)n 

- 2 - 2 = (b I - b 2)0. = 0, 

which implies the remaining, final assertion of (2b). 
( 3a) Since a is Abelian, the four elements 

aE,E, =1(1 +Elal)(l +E2a2 ) 

with EI ,E2e{ +, -} are positive. By direct computation 

X =p(a++,bd + p(a+_,b2) - jJ(a_+,b2) - p(a __ ,b t ) 

<i>(a++ +a+_ +a_+ +a __ ,1) =p(1,l) = 1. 

(3c) Since p( 1,1) = 1 and Sa (1.." ) = TJa (1&1) = 1, 
one must have I.Aa = 1. Hence X = I.AaXa with 

Xa =!(Sa (a l )TJa (b l + b2 ) + Sa (a 2 )TJa (b l - b2 »), 
and it suffices to show X a < 1 for each a. This is readily done 
by introducing the four numbers 

aE,E, =1(1 + EISa (a l »)(1 + EzSa (a2 ») 

and proceeding as in (3a). 
(3b) Purity of w entails that the functionals Wb ed with 

- W<Wb <W given by Wb (a) = p(a,b) are of the form 
Wb (a) = TJ(b)w(a) with - l<TJ(b)<1 (see Ref. 20). 
Hencep(a,b) = w(a)TJ(b) factorizes and one may apply the 
proof of (3c). 0 

Part (3) of Theorem 2.1 gives three different conditions 
on a correlation duality (jJ,d,f!lJ) such that Bell's inequality 
is satisfied by all admissible quadruples in the correlation 
duality. By (3c) Bell's inequalities are satisfied even for 
quantum systems whenever the correlations are produced by 
a mechanism which can be simulated by a classical random 
generator (producing the "outcome" a with probability 
Aa ). 

If W as defined in Theorem 2.1 is a faithful state on d 
[i.e., ifxed,x>Oandw(x) = o imply x = OJ, then the sec­
ond and third equations in part (2b) are equivalent to a; = 1 

and a la2 + a2a I = O. Thus, if X = {l when d is the Hermi­
tian part of a C*-algebra, the corresponding elements al ,a2, 

and a3 = - (i12)[a l ,a2 J form a realization of the Pauli spin 
matrices in d. The first equation in part (2b) then implies 
that the statew restricted to the 2X2 matrix algebraM2 (C) 
spanned by l,a l,a2,a3 is the normalized trace. This is precise­
ly the case realized in the well known idealized description3 

of the Aspect experiment in terms of a singlet state on 
M 2 (C) ®M2 (C). Within experimental error (now very 

small), the maximal Bell correlation (and violation of Bell's 

inequalities) {l has indeed been found in nature.4 

Note that since classical, quantum mechanical, and 
quantum field theoretical models are all subsumed in the C *-

algebraic framework, part (2a) informs us that X = {l real­

ly is the maximal possible correlation. The bound X<{l 
(which has also been noted by Cirel'son22 and others) con­
strains "local" quantum theoretical descriptions in the same 
way that Bell's inequality X< 1 constrains local classical de­
scriptions. Thus a correlation experiment reliably yielding a 

result X> {l would have to be taken as a falsification of stan­
dard quantum mechanics just as Aspect's experiments ex-
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clude "local hidden variable theories." Theories predicting 

X>,/2 in some experiments are not obviously absurd, as can 
be shown by the straightforward construction of a correla­
tion duality and admissible quadruple with X = 2. Thus the 
bound in part (1) is optimal without further assumptions on 
(p,sd ,f!lJ ). 

It is clearly natural to make the following definition. 
Definition: The maximal Bell correlationp(p,sd,f!lJ) in 

a correlation duality (p,sd,f!lJ) is 

P(p,sd,f!lJ) =!sup(jJ(al,bl ) + p(a l ,b2 ) 

+ p(a2,b l ) - p(a2,b2 »), 
where the supremum is taken over all a;Esd, bjEf!lJ with 
- I..." <a; < I..." and - 181 <bj < 181 , 

Thus, P(p,sd,f!lJ) = 1 (resp. ,/2,2) means that every 
admissible quadruple in the duality satisfies the CH version 

of Bell's inequality (resp. the upper bound,/2, 2 is arbitrarily 
well approximated by X's for some admissible quadruples in 
the correlation duality). 

In the remainder of this paper we shall study the exis­
tence of admissible quadruples of observables violating 
Bell's inequalities in correlation dualities naturally arising in 
algebraic quantum field theory. If p<p,.Jli',f!lJ) > 1 we shall 
say that Bell's inequalities are violated in (p,sd,f!lJ), and 
since we are working henceforth in the C * -algebraic context, 
we shall say that the inequalities are maximally violated if 

P<p,sd,f!lJ) = ,/2. We shall see in Paper II that quantum 
field theory predicts the attainment of the maximal violation 

,/2. But first we shall discuss in Sec. III the appropriate for­
mulation of quantum field theory and in Sec. IV the special 
properties of P(p,sd,f!lJ) when p corresponds to the prep­
aration of the vacuum state. 

III. BELL'S INEQUALITIES IN ALGEBRAIC QUANTUM 
FIELD THEORY 

In this section we shall specialize the discussion to statis­
tical dualities <p,sd,f!lJ) coming from relativistic quantum 
field theory (QFT). In our view the proper framework with­
in which this can be accomplished is so-called algebraic 
QFT,6,7 which has the advantages over the standard QFT9

,l0 

of being more general and of dealing directly with observa­
bles and states. 

As already mentioned, the basic structure is an assign­
ment to each open space-time region & C R4 a C *-algebra 
.Jli' ( &) (which one can think of as a norm-closed, *-algebra 
of bounded operators on some Hilbert space), and this as­
signment must satisfy certain axioms, motivated by physical 
principles. 

(1) Isotony: if & 1 ~ & 2' then sd( & I) ~sd(& 2); with 
this assumption one can think of each sd ( & ) as a subalgebra 
of the C*-algebra sd generated by U dCR4sd(&). It is as­
sumed that sd has an identity 1 and that lEsd (&) for each 
&. Here .Jli' is called the quasilocal algebra. 

(2) Poincare covariance: there exists a representation 
{a,t IAE&" '+ } of the identity-connected component &" '+ of 
the Poincare group by a group of automorphisms on sd, 
such that 
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a,t(sd(&») = sd(&,t), 

where &,t is the image of & under the transformation corre­
sponding to A. 

( 3) Locality: if & 1 is spacelike separated from & 2' then 
every element of sd ( & I) commutes with every element of 
sd(&2)' 

If one considers heuristically each algebra sd ( &) as the 
algebra "generated" by all observables measurable in &, 
then these assumptions are perfectly natural for a relativisti­
cally covariant theory over Minkowski space. 

Before proceeding further we wish to remark that axi­
oms (1) - ( 3) with the algebras {sd ( & )} Abelian would 
naturally be fulfilled by classical field theories and hidden­
variable theories which have the idea of relativistic locality 
built into them. It should also be pointed out that axiom (3) 
can be viewed, at least heuristically, as a consequence ofEin­
steinian causality, but, in fact, it is strictly weaker (in partic­
ular, the locality axiom says nothing about the impossibility 
of superluminal signals). Axiom (3) is exactly what is re­
quired in the algebraic framework in order to satisfy the re­
quirement that observables in spacelike separated regions be 
jointly measurable in correlation experiments (see Ref. 23). 

Continuing now with the axioms of algebraic QFT, the 
following is also assumed. 

( 4) Existence of a physical representation: there exists a 
faithful (i.e., one-to-one) representation 1T of sd on a separa­
ble Hilbert space JY' such that on JY' there is a nontrivial, 
strongly continuous, unitary representation U( &" '+ ) of 
(the universal covering group of) the Poincare group &" '+ 
satisfying (a) U(A)1T(A) U(A) -I = 1T{a,t (A»), for each 
AEsd, AE&"'+, (b) the generators {Pjt}!=o ofthe transla­
tion subgroup U(R4) C U( &" '+ ) satisfy the spectrum con­
dition P~ -Pi -P~ -Pi>o and Po>O, where Po is the 
generator of the time translations. 

Self-adjoint elementsAEsd (&) of the local algebras are 
interpreted as observables measurable in the corresponding 
space-time region & CR4. In particular, self-adjoint A with 
O<A<l can be viewed as yes-no observables, i.e., observa­
bles corresponding to (equivalence classes of) measuring de­
vices that have only two outcomes. A mathematical state (a 
positive, normalized linear functional20

) t/J on the C *-alge­
bra' sd is supposed to correspond to a physical state of the 
system whose local observables are represented in the net 
{sd (&)} (although it is not necessary to assume that every 
such mathematical state is physically realizable). For such a 
state t/J and an observable AEsd( &), t/J(A) is interpreted as 
the expected value of the observable A of the (statistical) 
system that has been prepared in the state t/J. In the case of an 
observable satisfying O<A < 1, t/J (A) is the probability of the 
outcome "yes" and t/J (1 - A) that of the outcome "no" in 
the state t/J. Self-adjoint projectors are special cases of such 
"yes-no" observables. 

A C *-algebra sd with identity is in a natural wayan 
order unit space. The ordering> is defined as follows: A >B 
if and only if A - B>O, and the latter inequality means that 
there exists a CEsd such that A - B = C *C. If sd and g; are 
commuting C *-algebras and t/J is a state on a C *-algebra rtf 
containing both sd and g;, then (t/J,sd,g;) determines a 
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correlation duality by p(A,B) ==f/J(AB), for each AE&', 
BEflJ. Thus, if f/J is a state on the quasilocal algebra &' gener­
ated by a net of local algebras {&' ( & ) }, and if & 1 and & 2 
are any two spacelike separated regions in Minkowski space, 
then (f/J,&' (& I)' &' (& 2») is a correlation duality, by the axi­
om oflocality. 

In Ref. 8 can be found necessary and sufficient condi­
tions that a net oflocal algebras can be in any way associated 
to a standard QFf satisfying a weak regularity condition, 
and the precise sense in which this association can be made is 
identified. It should be emphasized that it was found that 
either there is no net associated in any way to the quantum 
field or this association is very tight. As these matters are 
technically involved, we shall not try to give any details here. 
Suffice it to say that necessary and sufficient conditions are 
determined such that given a standard QFf {K,cp('), 
U( fJJ 1+ ),n} satisfying them there exists a net of local alge­
bras {&'(&)} such that for any fEY (]R4) with 
supp ( f) C &, the operator cp ( f) (on the usual Wightman 
domain) is affiliated, in the sense of von Neumann, with the 
algebra &'(&), i.e., the operator cp(f) commutes with all 
elements of &' ( & )' [this means, in a well-determined math­
ematical sense, that all bounded functions of the operators 
cp (f) are in &' ( & ) ]. It is shown that, with the assumption 
of a weak regularity condition, the said net of local algebras 
is associated in the same way with every element of the 
Borchers class9,24 ofthe field cp('). Thus, typically, to each 
net {&' (&)} are associated many quantum fields, which 
can be viewed as alternative descriptions of the same phys­
ical situation. This fact has also emerged in work25-29 where, 
starting from a representation of a net of local algebras, 
quantum fields are constructed as limits in certain topologies 
of elements of the algebras &' ( & ). We remark that when 
nets of local algebras and quantum fields are found to be 
associated in the manner suggested, both the nets8,30 and the 
fields31 manifest desirable properties that are not present in 
the general situation. 

After the discussion above and in Sec. II, it should be 
clear why we consider Bell's inequalities in quantum field 
theory in the form 

(3.1 ) 

for f/JE&'; ( + ) (the set of states on &'), & 1 spacelike separat­
ed from & 2' and with &' ( & I) and &' ( & 2) the correspond­
ing von Neumann algebras (weakly closed C * -algebras20 ) in 
a net of local algebras {&' (& )}. Here &' (& I) and &' (& 2) 
are interpreted as the algebras generated by the observables 
measurable in the space-time regions & 1 and & 2 for the two 
subsystems in a correlation experiment, and f/J is viewed as 
the state of the total system as prepared in the given experi­
ment. & 1 and & 2 will be taken to be causally reflexive in the 
sense that 

&i = &;" i = 1,2. (3.2) 

Here &' is defined to be the interior of the set of all points in 
Minkowski space that are spacelike separated from &, and 
& /I == ( &' ) '. In particular, if a measurement is made in &, 
then & /I is necessarily causally reflexive and is regarded as 
the causal shadow of the measurement. & /I is the largest 
(open) space-time region that is spacelike separated from all 
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points spacelike separated from &. We shall typically con­
sider regions from two classes: the wedges rr and the double 
cones %. The set rr of wedges is defined to be the set of all 
Poincare transforms of 

WR =={XE]R4Ix1 > Ixo I}, 

and the set % of double cones is defined to be the set of all 
nonempty intersections of a forward light cone with a back­
ward light cone. 

We are interested in finding states f/J and regions & 1 and 

&2 such that {3(f/J,&'(& 1)'&'(&2») = {i, i.e., Bell's in­
equalities are not only violated, but maximally violated by 
suitable observables in &' ( & I) and &' ( & 2) in the state f/J. In 
Paper II (Ref. 12) we show that for free quantum field the­
ories, if f/J is a vacuum state and & 1 and & 2 are wedges satis­

fying & 1 = &;, then {3 is indeed equal to {i. (In work in 
progress we have the beginnings of more general results of 
the type desired.) Thus, with the reservations already men­
tioned about interpreting elements oflocal algebras as phys­
ical observables, quantum field theory predicts,just as quan­
tum mechanics does, maximal violations of Bell's 
inequalities. 

In the following section we study {3 (f/J,&'( & 1 ),&' (& 2») 
in some generality when f/J is a vacuum state and & 1 C &; , 
before going on to Paper II. 

IV. BELL'S INEQUALITIES AND THE VACUUM STATE 

In this section we specialize the discussion even 
further-here we shall present results concerning Bell's in­
equalities in arbitrary vacuum states. The setting we shall 
work in is as follows. We shall consider a net {&' ( &)} de R' 

of concrete C *-algebras acting on a separable Hilbert space 
K, on which there exists a strongly continuous, unitary rep­
resentation U(]R4) of the translation group satisfying the 
spectrum condition and acting covariantly upon the ele­
ments of{&, (&)} dCR" i.e., 

U(x)&'(&)U(X)-1 = &'(&x), XE]R4, &C]R4. 

Moreover, there exists, up to a factor, a unique vacuum vec­
tor nEK, by which we mean a translation-invariant unit 
vector which is cyclic for &'. This entails32 that &' acts irre­
ducibly on K. We comment that under weak technical as­
sumptions,30 if the subspace of translation-invariant vectors 
were more than one dimensional, a "central decomposition" 
could be performed to reduce the problem to the situation 
assumed above. 

Let f/Jo be the state on &' defined by f/Jo(A) = (n,An), 
AE&'. The crucial characteristic of this vacuum state f/Jo is its 
clustering properties. That is to say, it is known that if & I' & 2 
are bounded space-time regions and aE]R4 is any spacelike 
vector, then 

for any AE&' ( & 1) and BE&' ( & 2)' In fact, one has the fol­
lowing theorem. Part (a) gives an upper bound on the rate of 
clustering in massless theories, while part (b) provides the 
(best possible) bound in theories with a mass gap. 
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Theorem 4.1: (a) (Ref. 33) Under the assumptions 
above, 

l(,6o(U(x)AU(x) -'B) -(,6o(A)(,6o(B) I 
<C(&,'&2)[X]-2r1IAO II'IIB*01l + IIBOII'IIA *011 

+ (lxol/[x]2)(IIHAOII'IIB*01l 

+ IIHBOII'IIA *011)], 

for any Ae.# (& I) and Be.# (& 2) with AO and BO in the 
domain of H, the self-adjoint generator of the time-transla­
tion subgroup of U(R4), where C( & 1'& 2) is a constant pro­
portional to the volume of the convex closure D, of Do, xeD ; 
and [x] is the shortest spacelike distance between x and D

" and Do is the complement in the hyperplane {xeR4lxo = O} 
of (& 1- & 2)'n{xeR4Ixo = O}; i.e., if & 1= & 2e% then 
D, is the double cone with base centered at the center of & I 
and with twice the diameter. 

(b) (Ref. 34) If, in addition to the assumptions above, 
the spectrum of His contained in {O}U [m,oo), with m >0, 

then for x a spacelike vector, 

l(,6o(U(x)AU(x) -IB) -(,6o(A)(,6o(B) I 
<e-md(X,t'"t"){IIA *011' IIBOII'IIAOII' liB *0IlP/2, 

foranyAe.#(& I) andBe.#(& 2)' where & I and & 2 are not 
restricted to be bounded and d(x,& 1'& 2) is the maximal 
timelike distance & I,x can be translated before & l,x ct: &;. 

Thus, roughly speaking, in the massless case clustering 
goeslikeR -2 and the massive case like e - mR, whereR is the 
spacelike distance between & I,x and & 2' An immediate con­
sequence of these clustering properties is given in the follow­
ing corollary for the massive case; the analogous result for 
the massless case should then be clear. 

Corollary 4.2: Under the assumptions of Theorem 
4.l(b) 

{3 ((,60'.# (& I ),.# (& 2»< I + 2e - md(O,t' "t',,, 

where & 1'& 2CR4 are arbitrary. 
Proof' For any A 1,A2e.# ( & I) and B I,B2e.# ( & 2) with 

-1<A;<1 and -1<B;<I, i= 1,2, Theorem 4.I(b) en­
tails 

1!(,6o(A , (B, +B2) +A2(BI -B2»)1 

<2e- md(O,t'"t',) + il(,6o(A , )(,6o(B, ) + (,60(A I)(,60(B2) 

+ (,60(A2)(,60(BI) -(,60(A2)(,60(B2 ) I· 
But the supremum over all self-adjoint contractions 
A; e.# ( & I ), Bj e.# ( & 2), of the expression 

(,6o(A , )(,6o(B, ) + (,60(A I)(,60(B2) + (,60(A2)(,60(BI) 

-(,60(A2)(,60(B2) 

[which is a product state over .# (& I) ® .# (& 2) evaluated 
on AI ® (B, + B2) + A2 ® (B, - B2)] is 2, by Theorem 
2.1. 0 

Since {3((,60,.#( & 1)'.#( & 2»);;;d, we have 
0<{3((,60,.# (& 1),.#( & 2») - 1< 2e- md(O,t'"t',) (this slightly 
improves the estimate given in Ref. II ) . Hence, if 
d(O,& 1'& 2) is much larger than a few Compton wave­
lengths of the lightest particle in the theory, then the maxi­
mal Bell violation (if any) in the vacuum state of measure­
ments made in & I and &2 will necessarily be too small to be 
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observed. In a theory with massless particles the clustering 
"rate" can be much smaller, so that d(O,tJ l,tJ 2) could in 
principle be allowed to get much larger before the maximal 
violation (if any) could be unobservable. However, in that 
case it would be necessary to have efficient counters for arbi­
trarily soft photons, because a lower bound E on the photon 
energies that can be efficiently read serves as a lowest mass E, 
leading to a similar bound on the maximal possible violation 
that can be detected in the vacuum by the said counters. The 
next theorem formalizes this statement. With techniques 
parallelling those used in the proof of the theorem in Ref. 34, 
one can prove the following result. 

Proposition 4.3: Under the assumptions of Theorem 
4.I(a),foranYE> Oand8<e- ETA ,A to be freely chosen from 
R+, and for any A;e.#(&,) such that -I<A;<I and 
IIE[o,E]A;,oOIIlIlA;,oOIl<8, i= 1,2, then 

1!(,6o(A , (B, +B2) +A2(B I -B2»)1 

< 1+ 2e- E1'C(A) (1 + 8eETA ), 

where c(..1,) = (2/11')tan- I..1" r=d(O,tJ l ,tJ2 ), and 
BI.B2e.#(&2) satisfy - I<B;<1. 

For any self-adjoint Ae.# (&), tJ C R4, and unit vector 
rpeK, 

(t/!,E[O'E~E[o'EJt/!) = (ErO,EJt/!,AEro,EJt/!) 

gives the expectation of A in that part of the state (t/!, .t/!) that 
involves energies less then E. Thus, XE (A) == IIE[o,E)AOll1 
IIAOII is an approximate indication of the low-energy re­
sponse of the measuring device represented by A in the vacu­
um state (,60 ( .) [note that if IIE[o,E)AE[o,E] II is sufficiently 
small, then X E (A) is also small]. If A responds inefficiently 
to soft photons, thenXE (A) should be small (recall, A0=l=0 
unless A = 0, so XE is well defined). If, in particular, for 
some E>O one has XE(A;) =0 for both AI and A2 in 
.#(tJ I)' then from Proposition 4.3, 

1!(,6o(A, (B, + B2 ) + A 2 (B I - B2»)1 < I + 2e- Ed(O,t'"t',), 

for any B I .B2E.#( tJ 2) with - I<B; < 1. This is exactIy anal­
ogous to the estimate in Corollary 4.2. If, however, 
X E (A;) =1=0, then the bound given by Proposition 4.3 does not 
decrease to I as 1" -+ 00 • 

In the light of the theorems presented in this section, we 
certainly do not suggest that someone look for violations of 
Bell's inequalities in the vacuum. But we shall prove in Paper 
II that, at least in some quantum field models, Bell's inequal­
ities are indeed maximally violated in the vacuum state. 
Thus, maximal violation is a prediction of such theories, just 
as it is of quantum mechanics. 

Before we close this section, we wish to point out a few 
additional facts about Bell's inequalities in the vacuum state 
for theories that are dilatation invariant. The dilatations 
R4 3x -+..1,x,A. > 0, form a group of transformations of Min­
kowski space. A model ({.nf ( & ) } t' C R4 ,K, U (R4)} of the 
kind discussed in this section is said to be dilatation invariant 
if there exists a strongly continuous, unitary representation 
{U(..1,)} A> 0 of the dilatation group that acts on K and satis­
fies U(..1,)O = 0, for all ..1,>0, U(..1,).#(tJ) U(..1,)-' 

= .nf(..1,tJ), where ..1,tJ=={..1,xlxe&}, and U(..1,)U(x) 
= U(..1,x) U(..1,), A > 0, xeR4. The following theorem relates 

the maximal correlation{3((,6o,.nf( & I ),.#( & 2») for algebras 
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associated to certain regions to the maximal correlation for 
algebras associated to certain other regions, assuming dilata­
tion invariance. We shall need a mild technical assumption. 
A net of local algebras {..c:f(&)}t'CR4 will be said to have 
wedge algebras that are locally generated if for each wedge 
WCR\ ..c:f( W) is equal to the C*-algebra generated by 
{..c:f ( &) I & e% and & C W}. Nets of local algebras coming 
from standard quantum fields are known to satisfy this prop­
erty.s 

Theorem 4.4: In a dilatation-invariant quantum field 
theory in which the wedge algebras are locally generated, 
P(tPo,..c:f(A& 1),..c:f(A& 2» is independent of A >0 for any 
& I' & 2 C R4. Thus, if WI and W2 are spacelike separated 
wedges, then 

P (tPo,..c:f( WI),..c:f( W2») =P (tPo,..c:f( Wi ),..c:f( W;»), 

i = 1,2. 
Moreover, if & I and &2 are tangent double cones (i.e., 
spacelike separated double cones whose closures intersect at 
one point), then for any wedge W such that & I C Wand 
&2C W', P(tPo,..c:f(& 1),..c:f(&2») =P(tPo,..c:f( W),..c:f( W'»). 

Proof Since ..c:f(A&) = U(A)..c:f(&)U(A)-1 and 
U(A) n = n for all A > 0, it is obvious that 
P (tPo,..c:f(A& I)'..c:f (A& 2») is independent of A> O. [Similar­
ly, P (tPo,..c:f (& I,x ),..c:f (& 2,x» is independent of xeR4.] 
Thus, 
P (tPo,..c:f(& 1),..c:f(&2») = limp (tPo,..c:f(A& 1),..c:f(A&2» 

AIO 

= lim P (tPo,..c:f(A& 1),..c:f(A& 2»)' 
AI", 

But if WI and W2 are spacelike separated wedges, 

P (tPo,..c:f (WI ),..c:f (W2» = P (tPo,..c:f (WI,x,),..c:f (W2,x,»), 

i = 1,2, where Xi is the translation that puts the apex of W; at 
the origin. Thus, 

P (tPo,..c:f (WI ),.0!' (W2» = lim P(tPo, ..c:f(A( WI.x»), 
AIO 

.0!'(A ( W2.x ,»). 

But lim,tloA( W;,xi ) = Wi,Xi and limA lOA ( ~'Xi) = W;'Xi' 

i#j. Therefore, 

P (tPo,.0!' ( WI)'.0!'( W2») =P (tPo,..c:f( WI ),.0!'( W;») 

= P (tPo,..c:f ( W ~ ),.0!' ( W2»), 

using the assumption that the wedge algebras are locally gen­
erated, which implies that, e.g., the inductive limieo 

limA 10 .0!'(M ~,x») = .0!' (W ;,x). A similar argument 
proves the final assertion of the theorem after one notes that 
limA ,,,,A(& I,xo ) = WXo and limA_",A( & 2,xo) = W~o' 
where Xo is the translation that takes the point in the inter­
section of the closures of the tangent double cones & I and 
& 2 to the origin. 0 

The free, massless, scalar field and the pure electromag­
netic field35

,36 are examples of such dilatation-invariant the­
ories. It is known37 that any dilatation-invariant theory in 
which there are massless particles must have a trivial S ma­
trix. 

Finally, we remark that Theorem 2.1 (2b) entails that if 
Aie..c:f and Bief!l} are admissible, i = 1,2, and satisfy 
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(4.1 ) 

then the Ai (resp. Bi ) are in the centralizer (see Theorem 
5.3.28 in Ref. 38) of.0!' (resp. f!l}) in the state tPo. But it is 
known39 that the centralizer of any wedge .0!' (W) in a pure 
vacuum state tPo is trivial, i.e., consists only of multiples of 
the identity. Thus, at least if .0!' and f!l} are commuting 
wedge algebras, it follows that there is no quadruple {Ai ,Bj } 

that would satisfy (4.1), even though it is possible, and that 
will be shown in Paper II, that admissible quadruples can be 
found so that the left-hand side of (4.1) comes arbitrarily 
close to .,fi. 

Note added in proof See our paper in Commun. Math. 
Phys. 110,247 (1987). 
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In the context of the study of Bell's inequalities carried out in Paper I [J. Math. Phys. 28, 2440 
( 1987) ], it is proven that Bell's inequalities are maximally violated in the vacuum state by 
suitable spacelike separated observables for both Bose and Fermi free quantum field theories. 

I. INTRODUCTION 

In this paper we continue our study I of Bell's inequal­
ities in quantum field theory with the proof that in both Bose 
and Fermi free quantum field theories these inequalities are 
maximally violated in the vacuum state by suitable spacelike 
separated observables. As explained in Paper I, the form of 
Bell's inequalities with which we work is as follows: 

{3(t/J,d(tJ 1),d(tJ2 ») = I, 

where 

{3 (t/J,d(tJ 1),d(tJ2 ») 

=1suPt/J(AI(BI +B2 ) +A2 (B I -B2 »), 

(1.1 ) 

and the supremum is takenoverallAjEd( & 1),BjEd( tJ 2)' 

with Aj =Aj·, Bj =Bj ·, -l<Aj<l and -l<Bj<l, 
i = 1,2. Here tJ I and tJ 2 are spacelike separated regions of 
Minkowski space and t/J is a state on d, the C·-algebra of 
quasilocal observables generated by a given net of local ob­
servable algebras {d (tJ)} (see Sec. III of Paper I for nota­
tion and background). For each quantum field model to be 
considered here we shall explicitly define the algebras 
{d (&)} at the appropriate place. 

From Theorem 2.4 in Paper I it follows that if tJ 1 ~ & ~, 
then 

( 1.2) 

for any state t/JEdT ( + ). If the equality holds in (1.2), we 
shall say, for obvious reasons, that Bell's inequalities (1.1) 
have been maximally violated. It is precisely this equality 
when t/J is the vacuum state of a free quantum field theory 
and tJ 1 and tJ 2 are certain space-time regions (e.g., tJ I and 
tJ 2 are complementary wedge regions) that will be proven. 
In work in progress we intend to show that the equality in 
( 1.2) holds for more general classes of quantum field models 
and states (and regions tJ l' tJ 2)' But in a sense, it is maximal 
violation in the vacuum for free fields that could be regarded 
as the least expected of such results, since the very strong 
correlations between certain spacelike separated observables 
that are implied by the maximal violation of Bell's inequal­
ities can then neither be attributed to a special preparation of 
the system nor to some nontrivial interaction of the fields 
under consideration. The point to be made is that already 
vacuum fluctuations manifest correlations that are too large 

to be modeled by "local hidden-variable theories" (see Sec. 
II of Paper I). 

In Sec. II we present the main results of this paper, 
which are then proven in the subsequent sections. Some of 
these results were previously announced in Ref. 2. 

II. MAIN RESULTS 

To facilitate an overview of the theorems proven in this 
paper, we start by collecting here the main results. We follow 
the notation established in Paper I. 

If fP( • ) denotes the free Bose quantum field of mass 
m;;.O and D is its standard domain in the Bose Fock space K 
(see Ref. 3), then it is well known that for every real-valued 
tempered test function lEY (R4) the operator fP ( I) is es­
sentially self-adjoint on D. Moreover, if for each open 
tJ C R4 d (tJ) is defined to be the von Neumann algebra 

d(tJ)={e
j
q>(f)I/EYR (R4), supp(/)CtJ}" (2.1) 

generated by the self~adjoint closure of fP (I) ~ D for all real­
valued/EY(R4) with support in tJ, then {d(tJ)} is a net 
oflocal algebras satisfying the axioms (1 )-( 4) in Sec. III ofI 
(see, e.g., Ref. 4) transforming covariantly under the action 
of the representation U( f!}' 1+ ) of the (covering group of 
the) Poincare group f!}' 1+ associated with the field fP ( . ) 
(Ref. 3). If n is the vacuum vector in K, then 

t/Jo(A) = <U,AU), AEd, (2.2) 

defines a state on the algebra of quasilocal observables gener­
ated by the net {d(tJ)} just defined. We remark that in 
order to keep notation within bounds and the reader's atten­
tion on the essential points, we have tacitly assumed that the 
field fP( . ) is neutral and has spin O. But by making use of 
Refs. 5 and 6, for example, the methods of this paper can be 
easily extended to fields of any spin, but with finitely many 
components. 

Theorem 2.1: With the above definitions, 

f3 (t/Jo,d( W),d( W'») = {i, 
for any wedge region WEY. 

Here, Wand W' are each other's causal complement and 
are called complementary wedges. See Theorem 2.4 for simi­
lar results for regions other than complementary wedges in 
the case m = O. 
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If t/J( . ) represents the free Fermi quantum field3 of 
mass m>O and spin s = n/2, neN (but finitely many compo­
nents), then the anticommutation relations entail that t/J( f) 
is a bounded operator for every test function! For that rea­
son one can directly define the free Fermi field algebras as 

Y(tT) ={t/J(f)lsupp(f) CtT}" . (2.3) 

Here, {Y ( tT )} is a net of local algebras satisfying axioms 
( 1 ), (2), and ( 4) in Sec. III of Sec. I. Because field operators 
t/J(f) and t/J(g) with supp(f) spacelike separated from 
supp(g) anticommute, it is necessary to modify axiom (3) 
for the field algebras. This is done by introducing a unitary 
Klein transformation Y ( tT) --+ Y ( tT ) t that yields 
Y ( tT) ~ Y (tT') t' for every region tT C R4 as the appropri­
ate expression for the locality of the field operators (see Sec. 
IV for more details). If, once again, 0 is the vacuum vector 
in the Fermi Fock space, then 

(2.4) 

defines a state on the algebra Y of quasilocal field operators 
generated by the net {Y (tT)}. 

Theorem 2.2: With the above definitions, 

P (tPo,Y( W),Y( W,)t) =.J2, 
for any wedge region We'fr. 

Once again, Theorem 2.4 has similar results for different 
regions when the field has zero mass. 

The fact that there are anticommuting elements of alge­
bras associated with spacelike separated regions is a conse­
quence of the fact that there are nonobservable operations in 
Y ( tT). In particular, there are local operators carrying 
charge. With the reservations made in Sec. III of Paper I in 
mind, the standard way 7 to choose the "observable algebras" 
for the free Fermi fields is to take the fixed point subalgebras 
under the gauge group induced by the free charge operator 
Q; 

(2.5) 

which defines a unitary group of automorphisms on Y. 
Then the observable algebras are given by 

d(tT) ={Fed(tT) lat (F) = Ffor all teR}. (2.6) 

Elements in d ( tT) clearly do not carry charge. Also for 
these Fermi observable algebras we prove maximal violation 
of Bell's inequalities. 

Theorem 2.3: With the above definitions, 

P(tPo,d( W),d(W'») =.J2, 
for any wedge region We'fr. 

These results, together with Theorem 4.4. in Paper I, 
entail the following additional maximal violations. Note we 
are considering only free fields and not generalized free 
fields, so there is only one mass in each theory. If the free 
field theory is massless, it is dilatation invariant. 

Theorem 2.4: If the mass of the free quantum field the­
ory is zero, then 

P (tPo,d( WI),d( Wz)) =.J2 
[ = P (tPo'Y( WI),Y( Wz)t)] 

and 
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{3(tPo>d(tT 1),d(tT 2») =.J2 [= {3 (tPo>Y(tT 1),Y(tT zrn 
for any two spacelike separated wedges WI' W2e'fr and any 
two tangent double cones tT l,tT ze% (tangent double cones 
are spacelike separated double cones whose closures inter­
sect at one point). 

We shall say a few words about the strategy employed in 
the proof of these results. In Sec. III (resp. Secs. IV and V) 
we prove Theorem 2.1 (resp. 2.2 and 2.3). But all three have 
much in common. First, the local algebras and the vacuum 
state can be constructed explicitly in each case in terms of 
suitable test function spaces. We look in all three cases for 
large Bell correlations in subalgebras generated by finitely 
many field operators. Thus, we study first an analogous 
problem for finite-dimensional test function spaces. Under 
suitable conditions on the test functions we find almost max­
imal correlations for these finite-dimensional test function 
spaces. We then obtain the maximal violations by taking 
certain limits that, however, remain in the original algebras. 
The fact, in all three cases, that this limit can indeed be taken 
in the manner we require rests upon the result of Bisognano 
and Wichmann5

•
8 that the modular automorphism group 

{ait} tER of a wedge algebra generated by a standard quantum 
field in the manner we have indicated above coincides with 
the subgroup of Lorentz velocity transformations leaving 
the corresponding wedge invariant, so that the modular op­
erator ~ in the test function space has absolutely continuous 
spectrum containing the point 1. 

We advise the reader that any undefined notation in this 
paper has already been established in Paper I. 

III. MAXIMAL VIOLATION FOR FREE BOSE QUANTUM 
FIELDS 

We begin by defining the local algebras of a free Bose 
field theory in terms of spaces of test functions. Formally the 
field is a linear assignment of a symmetric operator <p ( f) on 
a Hilbert space K to each elementf of a test function space 
Y. Here Y is a real vector space (possibly the real part of a 
space of eN-valued functions, where N is the number of com­
ponents of the field). Two real bilinear forms on Y deter­
mine the structure of the theory. One is the antisymmetric 
(or "symplectic") form 0" that determines the canonical 
commutation relations (CCR), which we write in terms of 
the unitary Weyl operators W(f) = exp(i<p(f») as 

W(f) W(g) = exp(U/2)0"(f,g»)W(f + g) . (3.1) 

The C·-algebra generated by the Weyl operators is called the 
CCR algebra over (Y,O"). The second bilinear form q is 
symmetric and determines the vacuum state tPo on the CCR 
algebra through the relation 

tPo(W(f») = exp( - !q(J,f»), feY. (3.2) 

We assume that there is a vector OeK that is cyclic for 
{W(f) I feY} and satisfies (n,W(f)n) = tPo(W(f»). 
The positivity of the state tPo is equivalent to the inequalities 

(O"(f,g»)z.;;;.q(J,f)q(g,g) (3.3) 

(see, e.g., Ref. 9). In particular, 0" is continuous with respect 
to the norm on Y given by q. Consequently, the form 0" and 
the commutation relations (3.1) can be extended by contin­
uity to all f,g in the completion of Y with respect to that 
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nonn. Henceforth, we shall assume, without loss of genera­
lity, that Y is complete with respect to q. Inequality (3.3) 
also implies the existence of a bounded operator A on Y with 
eT(f,g) = q(f,Ag) and 0.;;; A 2.;;; 1. A state ¢o detennined 
by (3.2) on the CCR algebra is pure if and only if A 2 = - 1. 
The vacuum state of a free Bose field is indeed pure, and we 
shall denote in that case the operator A relating q and eT by i, 
thus making Y a complex Hilbert space with inner product 
(f,g) = q(f,g) - ieT(f,g). For a free scalar Bose field of 
mass m:;;.O this inner product is given directly by 

(f,g) = ! (!l,qJ(f)qJ(g)!l) 

= f d 4po(p2_ m2)j(p)g(p) , (3.4) 

forf,geSR (R4) andj the Fourier transfonn of/ex). 
We shall denote by M( tJ) the closure in Y of the real 

linear space of test functions with support contained in the 
open space-time region tJ. Then the usual locality condition 
for Bose fields requires that for fkEM( tJ k) and tJ I and tJ 2 

spacelike separated, the field operators qJ(fl) and qJ(f2) 
commute, i.e., eT(!;,};) = O. Thus, if 

M'={feY"leT(f,g) = 0 for all gEM} (3.5) 

denotes the symplectic complement of a subset M C Y, then 
locality may be stated in tenns of the test function spaces as 
M(tJ') CM(tJ)'. (See Ref. 10; also Refs. 4 and 11 for the 
"equal time fonnulation.") We then define the observable 
algebra .z1 (tJ) associated to a region tJ as dIMe tJ»), 
where .z1 (M) is defined for each subspace M C Y as the von 
Neumann algebra generated by {W( f) I fEM}. In tenns of 
the symplectic complement (3.5) of a closed real subspace 
MCY, (3.1) implies that .z1(M') r;;;..z1(M)', the commu­
tant of .z1(M). In Ref. 11 (see also Refs. 10 and 12) it was 
shown that, in fact, .z1 (M)' = .z1 (M'), which is called "ab­
stract duality." 

By the Reeh-Schlieder theorem 13 the vacuum vector !l 
is cyclic and separating for each local algebra .z1 ( tJ) for 
which tJ and tJ' are nonempty. An equivalent condition is 
that the space M( tJ) is standard 14 in the sense that 
Mn iM = {O} and M + iM is dense in Y. For standard sub­
spaces Rieffel and van Daele14 set up a modular theory close­
ly analogous to that of Tomita-Takesaki. 15 Specifically, one 
defines a closed antilinear involution s on Y by s(f + ig) 
= f - ig for f ,gEM. ThenfEM if and only if sf = f The ca­
nonical involution s has a polar decomposition s = jol /2 such 
that the unitary group t -+Oit leavesM invariant. The canoni­
cal involution of the complementary subspace M' is equal to 
s* = 01/'7 = jo-)/2. The operator 0 is related to the modular 
operator fl. of the von Neumann algebra.z1 (M) with respect 
to the vector !lby the equation fl.itW(f)fl. -it = W(Oi,!) for 
fEM. Similarly, the operatorj is related to the modular invo­
lutionJof{d(M),!l}byJW(f)J = W(jf) (see Ref. 12). 

We shall utilize this connection to characterize the 
group {Oit} IER in an important special case, namely when 
tJ = WEJr'is a wedge region in space-time (Paper I). In 
this case a general result of Bisognano and Wichmann5

•
8 

states that fl.iI = V(17't), where {V(t)}IER is the subgroup 
representing the Lorentz velocity transformations leaving 
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the wedge W (and W') invariant in the representation 
U(&,I+ ) of the (covering group of the) Poincare group 
&' 1+ under which the free field transfonns covariantly.3.8 
Since the scalar product in (3.4) is Poincare covariant, the 
boosts { V( t) } IER are represented by a unitary group {v t } IER 

on Y [and thus on M( W) J. Then we have 

W(v(17't)f) = V(17't) W(f) V(17't) * 
= tJ,,,itW(f)fl. -it = W(Oi,!) , 

and hence v (17't)f = Oi,! for all fEM( W). Since 
M( W) + iM( W) is dense, the unitary operators oit and 
v(17't) must coincide. This may be derived by more direct 
means, but the above argument has the advantage of being 
immediately applicable to free fields of any spin. 

It should now be clear that the maximal Bell correlation 
/3 (¢o,.z1( tJ 1)'.z1( tJ 2») can be defined completely in tenns 
of the real linear subspaces M ( tJ I ) ,M ( tJ 2) C Y. Since the 
restriction of ¢o to an algebra .z1 (M) is detennined by q 
restricted to M, it even suffices to know the fonns q and eT 
restricted to M ( tJ 1) + M( tJ 2)' Thus we divide the proof of 
Theorem 2.1 into the two steps of establishing a property of 
fonns q and eT on MI +M2 CY implying 

/3 (¢o,.z1(M),.z1(M2 ») =.J2 and of demonstrating this 
property for the concrete spaces Mk = M( tJ k)' k = 1,2. 

Note that in order to define /3 (¢o,.z1 (M}),.z1 (M2 ») we 
have to assume that d(M), .z1(M2 ) commute ele­
mentwise, i.e., eT(fl,h) = 0 forfkEMk' Iffor such pairs we 
also had q( fl,h) = 0, this would imply 

¢o(W(fl) W(h») = ¢o(W(fl»)· ¢o(W(h») 

andhence/3(¢o,.z1(MI ),.z1(M2») = 1 by Theorem 2.1 (3c) 
of Paper I. In fact, Theorem 2.1 (3c) implies a stronger re­
sult: if q is another bilinear fonn on MI + M2 satisfying 
(3.3) for the same eT, such thatq<fl.!2) = OforfkEMk and 
q.;;;q, then ¢o is a Gaussian average over translates of another 
state '¢, each of which is a product state,16 hence 
/3 (¢o,.z1(MI ),.z1(M2 ») = 1. 

These remarks indicate in which situations one might 
look for large violations of Bell's inequalities. Here, 
/3 (¢o,.z1(M I ),.z1(M2 )) is obviously convex in ¢o, so that 
large values will be attained if ¢o is a pure state on the algebra 
.z1(MI ) V.z1(M2 ) generated by .z1(MI ) and .z1(M2 ). On 
the other hand, the elements in .z1(M2 ) may be viewed as 
inducing particular decompositions of the state ¢o restricted 
to .z1 (M I)' These decompositions are trivial if ¢o restricted 
to .z1(MI ) is pure, implying /3 (¢o,.z1(M I ),.z1(M2 )) = 1 
[Theorem 2.1 (3b) in Paper IJ. Thus/3may be expected to 
be larger if ¢o is almost pure on .z1 (M I ) V .z1 (M2 ) but very 
impure (or even a tracial state) restricted to each .z1 (M k ). 

This intuition is essential for the proofs to follow, because we 
choose the test functions generating subalgebras of the origi­
nal algebras in such a way that ¢o does manifest said behav­
ior on these subalgebras. 

This now said, we proceed to the proofs. 
Proposition 3.1: Let Y be a complex Hilbert space with 

real subspaces M, N such that M r;;;. N '. Let 0 < A < 1 and sup­
pose that for each E> 0 there are test functionsfl'!2EM and 
gl,g2EN (the dependence of these test functions on € will be 
suppressed in the notation) such that 
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(i) IIlkll 2:::::(1 +A2)/(1_..t2):::::IIgkll2, k= 1,2, 

(ii) (/1,h) :::::i::::: (gl,g2) , 

(iii) (ft,gI):::::U /(1 - A 2)::::: - (h,g2) , 

(iv) (/1,g2) :::::0::::: (h,gl) , 

where x:::::y means Ix - yl <E. Then 
/3 (t/Jo,.s;£ (M),.s;£ (N) »vi2[U /( 1 + A 2)] . 

Prool: (1) With/l,heM define M(/I'/2) as the real 
linear span of II andh. Then .s;£(M(/I'/2»)C.s;£(M) and 
using similar notation for N, one has /3 (t/Jo,.s;£ (M),.s;£ (N») 
>/3(t/Jo,.s;£(M(/I'/2»),.s;£(N(gl,g2»))' The latter quantity in­
volves only CCR algebras over finite-dimensional test func­
tion spaces. In fact, by a trivial rescaling, one may assume 
that Im(/l,h) = Im(gl,g2) = i, which fixes the commuta­
tion relations for all operators W(h), with 
h = l:j= 1,2 (ajj + /3jgj 2: Thus, by von Neumann'~ unique­
ness theorem,11 .s;£(M(/I,h»)r;;;t,~ (K), .s;£(N(gl,g2») 
r;;;t,~ (%), and .s;£(M(/I,h»)· .s;£(ATcgl,gz») 
=~ (K) ® ~ (%), where K and % are Hilbert spaces 
carrying a fixed representation of the CCR for one degree of 
freedom. The real parts of the inner products in (i)-(iv) 
determine the restriction of the quadratic form II . 112 to 
M + N and hence a density matrix pEYI (K ® %) with 
tr(pW(h») = exp( -lllh 11 2). 

Let/l" .. ,g2 be functions for which (i)-(iv) are satisfied 
with equality, and let p denote the density matrix obtained 
from/l , ... ,g2 in the manner described above. Moreover, let 
(P(V)} >'EN be a sequence of density matrices obtained in this 
way from a sequence tlj (v) ,g/V)Y';NI,2 satisfying (i)-(iv) 
elementwise for {E(v)} >'EN a sequence of positive numbers 
converging to O. Then it is asserted that 

so that 11 is a lower bound for /3 (t/Jo,.s;£ (M),.s;£ (N»). To see 
this, suppose that AI,A2E~ (K) and BI,B2E~ (%) are 
self-adjoint contractions such that ! tr(fi(A I (B I + B2 ) 

+A2 (B I -B2 ))»P-EI , EI>O given but arbitrary. By 
Kaplansky's density theoreml8 Aj,Bj are (strong limits of) 
linear combinations of Weyl operators over M(/I,h) and 
N(gl,gz), respectively. Thus, T=! (AI(B I +Bz) 
+ A2 (B I - B2») is a (strong limit of) linear combination of 
Weyl operators over M + N, so that tr(p(V)T) depends con­
tinuously on the inner products (i)-(iv). Hence, for any 
given E2 > 0 and all sufficiently large v, 

/3 (t/Jo,.s;£ (M),.s;£ (N) »tr(p(V)T) 

>tr(pT) - E2>P - El - E2 ' 
Since El and E2 are arbitrary, the assertion is proven. 

(2) By step I, any number !tr(p(A 1(B1 +B2) 
+ A 2 (B 1 - B2 ») with self-adjoint contractionsAjE~ (K) 

and BjE~ (%) is a lower bound for /3 (t/Jo,.s;£(M),.s;£(N»). 
In order to construct such operators Aj,Bj to satisfy the low­
er bound of the proposition, it is necessary to have an explicit 
representation of the density matrix p. Thus, write 

W(atil + a 2h + /3lg1 + /3zg2) 

= exp{i(aIQl + a2Pl + /31Q2 + /32P2)} 

with canonical operators satisfying i[ lj,Qk] = ]{jjk' j,k 
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= 1,2. Let { In) j }: = 0 denote the set of eigenstates of 
!(lj2 + Q/) and let Inm)=ln)1 ® Im)2EJf"®%. Then 

tr(pW(h») = (O,W(h)O) , 

with 

0= (1-A 2)1/2 i A nlnn). 
n=O 

This is verified most conveniently by noting that 0 is the 
ground state of 

H = [(1 +A 2)/(1-A 2)]! (Pi + Qi +Pi +Qi) 

+ [U /( 1 - A 2)] (P1P2 - QIQ2) . 

Thus, in particular, p determines a pure state on 
~ (K) ® ~ (%) whose restriction to each factor is given 
by a density matrix with eigenvalues (1 - A 2)A 2n, which is 
therefore very impure when A is close to 1. 

Define 

AjI2n)l=eiajI2n + 1)1' Bj I2n)2=e.;BjI2n + 1)2' 

Ajl2n + 1)1=e- iaj I2n)I' Bjl2n + 1)2=e-.;BjI2n)2, 

with aj ,/3jER. Then 

(O,Aj ®BkO) = 2(1 +A 2)-1 Re(A/(aj+Pk » • 

With the particular choices al = 0, a2 = 1T/2, /31 = -1T/4, 
/32 = 1T/4, one has 

HO,(AI ® (B I + B2) +A2 ® (B1 - B2»)O) 

= [4A/(1 +A 2)]COS(1T/4). 

The proposition is thus proven. 0 
We now utilize this result to take the next step towards 

proving Theorem 2.1. 
Corol/ary 3.2: Let M be a standard real subspace of a 

complex Hilbert space with canonical involution S = j81
/
2• 

Suppose that 0 <A 2 < 1 is in the spectrum of 8. Then 

/3 (t/Jo,.s;£(M),.s;£(M)'»vi2[U /(1 + A 2)] . 

In particular, if 1 is not an isolated eigenvalue of 8, then 

/3 (t/Jo,.s;£ (M),.s;£ (M),) = vi2 . 
ProofPickE> OsothatO <A 2 _ E<A 2 + E< 1 and let t/J 

be a unit vector in the spectral subspace of 8 for 
[A 2 - E,A. 2 + E] . t/J must therefore be in the domain of de fin i­
tion of 8, thereby also in the domain of definition of s = j{j1/2 
and s* = j8- 1/2, since j is bounded. Because j8j = {j-l, j 
must exchange the eigenspaces of 8 above, resp. below, 1; 
hence (t/J,st/J) = (t/J,s*t/J) =0. Let ft+ = (t/J,{jt/J) and 
ft- == (t/J,{j-lt/J), and define 

11=(1 +s)(l-ft+)-1/2t/J, 

h=(1 +s)(1-ft+)- 1/2it/J, 

gl=(1 +s*)(ft- _1)-1/2t/J, 

g2= - (1 +s*)(ft __ 1)-1/2it/J. 

Then since S2 = I, one has Slk =Ik for k = 1,2, and 
S*gk = gk for k = 1,2. HencelkeM and gkeM', since s* is 
the canonical involution for the subspace M'. Moreover, 

(/l,h) = (1-ft+)-IUlit/JII2 + (j81/2t/J,j{j1/2it/J» 

=i(1-ft+)-I(1-ft+) =i, 
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and, by similar computations, 

Ilfkll2 = (1 +Jl+)/(1-Jl+) , 

and 

IIgkll2 = (1 +Jl-)/(Jl- -1), k= 1,2, 

(gl,g2) = i, (fl,g2) = (f2,g1) = 0, 

(fl,gl) = - (f2,g2) = 2(1-Jl+)-1/2(Jl_ - 1)-1/2. 

As E tends to zero, Jl+ .... A 2, Jl_ .... A -2 so that conditions 
(i )-( iv) of Proposition 3.1 are satisfied. Thus the assertions 
of the corollary follow directly from Proposition 3.1. 0 

We have now collected all that is necessary for a proof of 
Theorem 2.1. 

Proof of Theorem 2.1: As already discussed, for a wedge 
region W, t .... 8it is a one-parameter boost subgroup in a non­
trivial representation of the Poincare group. Hence the spec­
trum of its generator In 8 is equal to R. In particular, 1 is a 
nontrivial accumulation point of the spectrum of 8. Thus, 

Corollary 3.2 implies p (t,6o,d( W),d( W)/) = {2. But by 
the duality of the wedge algebras,4,5,8 d ( W) I = d ( W'), 
completing the proof. 0 

IV. MAXIMAL VIOLATION FOR FREE FERMI QUANTUM 
FIELDS: FIELD ALGEBRA CASE 

The definition of the local field algebras of a free Fermi 
field theory in terms of spaces of test functions is in many 
points quite similar to that presented in Sec. III for bosons. 
Once again let the test function space Y be a real Hilbert 
space with q a positive symmetric bilinear form on Y, and 
letf .... t/J(f) be a real linear mapping satisfying 

[t/J(f),t/J( g)] + = q(f,g), f,gEY. (4.1) 

They generate an abstract C*-algebra d(Y,q), called the 
canonical anticommutation relation (CAR) algebra over 
(Y,q). Quasifree states t,6 on d (Y,q) are determined by 
bounded operators A on Y by 

t,6A (1) = 1, t,6A(t/J(f)t/J(g») = Hq(f,g) + iq(Af,g»), 
(4.2) 

where A satisfies q(Af,g) = -q(f,Ag) and IIA 11<1 (see 
Ref. 19). If A satisfies, in addition, A 2 = - 1, then it induces 
a complex structure on Y by 

(AI + U 2 )/=Ad +A~f, AI.A2ER, fEY, (4.3) 

with a complex inner product 

(f,g)=q(f,g) +iq(Af,g)· (4.4) 

In terms of this inner product the CAR (4.1) becomes 

[t/J(f),t/J(g)] + = Re(f,g) . (4.5) 

It is known 19 thatt,6 A is pure on d (Y,q) precisely when 
A 2 = - 1. Under such circumstances one can define cre­
ation and annihilation operators and t,6 A is a Fock state. 19 

One knows that A = 0 determines the unique tracial state t,6 A 

on d(Y,q). 
Let %0 be such a complexification of (Y,q) and 

Me %0' Then the symplectic complement M I of M is de­
fined to be 

M' = {fE%oIIm(f,g) = 0, all geM}. (4.6) 

Let r (%0) be the Fock space associated to the complexifi-

2452 J. Math. Phys., Vol. 28, No.1 0, October 1987 

cation %0' If M C %0 is a real, closed subspace of %0 and 
t/J(h) satisfies (4.5) and 

(O,t/J(f)t/J(g)O) = ,(f,g) , (4.7) 

where 0 is the Fock vacuum vector corresponding to the 
given Fock state t,6 A' then define 

Y(M) = {t/J(f)lfeM}" . 

If N!;;;;iM ', then 

[t/J(f),t/J(g)] + =0, allfeM, gEN, (4.8) 

by (4.5). We now define a Klein transformation in order to 
express this anticommutation as commutation. 

The map t/J( f) .... - t/J( /) determines a unique auto­
morphism r on Y (M) that leaves the Fock state invariant. 
Thus, there exists a unitary involution U implementing r, 

Ut/J(f)U* = - t/J(/) . (4.9) 

Let V= (l/{2) (1- iU) andY(Mr= VY(M) V*. Then it 
is easy to verify that 

(4.10) 

In fact, it has been proven in Refs. 6 and 20 that equality 
holds in (4.10) (abstract twisted duality). The definition of 
standard subspaces, canonical involutions s, and the polar 
decomposition s = j81

/
2

, along with the identities 

(4.11) 

and 

Jt/J(f)J = V*t/J(ijf) V (4.12) 

are given (resp. proven) in Refs. 14 and 20. 
This, then, is the abstract setting for free Fermi fields. It 

is now necessary to specifiy the concrete test function spaces 
such that the following desiderata are obtained: specify Y, 
q, and the Fock state t,6 A such that subspaces M ( tJ) C %0 
exist where (i) {Y(M( tJ»)} is unitarily equivalent to the 
usual set offree Fermi algebras and this unitary equivalence 
intertwines the Fock vacua and also the representations of 
the Poincare group in the obvious manner, (ii) 
M( W') = iM( W)/, all WEY. In the Fermi case this is 
more involved than for bosons, and unfortunately it has been 
carried out in detail only in Ref. 6. We feel therefore obliged 
to summarize the main points again here. To minimize nota­
tion we present the construction for spin s = ~ and mass 
m > 0, but all other cases are explicitly dealt with in Ref. 6, 
which yields the desiderata (i) and (ii) for them, as well. 

Let Yo = Y (R4) ED 2 and let q; ( f) be the usual two­
component Fermi spin-! field. Double the test function space 
Yo ED Yo and define cf>([) =q;(fl) +q;«(72f2)' [=fl 
EDf2EYO ED Yo, where (71,(72,(73 are the Pauli matrices andfis 
the complex conjugate of f One can verify that 
cf>([)* = cf>(J[), where 

JI=( 0 (72)([1), J2 = I, 
- (72 0 f2 

is an antilinear involution on Yo ED Yo' If OF is the usual 
Fermi Fock vector, then 
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where 

p+ = pol - p' alpo=wp ' l!+ = pol + P' alpo=w
p

' 

wp = yI p2 + m2, 

and] ± (p) =]( ± wp,p),f being the Fourier transform of 
f Moreover, 

([.£) - = (OF,<I>(£)<I>([)*OF) 

= f ~_~P h_-_(P),(l!+olm 0) ) LWpV-" p+lm~-(P). 
(4.14) 

One has (J.[,J£) + = (£,[) _. Let % ± be the Hilbert sp~c;e 
completion of Yo Ell Yo under the norm II . II ± = (-, . ) ± I , 

and let a ± : Yo Ell yo .... % ± be the canonical injection. 
Then, of course, there exists a unitary operator W: 
Y .... r(% +), where Y is the standard Fermi Fock space 
and r(% +) is the Fermi Fock space with % + as its one­
particle subspace, such that (i) WOF = 0, the Fock vacu­
um in r (% +), (ii) if [ = Jt then <I> ( [) is self-adjoint on 
Y and t/J(a+([») = W<I>([)W*, where for each hE% +' 
l/J(h) = (l1../2)(A(h)* +A(h») and A( . )*, A( . ) form 
the irreducible Fock representation of the CAR in r(% +) 
over % +. Thus, 

[l/J(h),l/J(k)] + = Re(h,k)+, allh,kE% +. (4.15) 

The representation U + (a,A) of the Poincare group on % + 
is 

U + (a,A)a+(/) = a+((A EllA *-I),[{a.A(A)})' 

where 

.[{a,A(A)} (x) =[(A(A -1)(X - a»). 

Here, r( U + (a,A ») gives the representation on r (% +) and 
W intertwines r( U + (a,A ») and the usual representation on 
Y. 

Unfortunately, in order to describe the local structure of 
algebras via support properties of the test functions in the 
manner we need, it is necessary to double the test function 
space again. To this end, let %0=% + Ell % _ and let a: 
Yo Ell Yo"" %0 be defined by 

act) =a+([) +a_([), [EYoEilYo. 

A unique antilinear involution r on %0 is induced by J via 
ra([) =a(J[). Let Re %o={hE%olrh = h}, and let P: 
%0 .... % + be the projection onto % +. Since 
rp= (l-p)r, themapRe%03k .... v'2PkE% + is an iso­
morphism between (real) Hilbert spaces. 21 A complex 
structure is thus induced on Re %0 via this isomorphism 

ik=i(2P-/)k, kE Re %0 , 

where the right-hand side is understood in %0' The complex 
scalar product on Re %0 is then given by 

(k,k') = (../2Pk,../2Pk')y+, k,k'ERe%o' (4.16) 

(This is equivalent to picking a particular Fock state; see 
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Ref. 21.) The unitary representation U(a,A) ofthe (cover­
ing group of the) Poincare group is induced on %0 by 

U(a,A)a([) =a((A EllA *-I)[{a,A,(A)}) ' 

and then induced on Re %0 by restriction [note U( a,A ) 
commutes with r and P]. 

The net oflocal field algebras {Y ( d)} for the free Fer­
mi fields

,7 is unitarily equivalent to the net of local algebras 
defined by 

Y(d) ={tP(a([»)I[EYo Ell Yo, [=Jt supp([)Cd}", 

where l/J(a(/») = t/J(a+ (I») Ell tP(a_ (I)) on r(%o) 
~rc% + Ell % -)~rc%:) EIlr(% _). Because of the 
norm continuity of the CAR, Y ( d) 
= {l/J(a(/»)I/EM(d)}", where M(d) CRe %0 is the 

closure of {a([)I[EYoEllYo,[=Jt supp (/)Cd} in 
Re %0' From Satz II. 2.2 and Lemma II. 3.6 in Ref. 6 it 
follows that for any wedge region WE"'-, 

iM(W')' =M(W). ( 4.17) 

The unitary that intertwines the field algebras as mentioned 
above also maps the usual Fock vacuum of the free Fermi 
field onto the vector 0 = 0 Ell OEr (% +) Ell r (% _) and in­
tertwines the representations of the Poincare group in the 
proper manner. These claims are straightforward conse­
quences of the construction above and the existence of the 
unitary intertwiner W previously discussed. 

In order to reduce the notational complexity, we shall 
for each/EYo Ell Yo identify a vector h = a( I) in %0' We 
have, then, for each h,kERe %0' -

[l/J(h),l/J(k)] + = Re(h,k) (4.18) 

and 

tPo(l/J(h)l/J(k») = (O,l/J(h).p(k)O) = !(h,k) , (4.19) 

where (".) is the (complex) scalar product induced on 
Re%o in (4.16). Note that for each hERe %0' 
l/J(h) = l/J(h)*. Now, with Y = Re %0' q(',) = Re(',), 
tP A ( • ) the state (0, . 0), and the subspace M( d ) C Re %0 
as given above, we have the desiderata (i), and (ii) in the 
abstract context presented at the outset of this section. We 
can now, using much the same tactics as in Sec. III, make an 
explicit calculation to prove Theorem 2.2. 

ProololTheorem 2.2: (1) From (4.18) it follows that 

2l/J(h)2 = IIh 11
2/, so that for hERe %0 such that IIh II =../2, 

l/J(h) is a self-adjoint unitary. From Theorem 2.1 of Paper I 
only such operators are candidates for maximal violators. By 
using the mentioned unitary equivalence of the usual formu­
lation of free Fermi theories with the one shown above, it 
follows that 

/3 (tPo'Y( W),Y( W')') 

>!(O,l/J(h 1 ) Vl/J(k 1 ) V*O) + (O,l/J(h 1 ) Vl/J(k2) V*O) 

+ (O,l/J(h2) Vl/J(k1 ) V*O) 

- (O,l/J(h2) Vl/J(kz) V*O») , (4.20) 

for any h;EM( W) and k;EM( W') satisfying 
IIhi ll 2 = 2 = Ilk; 11

2
, i = 1,2. Using (4.9) and the fact that 

UO = 0, the right-hand side of (4.20) is seen to be equal to 
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- !(lm(hl>k l ) + Im(h l ,k2) 

+ Im(h2,k l ) - Im(h2,k2» , 
where we have employed the fact that 
Re(hi,kj ) =0, i,j, = 1,2. It remains to choose the testfunc­
tions appropriately. To that end let s be the canonical involu­
tion for the (standard6

) subspaceM( W) and lets = j151/2 be 
its polar decomposition. Then, of course, l = 1, 
j151/2 = 15- 1/7,j(M( W)) = M( W)', ands· = 15112jis the ca­
nonical involution for M( W)'. This is all the same as in the 
Bose calculation in Sec. III. The i in (4.17) is the only basic 
difference at this stage. 

(2) Lett,6,,u+, and,u_ be as in the proof of Corollary 3.2 
for some fixed E> 0 and define 

h l =(1 +s)(I-,u+)-1/2t,6, 

h2=(1 +s)(I-,u+)- 1/2it,6, 

k l =i(1 +s*)(,u- _1)-I12t,6, 

k2 =i(1 + s* )(,u- - 1) - 1/2it,6 . 

ThenhiEM(W) andkiEM(W'), i= 1,2, by (4.17) and the 
argument given in Corollary 3.2. The same calculations as in 
Corollary 3.2. yield 

and 

(h 1,h2) = i = (k l.k2) , 

IIhrll 2 = (1 +,u+ )/(1 - f.t+), 

Ilk/112 = (1 +,u-)/(,u- -1), 1= 1,2, 

(h l ,k2 ) = (h 2.k1) = 0, 

~ ~ ~ ~ . -1/2 -1/2 
(h l ,k1) = - (h2,k2) = 2z(1 -,u+) (,u- - 1) . 

Then define 

and 

h/= [~(1_,u+)1/2/(1 +,u+)1/2]h/, 1= 1,2, 

kl= - [(,u- _1)112/(1 +,u_)1/2](k1-k2), 

k2= - [(,u- _1)1/2/(1 +f.t_)1/2](k1 +k2). 

One sees that Ilh/112 = 2 = IIk/1I2, that h/EM( W), 
k/EM( W'), and that 

Im(hl>k1) = - 2~/[(1 +,u+)1/2(1 +,u_)1/2] 

= Im(h2,k1) = Im(h1,k2) = - Im(h2,k2) . 

Thus, one has from (4.20) 

.B(t,60,y(W),Y(W'r»2~/[(1 +,u+)1/2(1 +,u_)1/2] . 
(4.21 ) 

(3) Since the spectrum of 15 is lR+ by the results of Bisog­
nano and Wichmann5 and by the unitary equivalence estab­
lished above, for any E> 0 as in Corollary 3.2 there exists a 
unit vector t,6 with the stated properties. Letting E W again as 
in Corollary 3.2,,u+ and,u_ tend to 1, and the right-hand 

side of (4.21) tends to ~. Therefore, Theorem 2.2. is prov­
en. D 

V. MAXIMAL VIOLATION FOR FREE FERMI QUANTUM 
FIELDS: OBSERVAB.LE ALGEBRA CASE 

In this section we can make use of the formalism already 
established in Sec. IV. The only new element to enter here is 
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the group of gauge transformations generated by the free 
Fermi charge operator Q, but the additional requirement 
that the observables be invariant under this group causes 
some complications. 

First of all, if <p ( /) is that part of the Fermi field on the 
usual Fock space that has charge +, then 

ei'Q<p(/)e-i'Q = <p(eY) . 

Similarly, that part of the Fermi field that has charge 
- transforms to <p (e - i'f ). In other words, the gauge trans­

formations can also be expressed as unitary maps on the one­
particle spaces, and tracing the connection of the usual field 
with that we constructed in Sec. IV, one sees that the gauge 
transformations can be expressed on the one-particle space 
Re %0 as 

/-+u,J, U, = cos t + v sin t, 

where v is an orthogonal operator satisfying v2 = - 1. The 
gauge transformations commute with representation of the 
Poincare group on Re %0' Moreover, v and u, commute 
with the complex structure Re %0 defined in Sec. IV (since 
the vacuum state is gauge invariant), thus u, and v are uni­
tary. 

Pro%/Theorem2.3: LetM( W),M( W'),s,j, and 15 be 
as in Sec. IV, and let u, = cos t + v sin t be the gauge trans­
formation on the one-particle space. v commutes with s,j, 15. 
Since v2 = - 1, v has the eigenvalues ± i. Here u, and v 
commute with the representation of the Poincare group on 
the one-particle space; thus in each of the eigenspaces for v 
there is a nontrivial representation of the Poincare group. 
Since the boosts leaving Wand W' invariant are represented 
by l5i

', this implies that the spectrum of 15 equals lR+ for both 
subspaces. 

( 1) Fix NEN and E> O. Then pick N test functions 
<Pl,.",<PN of norm one with <p" in the spectral subspace of 15 
for the interval [1 + (v/N)E,1 +(v+ 1)/N)E] and be­
longing to one of the spectral subspaces of v, each v = 1,,,.,N. 
Thus <p" is in the domain of definition of 151/2 and 15- 1/2 and 
one can set 

/,,=(1/~)(1 +jI51/2 )<p", g,,=(i/~)(1 +jl5- 1/2 )<p". 

Then /"EM( W) since !( 1 + s) projects onto M( W) and 
g"EiM(W)'=M(W') since !(1+s*) projects onto 
M( W)'. The inner products between the elements of 
{/I'''''/N,gI,,,.,gN} are sums of expressions of the form 
(<p",C<p,..), where C is some product of the operators j, 
15 ± 112, and v. Because v commutes with 15 andj I5j = 15- 1, <Pv 
and C<p,.. always belong to orthogonal subs paces if v =I=,u; and 
ifC contains an odd number offactorsj, <Pv and C<p" are also 
orthogonal. Using 

vF" = ± (i/~)( 1 - jI51/2 )<p", 

vg" = ± (i/~)(I-jl5-1/2)<p", 

one calculates 

(/".!,,) =!(1 + C:), (g",g,,) = !(1 + C v-) , 
(5.1 ) 

(5.2) 
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(/v,vl.") = ± (i/2) (1 - C v+)' 

(gv,vgv) = ± (i/2) (1 - C v-) , (5.3 ) 

with C! == (l/'v,6± 1 l/'v)' Since C v+ and (C v-) -I are con­
tained in [1, 1 + ( v + 1) IN )c], one sees that for small c 
they are very close to one. 

(2) Pick N in step (1) such that N = 2k, and let 

Iv+N==vlvandgv+N==vgv' l..;;;v..;;;N. 

Consider the real linear subspace M. CM( W) [resp. 
NE CM( W')] spanned by 11, .. ·,j2N (resp. gl, .. ·,g2N)' Here, 
ME and N. are real Hilbert spaces of dimension 2N with 
respect to Re(',) and onME,NE v is an orthogonal transfor­
mation with v2 = - 1. By step 1, if c is small enough there 
must exist an orthonormal basis (fvE~ 1 CME with 
III .. - ivll = O(c) and viv =iV+N for v..;;;N (similarly for 
{gV}~~1 CNE)· As c!O the algebras Y(M.) and Y(NE) 
move around in Y ( W) and Y ( W'). Since what one is inter­
ested in here are expectations of certain operators in 
Y(ME) V Y(NE) ~Y(M. (f)NE) in the quasifree state tPo, 
for the sake oftechnical convenience it is preferable to identi­
fy these algebras for different c and to consider different 
states tPE on this one (identified) algebra. In particular, by 
identifying for different cbut the same v, l";;;v..;;;2N, the basis 
vectors iv (similarly for g v ), the algebras Y (M. (f) N E) are 
all isomorphic for different c. Thus, tPo t Y (ME (f) NE) is 
given by some state tP. t Y(MEo (f)NEo ) 
[ ~Y (M.o) V Y (N.

o
)] for some fixed, sufficiently small 

co> 0 and all 0 < c";;;co' The value of tPE on any monomial in 
t/J( iv)' t/J(gv ~ is a polynomial in the inner products (iv.ip.)' 
(gvip.) ' (/vip.). Hence, as c!O the states tP. on 
Y (M Eo (f) N.o ) converge to a quasifree state ~o and 

P(tPo, d(M( W) ),d(M( W'»)) 

> sup P (~od(NE),d(N.J) 
1:0>1:>0 

>P (~o,d (M.o ),d (NEo ») , (5.4 ) 

where d (M) is the fixed-point subalgebra of Y (M) under 
the gauge automorphism group induced on Y(M(R4») by 
the action of the group {cos t + v sin t} teR on Re %0' [Re­
call that d(M) CY(M) nY(M)t.] 

(3) In the above limiting process none of the subspaces 
M. (f) NE is in general invariant under multiplication by i. 
Thus, in the limit state ~o one no longer has the complex 
structure associated to the state tPo. Rather, one has a real 
Hilbert space Y£ ==M" (f) N" with inner product q(',) <;0 0 0 _ 

and the orthogonal operator v, and a quasifree state tPo deter­
mined by a real bilinear form u( . , . ). Define now an operator 
Ion Y E by iiv ==gv' i gv == - iv' Then one verifies that 
u(h l ,h2 )o= q(fh l ,h2 ) and thatP = - 1 (thelatterbydefini­
tion, the former by considering tP. and taking the limit c!O). 
It follows that the quasifree state ~o is purel9 on the algebra 
Y (T. ). Moreover, iv = vi, so that v is unitary in the com-o _ 

plexification of T" given by i [see (4.3)]. _ 0 

( 4) Since tPo is pure and Y ( TEo) is irreducible in the 
corresponding Gel'fand-Naimark-Segal (GNS) represen­
tation on a Hilbert space K, one has Y (Y" ) ~ 36' (K) _ _ _ _ liD 

and tPo (F) = (n,m) for some unit vector nEJ¥'. The gauge 
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group {at}tER induced on Y(Y,,) by the group 
0_ 

{cos t + v sin t} teR is implementable in JJr as 

at (F) = /QtFe - iQt , 

with Q = Q *e36' (K) determined up to a constant. Here, Q 
has a spectral resolution Q = ~% = 0 (qo + k)Pk with qoeR, 
d =! dim~ YEO = 2N, and tr Pk = (r). Since ~o is gauge 
invariant, n must be an eigenvector of Q. The corresponding 
value of k is determined by studying the unitary operator VI, 
which satisfies (vi) 2 = 1 and hence has eigenvalues ± 1. In 
the case at hand, one verifies that the two eigenspaces have 
equal dimension, so there is a symmetry leaving 0 invariant 
but taking at to a _ t. Hence Q 0 = (qo + d 12)0 
= (qo + N) n, and following the standard convention, one 

can choose qo = - N. 
(5) One notes that d (MEo ) can be alternatively de­

scribed as the subalgebra of Y (M" ) that is fixed under the 
o 

automorphism at (I) of Y (T.o) induced by 

at (I)(t/J( I(f)g) )==eiQ,tt/J(I(f)g)e - iQ,t 

==t/J([ (cos t + v sin t)f] (f)g) 

for leM.o and geNoo' Thus, d(M.o) =~~:o dk(MEo )' 
where k labels the eigenspaces of QI and 

dk(MEo ) = 36'(Cdk
), dk = (f). Note that since 

1m ( ".) = u( ',' ) vanishes on M.o' ~o is the unique normal­
ized tracial state on Y(M.o )' In particular, (n, ·n) is the 
trace on each summand d k (MEo )' normalized to dk • 2 - N. 

Ifat (2) and Q2 are defined analogously for Y(N.
o

)' there is a 
similar decomposition here, as well. Moreover, at (1) 

. at (2) = at, so that QI + Q2 = Q up to some constant. Con­
sequently, the algebra d (M.o) . d (NEO )' which is strictly 
contained in d(M.o (f)N.o)' is decomposed as 

N., 

I d k, (MEo ) d k, (NEO ). 
k"k,=O 

The state ~o vanishes on every summand with kl + k2 i=N, is 
pure on each summand d k (M.o ) d N _ dNEo ), and re­
stricts to the trace in each factor. 

(6) An operator Aed(MEo ) decomposed as 
A = ~kA (k) with A (k)ed k (MEo ) is a self-adjoint contrac­

tion if and only if each of the summands A (k) is a self-adjoint 
contraction. Hence maximizing the expression 

!~o(AI(BI +B2) +A2(B 1 -B2» 

= ~ ~ ~O(AI(N-k)(BI(k) + Bz'k» 

+A2(N-k)(B
1
(k) -B2(k» 

over all self-adjoint contractions A;ed(M. ), B;ed(N" ) 
0_0 

is equivalent to maximizing each summand. Since tPo is nor-
malized on d N _ k (M.o) d k (NEO ) to 2 - N (f), one can con­
clude that 

{3 (~o,d (MEo ) ,d (NEo ») 

= ktO 2 -N(0{3(~o (k) ,d N- dMEo ),d k.(NEo ») , 

(5.5) 
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with 

~o (k) = 2N (f) -l~O t J2f N-k (MEo ) • J2f k (NE) . 

Recall that ~o (k) is a pure state on J2f N _ k (M"o) J2f k (NEO ) 

and that ~o (k) restricted to each factor is the normalized 

trace. Since J2f N _ k (MEo ) e! J2f k (NEO ) e!:!J) (Cdk
) with 

dk = (f), it is possible to determine {3 from facts already 
established in this paper. Namely, for k = 0 or k = N, 
dim J2f k (ME) = 1, so that the corresponding {3 in (5.5) is 
equal to 1. For the other terms, note that since N is a power of 
2, (f) is even for 1<k<N - 1. Using matched decomposi­
tions of the factors C dk in C dk 

® Cd. into two-dimensional sub­
spaces, and picking self-adjoint contractions in each of these 
subspaces in much the same way as in step 2 of the proof of 
Proposition 3.1, one sees that 

- (k) r-; {3(tPo ,J2f N- dMEo),J2fk (NEo ») = '12, for 1<k<N - 1. 

Hence, by (5.5) 

{3 (~o,J2f(MEo ) ,J2f (NEo ») = 2 . 2 -N + ~(1 - 2' 2 - N) • 

(5.6) 

From (5.6) and (5.4), Theorem 2.3 follows by taking 

N-oo. D 
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Using nonlinear realization, extended supersymmetry breaking is studied. The N-extended 
Volkov-Akulov and standard superfields are constructed and the N generalized Wess 
constraints in the presence of central charges are given. The extended Volkov-Akulov 
Lagrangian and the N-extended effective Lagrangian are constructed for arbitrary N in the 
absence of central charges. 

I. INTRODUCTION 

Nonlinear realizations and construction of an effective 
Lagrangian play an important role in understanding symme­
try breaking. 1 They were first introduced in the context of 
chiral dynamics2 and in the strong interaction phenomeno­
logy. 3 These nonlinear realizations can be regarded as a lin­
ear theory at energies much lower than the breaking mass 
scale. 

Recently, nonlinear realizations have been used to in­
vestigate supersymmetry breaking.4 The Lagrangian is in­
variant under nonlinear transformations of the supersym­
metry group SPf and under linear transformations of the 
Poincare subgroup. When the SPf group is broken down to 
its subgroup P 4' a set of N fermionic Goldstone fields-gold­
stinos--emerges. These N goldstinos transform nonlinearly 
under the coset group SpZ/P4 •

5 

Wess showed-in the case of one supersymmetry-that 
using the transformation laws and one goldstino, one can 
construct from any Poincare- (eventually gauge-) invariant 
Lagrangian an effective supersymmetric (gauge) one invar­
iant under SP 4 modulo some constraints. The part of the new 
theory that does not depend on the goldstino field is exactly 
the original theory, a fact that allows us to take into account 
the supersymmetric effects at low energy. 

The aim of this paper is to generalize for an arbitrary N 
the preceding results. We give the corresponding Wess con­
straints on the superfields with central charges with N~2. 
On the other hand, we establish an N extended supersymme­
tric Lagrangian when the central charges are set to zero. The 
presentation is as follows. 

In Sec. II the supers pace and the superalgebra are re­
called together with Wess constraints and the effective 
N = 1 supersymmetric Lagrangian using the superspace for­
malism is given. In Sec. III we start by giving the notation for 
the N superspace and superalgebra, and then we give the N­
extended superfields with the generalized constraints in the 
presence of central charges. 

Section IV is devoted to the construction of the N-ex­
tended supersymmetric Lagrangian. We start by discussing 
the N = 1 case. We note that, making use of the generalized 
derivative aIL' 5.6 the Lagrangian L (,p,alL ,p) satisfies the 
standard transformation law, hence it allows the construc­
tion of a super-Lagrangian. This yields, through the Wess 
procedure, an N = 1 effective supersymmetric Lagrangian. 

This method contains both the Wess Lagrangian based on 
the superspace technique and the other one 7 based on the 
ordinary fields. In addition, we show that they are equivalent 
up to the fourth order in terms of the goldstino fields. The 
construction of theN-effective theory goes through a natural 
extension of the above idea of the N = I case. However, in 
the presence of central charges we came across some difficul­
ties when constructing the transformation laws giving a real­
ization of the SPf algebra for N>2. We have therefore limit­
ed ourselves to the case where the central charges (Z) are set 
to zero, which implies that the symmetry group of the SPf 
generators Q reduces down to SU(N)/ZN • 

II. N= 1 SUPERSYMMETRIC ALGEBRA­
REALIZATIONS AND THE N=1 WESS LAGRANGIAN 

.!! is well known that the superalgebra SP 4 = {PIL , M lLv , 
Qa , Q a} (see Refs. 8-10) is given-using the constant Weyl 
Grassman variables 5 and 17-by the following relations of 
the Lie algebra: 

(a) [sQ,tQ] = - 2sd'tPIL , 

(b) [sQ,17Q] = [tQ,~Q] = o. 
(2.1 ) 

In the following we shall use Weyl spinors and our nota­
tions are identical to those of Bagger and Wess.9 

Two realizations of the algebra (2.1) have been con­
structed.4

,5 They are given by (i) the Volkov-Akulov non­
linear realization 

0s-Aa (x) = f5a + tIL alLAa (x), 

OS-Ail (x) =Jt +tlLaILAil(X); 

and (ii) the standard realization 

0s-,p(x) = + tIL alL,p(x), 

where 

(2.2) 

(2.3) 

alLSa =0, tlL= - (i1/)(sd'A -Ad't). (2.4) 

Here / is a real two-dimensional mass unknown constant 
!.,hat characterizes the supersymmetry breaking, Aa (x) and 
Ail (x) are two Weyl fields (goldstino),5 and ,p(x) is a gen­
eric field, which can be a matter, Higgs, or gauge field. These 
transformation laws give a realization of the algebra: 

[0s-,O., If(x) = 2i(sd'~ -17d't)aJ(x), 

/(x) = Aa (x), Ail (x), or ,p(x). 
(2.5) 
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On the other hand, given a realization of (2.1 ) one can usual­
ly construct an N = 1 superfield as a function defined on the 
superspace (x,{),O) and which can be expressed by its finite 
expansion in terms of{) and 0. 8 Thus (2.2) and (2.3) give the 
(i) N = 1 Volkov-Akulov superfield, 

- {j 
Aa (x,{),{) = e "Aa (x), 

- (j-
Aa (x,{),{) = e "Aa (x); 

and (ii) N = 1 standard superfield, 

<I>(x,{),O) = e{j"¢(x), 

where 
S() = {)aQa + {)aQa. 

(2.6) 

(2.7) 

These superfields can also be defined as the unique solu­
tions of the following Wess constraints5

,8: 

DaAb = Eba + id"aa Aa apAb' 

DaAb = - iAad"aa apAb' 

DaAb = Eba - iAad"aa apAb' 

DaAb = id"ailAilapAb, 

Da <I> = id" ail Ail ap <1>, 

Dil<l> = - iAad"ail ap<l>, 

(2.8) 

where Da and Dil are the usual N = 1 spinor covariant de­
rivatives. 8

,9 Now let us focus on the construction of the 
N = 1 effective Lagrangian. Wess showed that using (2.6) 
and (2.7) one can generalize any Lorentz (eventually 
gauge) invariant Lagrangian L (¢,a¢) to an effective super­
symmetric one compatible with low energy phenomeno­
logy.5 This compatibility is due to the fact that the part of the 
new Lagrangian that does not depend on the Goldstone field 
is identical to the original Lagrangian: 

L~:'sl = jdZ{)dZOf-4AZAZ[ - ~fz +L(<I>,ap<l»] . 

(2.9) 

Here AZAz is the Wess weight and ap is the generalized 
covariant derivative defined in Refs. 5 and 6 as 

ap¢ = (ap<l» I ()= -A = (ap (/"¢») I ()= -A' 

0=-,1 0=-,1 

The integration of this weight with respect to () and 0 gives, 
up to & (A 4), 

f- 4 j d Z{) d Zo A zAz 

= 1 - (i/fz)(Ad"ap1 - apAO'pl) + & (A z1z.74
). 

(2.10) 

The constant value ( 1) is crucial in this study since it carries 
the supersymmetry breaking factor and reproduces the 
original theory: 

f-4jdZ{)dZOAZAZ[ - ~ p+L(ct>,apct»] 

= - !fz + (i/2)(Ad" apl- apAd"l) 

+ L(¢,apifJ) + &(A zlz,J-z). (2.9') 

We stress the fact that (2.9) is manifestly supersymme-
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tric since it is expressed in superspace; on the other hand it 
contains the original Lagrangian. 

The term - !fz exhibits the fact that the theory is spon­
taneously broken from N = 1 to N = 0, 

< _L~:ssl) =!/z>O, (2.11) 

and finally all supersymmetric effects at low energy are car­
ried by the term & (A zlz,J-z). 

Prior to the generalization of Wess's N = 1 supersym­
metric Lagrangian to an arbitrary N, we shall construct the 
N-extended Volkov-Akulov and standard superfields. 

III. N-EXTENDED VOLKOV-AKULOV AND STANDARD 
SUPERFIELDS 

Let us start by fixing our notation. The N-extended su­
perspace is parametrized by Z = (X,8,8), where 8 and 8 
are a set of N variables belonging to the vector representation 
N and its conjugate N of the SU (N) group. A contravariant 
SU(N) index will be used to refer to the vector representa­
tion and a covariant one to its conjugate N. Therefore the 
odd part of the superspace Z can be written as 

e; ~CO-(N; (2,1»), e; ~ (0; "'0~)-(N,(2,1)), 
(3.1) 

(8~) 8~ = ~::v -(N;(1,2»), 8~ = (e~ .. '8;;) -(N,(1,2»), 

where (N; (2, 1»), etc., give the corresponding representations 
of the direct product group SU(N) xSL(2,C). 

A supertrans1ation in this superspace has the form 

C!) 8' = 8 + 5, 5 ~ = =;;' 

The infinitesimal variation Sa can be written as 
N 

(3.2) 

Sa = 8Q + 8Q = L ({)~Q~ + 8~Q~), (3.3) 
;=] 

where the Q's are the usual supersymmetric generators and 
satisfy the following algebra: 

[5~Q~,t~QJ] = - 25;d"t ip
p , 

(3.4) 
[5;Qi,7/iQj] = - 5i1]jZij. 

In the differential representation the Q 's have the form 

Q _ a '-I-L ()- il a 1 () zj· 
a,i - a{)a,; -Iv' ail i p -"2" aJ I, 

(3.5) 
-Q i_a '() a,;-I-L a 1 -() Z *ji a - + -=-:- - 1 V' ail p - - ilJ ' 

a{)~ 2 

where Z ij = - Z ji constitute the set of complex central 
charges ofthe algebra (3.4). 

The corresponding covariant derivatives are lO 
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D a .-J.t li a a + 1 Ll zj 
a,i = aBa,i + lu' aa U " 2Uaj i> 

D.i= _~_iBa,iff'.a +~.jZ~;. 
a aoa aa" 2 0 ] 

I 

They satisfy the following algebra: 

{Da,;,Da'} = - 2ia';aD/ a", 

{Da,;,Dhj } = - CahZij' 

(3.6) 

(3.7) 

TheN Volkov-Akulovspinorsll ~(X) and X ~(X) correspond­
ing to the breaking of the N fermionic generators Qo ; and Qa; 
are written as SU (N) isovectors [see (3.1)]: 

¢oE(A:) ~C} ~E(Jf) ~G:) ( 3.8a) 

Their Hermitian conjugates are 

t/I'=(ll a
i ) = (11 a l .. ·11 aN), ifia=(A/) = (Ial .. ·XaN). 

(3.8b) 

From (3.8a) and (3.8b) we can form an SU(N) and Weyl 
scalar 

N 

t/I',p a + ifia 1iJ' = ~ (11 a;1l ; a + Ia 'I a; ) . ( 3.9 ) 
;=1 

Now let us focus on the N-extended superfields. They 
are given, for the Volkov-Akulov and standard superfields, 
respectively, by 

(i) 'l'a (x,a,S) =(Na (x,a,S») = /e,pa (x), 

'iia (x,a,S) = (Aai (x,a,S») = e
fje

1ii'(x); 

(ii) cp(x,a,S) = /e</J(x); 

(3.10) 

(3.11 ) 

efje, where De = l:f= 1 De, given by (3.3), cannot be reduced 
to a simple product of (exp De,), unless the central charges 
are set to zero, which implies that De. and De. commute. As an 

, J 

example, let us write down N = 2 Volkov-Akulov fields: 
- { 12 'l'a(x,a,a) =! exp[ -~BIB2Z +H.c.] 

x/e,/e, + exp[ + !B1B2Z 12 + H.c.] 

fj fj} Xe e'e e, ,pa (x), 

where 

De, =B~Q! +O!Qf, 
De, = B~ + Q~ + O~Q~, 
[De, ,De,] = B1B2Z 12. 

(3.10') 

(3.12) 

If we switch off the central charges (Z 12 = 0), we get 

'l'a (x,a,S) = !{i .... /o,},po (x) = /e'e{;o,,po (x). (3.10") 

As in the case N = 1, the Volkov-Akulov superfields 
'1'0 (x,a,S) and the standard superfield cp(x,a,S) can also 
be defined as unique solutions of a set of generalized con­
straints. Using the form of the covariant derivatives (3.6) we 
have established these constraints for the case of arbitrary N: 

D~N, 
D~N, 

D~A1, 

2459 

- £ij +'-J.t -Aai a Aj + IAkz; Aj - coh u lu' 00 "h '2 0 k h' 
= - iAO';d:;. a N + lAkz* ;N (3.13) oa "h 2 a k h' 

= C.' £ij _ iAa';d:;. a N· + lAo kZ* 'N' ~abU aa Jl b 2 a k b, 
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(3.14) 

If we set Z ij = 0, we note that (a) the standard superfield 
constraints (3.14) become similar to those of the N = 1 case 
(2.8), and (b) the diagonal terms {i = j) are also similar to 
the N = 1 case. However, the remaining terms {i =j:j) can be 
seen as the standard constraints (3.14) and (2.8). 

Now we go back to the study ofWess's N = 1 supersym­
metric Lagrangian to an arbitrary N. 

IV. N-EFFECTIVE THEORY 

For this purpose we start giving a generalized express­
sion of an effective N = 1 supersymmetric Lagrangian 
whose expansion in terms of the Volkov-Akulov field con­
tains Wess's Lagrangian (2.9) and the one based on ordi­
nary fields. 

We know that the derivative of the standard field does 
not transform as a standard field: 

D(a,,</J) =;vav[a,,</J] +a,,;vav</J· 

Therefore using the generalized covariant derivative intro­
duced before (Sec. II), one obtains a standard realization 

o ( A" </J) =; v a v ( A" </J ) . (4.1 ) 

The relation between the two derivatives is 

A,,</J=E;lvav</J, (4.2) 

E"v='TJ;+T;, (4.3) 

T" v = - {i//2)(llu" a vI - a"llu~). (4.4) 

Generally, one can easily check, using (2.3) and (4.3), that 
any function depending on </J and A" </J, say a Lagrangian 
L(</J,A,,</J), satisfies the standard transformation (2.3): 

Dd L(</J,A,,</J)] =; v avL(</J,A,,</J). (4.5) 

Therefore 

[Ds,D" ]L(</J,A,,</J) = 2i[suV~ - 'TJUvt lav [L(</J,A,,</J)]. 
(4.6) 

Similarly to (2.3), Eq. (4.5) carries a realization of the 
N = 1 supersymmetric algebra (4.6). Consequently, as for 
(2.7) one can usually construct a super-Lagrangian: 

L (cp,A" cp) = e{;eL (</J,A" </J) 

=L(</J,A,,</J) + .... (4.7) 

Following (2.9), we write down our effective N = 1 super­
symmetric Lagrangian: 

L= fd 2Bd 20A2A2[ -U2+L(cp,A"cp)] (4.8a) 

= - U 2 + {i/2)(lld' a"I - a"lld'I) + L(</J,A,,</J) 

+ &' (1l 2X 2,J-2), (4.8b) 

where the weight A2A2 is still the one ofWess. 
Making use of the inverse of E;, 

(4.9) 
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we easily see that L contains as a first term the original La­
grangian. 

Furthermore, one can easily verify that the integration 
over () 's of the Wess weight contains, up to (J (A 4), the mod­
ule of the "vierbein" I E I = det (E;) introduced in Ref. 7, 
i.e., 

f d2()dZOf- 4 A2A2== IE I· 
This implies that the two approaches based on superfields 
and on ordinary fields are equivalent up to the fourth order 
in the goldstino field. It is this form (4.8) that we shall use 
for the construction of the effective N-extended supersym­
metric Lagrangian. The latter has to satisfy the two follow­
ing requirements: First, it must be reduced to (or at least 
contain) (4.8) when we set N = 1. Second, it must be 
SU (N) symmetric to ensure that the N-global supersymme­
tries are going to be spontaneously broken simultaneously. 
This last requirement is somehow a strong constraint since 
one would like to have a partial supersymmetry breaking in 
an effective theory. Nevertheless since we are discussing here 
global supersymmetry, breaking must occur simultaneously 
and in an SU (N) symmetric way, as is shown by the average 
of the Hamiltonian: 

H=~ i(~ ± IQ~12). 
N;=I 2 0 =1 

(4.10) 

Now let us deal with the generalization of the Volkov­
Akulov and standard realizations. In this case where N>2 
the extension of relations (2.2) and (2.3) need more elabo­
ration. This is due to the presence of central charges that 
affect these realizations. Their extension requires additional 
fields associated with the central charges.7 We shall restrict 
ourselves below to the case where the central charges are set 
to zero. Therefore the realizations of the N algebra (3.4) 
without Z are given for the Volkov-Akulov and standard 
fields, respectively, by 

(i) ~stPo =/So - (ilfHsfi¢ - tPif~ ]aptPo' 

~s¢a =j'ta - (ilf) [sif¢ - tPif~ ]ap¢a; 

(ii) DstjJ(X) = - (ilf) [sif¢ - tPif~ ]aptjJ(x); 

and 

[Ds,D'Ilf(x) = 2i[sif~ -17if~ lap/ex), 

(4.11a) 

(4.11b) 

(4.12) 

wheref(x) ==tPo (x), ¢a (x), andtjJ(x) and wheretheSU(N) 
indices are understood. Therefore the construction of the N 
extended super-Lagrangian can be directly obtained by sub­
stituting in the relations (4.4)-(4.7), A(x), S, and De, re­
spectively, bytP(x) [(3.8)],S [(3.2)], and De [(3.3)]: 

L~=~ = - ~f2fd2ad2ef-sr2f2 

(4.13) 

Let us note at this level that working in the absence of 
central charges, the symmetry SU (N) connecting the N gen­
erators of the N supersymmetries is reduced to the coset 
group SU(N)/ZN • Setting Z = 0 leads to subtracting the 
SU (N) group center. Furthermore, we note that (4.13) is 
invariant under the SU(N)/ZN transformations. 

In order to achieve the construction of the N-extended 
effective Lagrangian, we have to build the N-extended 
weight, which gives, after integration on the a variables, the 
N-generalized Volkov-Akulov Lagrangian. The weight, 
which must be a SU(N)/ZN scalar, must reproduce the ki­
netic Volkov-Akulov terms, and must contain the field inde­
pendent constant, is given by 

r 2 (x,a,e)f2 (x,a,8) = [1/(N!)41 [('1'0'1'0 )(\Va ~a) ]N, 
(4.14 ) 

where '1'0 and ~a are given by (3.10): 

r 2(x,a,e) = _1_2 ['I'°'l'o]N 
(N!) 

1 N _._ 

= -II [A~(x,a,a)A~ (x,a,a)]. 
N!;=I 

Since all the powers of the N-extended Weyl spinors A~ 
(x,a,e) greater than 2 for fixed i vanish, we have 

2 - -2 - 1 N . -. -. 
r (x,a,a)r (x,a,a) =--2 II (A~A~)(A~An· 

(N!) i= 1 

(4.15 ) 

Therefore, the N-extended Volkov-Akulov Lagrangian is 
given by 

L ~-A. (A~,A ~,f) = - !f2f d2ad2ef-4Nr2(x,a,8) 

·f2(x,a,e), (4.16) 
where 

N 

d2a = II [d()~·d()~]. 
;=1 

To be more explicit, let us discuss the N = 2 case. The 
weight r 2 f2 becomes 

r 2f2 = [1/(2!)2] [(A~ A!) (A!At)] [(A~A~) (A~A~)] 

== [1/(2!)2](AiAi )(A~AD. (4.17) 

The N = 2 extended Volkov-Akulov Lagrangian up to the 
second order of the A 's is obtained by carrying out the inte­
gration with respect to ()I and ()2' We note that the order of 
the integration over the () 's is arbitrary as a consequence of 
the existing symmetry SU(2)IZ2• We have then 

= __ I- f2 fd 2() d27J f-s[fd 2() d27J (A2 A2 )(A2 A2 )] (2)3 2 2 1 1 1 1 2 2 

2460 

- (;)3 p f d2()2 d27Jd-s[ (f d 2
()1 d27J1 Ai Ai )(A~A~) + (f d 2

()1 d27J1 A~A~ ) (Ai Ai) 

+ (f d 2
()1 A; )(d 27J 1 A~ )A;A~ + (f d 2

()1 A~) (f d27J 1 A~) A~A~ ] + "', 
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Where the ellipses means that we have omitted all the fourth powers of the goldstino fields and terms with higher derivatives 
for spinors. The tilde (-) means that the ()I variable is set to zero and therefore we are dealing with (N - 1) = (2 - 1) = 1 
superfields. Using the ()I expansion of the N = 2 extended Volkov-Akulov superfields, one can establish 

L~:~ = -~f2Jd2()2d202f-4[{I- (i/p)(Ald"a/AI-aI'Ald"AI) +q(f-4,AiAi)}A~A~ 
(2) 

{I ( '/,/2) (A- -'" a A=2 a A- -"'A""2) f- 4 -2 ""2 }-2 =2 + - I 2v' I' - I' 2v ' + q( ,A2 A2 ) Al Al 

+ {I + {i/f2)aI'A ld"A I + q(f-4,Ai Ai )}{1 - {i/f2)A2d" al'A2 + q(f-4,AiA~ )}Ai A~ 

+ {t - {i/f2)A ld" al'AI + q(f-4,Ai Ai)}{t + {i/f2)aI'A2d"A2 + q(f-4AiA~ )}AiAi]. 

Now the integration over ()2 can be carried out exactly in the same manner and we get 

L ~:~ = - [1I(2):t2 [2{t - (i/f2)(A ld" al'I 1_ al'Ald"X I) + &' (f-4,A. iX i)} 

x{1 - (i/f2)(A2d" al'X 2 - aI'A2d"X 2) + &' (f- 4,A. iX ~)} 

+ 2{(1 + {i/p)aI'Ald"X 1+ q(f-4,A. iX i »)(1 - {i/f2)A. 2d" al'X 2 + &'(f-4,A. ~X ~») 

X(1 - {i/f2)A ld" al'X I + q(f-4,A. iX i»)(1 + {i/f2)aI'A2d"X 2 + &'(f-4,A. ~X i»)}] 

= - ~f2[ 11(2)2] [(2)2{1 - (i/p) [(AId" al'X I - al'Ald"X I) + (A2d" al'X 2 - aI'A2d"X 2)] 

+ &'(f-4,A. iX i,A. ~X~,A. iX~'x iA ~)}] 
• 2 

= -!p + ~ L [(A;d" al'x ; - aI'A;d"X I)] + &' (f- 2,A. fX J). 
2;=1 

( 4.19) 

Through this N = 2 example and after integration over d 20 
and d 29 in (4.16) the N extended Volkov-Akulov Lagran­
gian expression in the component fields contains as for the 
N = 1 case and up to tJ (A)4 the constant term and the kinet­
ic term of the goldstinos: 

• N 

= - !f2 + +;~I [ (A;d" al'X ; - aI'A;d"X ;) ] 

+ &,(f-2,A.;A;XjXj ). ( 4.20) 

Before giving the full Lagrangian, we note that our construc­
tion differs from the one in Ref. 4(b) in which Bagger and 
Wess introduced the breaking of super symmetry from a giv­
en N( = 2) to N - 1 ( = 1). As a consequence they obtained 
an (N - 1) extended Volkov-Akulov superfield. In our case 
since we are interested in the breaking of the N-extended 
supersymmetry directly and simultaneously down to N = 0 
(Poincare subgroup), which is imposed by the N-extended 
global supersymmetry (4.10), the weight (4.14) is the most 
general one satisfying all the necessary requirements men­
tioned before: it must be SU(N)/ZN symmetric, reproduce 
the kinetic V olkov-Akulov terms, and contain the crucial 
constant term. This presents a double interest: first, it exhib­
its the spontaneously N-supersymmetry breaking and, sec­
ond, allows one to obtain the original Lagrangian. Further­
more, we note that (4.14) reduces when we set N = 1 to 
Wess's weight [(2.6) and (2.10)]. 

By analogy with (4.8) and uSIng (4.14), the full La­
grangian of an N-extended supersymmetric theory can be 
written 
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I 

L N= Jd20d29f-4Nr2f2[ - ~f2+LN(cI>,al'cI»] 
1 . N (4.21) 

= - -2 f2 + ~ L [A;d" al'X; - aI'A;d"X;] 
2;=1 

+ L(r/J,aA) + &'(A;A ;Xj,f-2). (4.22) 

It describes the phenomenology oflow energy physics where 
supersymmetry is necessarily broken down to the Poincare 
subgroup; the constant -!p is a signal of this supersym­
metry breaking. The magnitude of the scalefis model depen­
dent, 11,12 but may be thought of order of the Mw mass, ifwe 
believe that supersymmetry is the proper tool to avoid the 
hierarchy problem. The second term on the right-hand side 
of ( 4.22) is nothing but the kinetic terms of the N Volkov­
Akulov fields occurring in the breaking, and finally the term 
&' (A;A ;XfJ..j ,f-4), which is highly nonrenormalizable, car­
ries all the supersymmetric effects. However, processes in­
volving such terms are negligible due to the magnitude of the 
mass scale! 

v. CONCLUSIONS 

In this paper we have studied the generalization of the 
effective Wess Lagrangian to an arbitrary N. We have con­
structed the N-extended Volkov-Akulov and standard su­
perfields and also the generalized Wess constraints in the 
presence ofthe central charges. We have pointed out that a 
standard transformation can be built for the Lagrangian it­
self, if we substitute the normal derivative al' by a "covar­
iant" one al' (4.2). For N = 1, we have proposed an N = 1 
effective Lagrangian that contains the Wess one and that of 
the approach based on ordinary fields. We have also checked 
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that the two latter approaches are equivalent to the fourth 
order in the Volkov-Akulov fields. 

For the N-extended case, we have restricted ourselves to 
the limit Z = o. We have imposed two requirements: First it 
must be reduced to (or at least contain) (4.8) when we set 
N = 1, which is obviously satisfied. Second, we have de­
manded SU(N)/ZN symmetry in order to ensure the simul­
taneous breaking of the N-extended global supersymmetries. 
We have found that the more general weight consistent with 
the generalization and satisfying all the requirements is that 
given by (4.14). 

The phenomenological Lagrangian part (matter, gauge, 
Higgs) turns out to satisfy our requirements also. Therefore, 
the full N-extended effective theory is given by (4.21). It has 
all the good features, as we remarked before, as long as we 
keep the central charges equal to zero. However, it is inter­
esting to study the extension to the central charge case and 
examine their effects. This requires taking into account the 
contribution part of the central charges in the realization of 
the N-extended superalgebra (3.4). This is under study and 
will be treated elsewhere. 
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Infinite-dimensional Lie algebras of infinitesimal transformations acting on the solution space 
of various two-dimensional 0' models are investigated. The main tools are (i) Takasaki's 
interpretation [Commun. Math. Phys. 94, 35 (1984)] of the solutions of the associated linear 
system in terms of points in an infinite-dimensional Grassmann manifold and (ii) Mikhailov's 
reduction procedure [Physica D 3, 73 (1981)] for linear systems. Takasaki's approach leads, 
for the 0' models with values in a Lie group G, to a set of transformations that has the structure 
ofthe loop algebra g ® lR[t,t -I], where g is the Lie algebra of G. (This algebra has already been 
encountered by Dolan [Phys. Rev. Lett. 47, 1371 (1981)] and by Wu [Nucl. Phys. B 211, 160 
( 1983)] among others.) The 0' models with a Wess-Zumino term are also considered; the 
algebraic structure is found to be the same. Finally, Mikhailov's procedure is used to study the 
0' models with values in a Riemannian symmetric space (RSS) G / H which is not a Lie group. 
The algebra in these cases is a subalgebra of the loop algebra found for the principal models but 
it does not seem to be graded. However, it contains two graded infinite-dimensional 
subalgebras with the following structure: if f) and m are the two eigenspaces of the involution 0' 

defining the RSS G / H, these two graded subalgebras are f) ® R [t] and ( ED ;EN f) ® t 2;) 

ED (ED ieN m®t 2;+I). 

I. INTRODUCTION 

During the last years, physicists have recognized both 
the existence and the importance of many new infinite-di­
mensional Lie algebras in various physical systems. The con­
formal algebra in two dimensions has been shown to be con­
nected to the Virasoro algebra. Loop algebras and affine 
(Kac-Moody) algebras have arisen in many other contexts. 

The 0' models with values in different Riemannian sym­
metric spaces (RSS) are among the systems where many 
different infinite-dimensional Lie algebras manifest them­
selves. The space time symmetry is the conformal algebra; 
the current algebra closes in a loop algebra and there also 
exists an infinite-dimensional algebra acting on the solution 
space of the model. The present paper deals with the latter 
type of symmetry transformations. 

Dolan 1 was the first to investigate the latter algebra for 
the principal 0' model with values in SU(n). She was able, 
first, to give the explicit action of a set of generators and, 
second, to identify the structure of the algebra 9 spanned by 
these generators. [This action is nonlocal in the sense that it 
is defined in terms of integrals of the fieldg(S",ll )ESU (n) and 
its derivatives.] The structure of the algebra 9 is 
su (n) ® R [t], i.e., the algebra with elements of the form 
U ® 1"' with UESU (n), mEN and commutation relations: 
[U ® 1"', V ® t" ] = [U, V] ® t m + n. It is common to intro­
ducethe notation 9; ={U ® t;, UEsu(n)} to describe the nat-

a) Current address: Laboratoire de Physique Nucleaire, Universite de Mon­
treal, Case Postale 6128, succ. A, Montreal, Canada H3C 317. 

ural gradation: 9 = ED ieN 9; and [9; ,9j ] k 9; + j' Since then, 
many groups tried to extend this algebra to a larger one. Let 
us recall that, in an affine algebra, the center manifests itself 
only in commutation of elements belonging, respectively, to 
9; and 9-;. Since Dolan's algebra contains only elements 
with grading iEN, hopes were that this algebra could be a 
subalgebra of such an affine algebra whose elements with 
i < 0, iE'.l were still to be found. (The appeal of affine Lie 
algebras is due to the fact that both their structure and their 
representation theory are intimately related to those of fin­
ite-dimensional simple Lie algebras. ) 

Some time after, Wu2 enlarged the algebra to an 
(su(n) ® lR[t,t -I]) ED su(n) showing then that the structure 
was that of a loop algebra with 1: gradation (without the 
central extension). His work systematically uses generating 
functions as a tool to define the action of symmetry transfor­
mations and to compute their commutation rules. (These 
generating functions had been introduced earlier by several 
people.3

) We shall use them when needed and push their 
range of applications further. 

Parallel to these developments, Ueno and Nakamura4 

(see also Ref. 5) provided the link between Dolan's algebra 
and the so-called infinitesimal Riemann-Hilbert transfor­
mation. Moreover they expressed the action of the genera­
tors in a form very similar to a Riccati action.6

•
7 (In fact, they 

reported a larger algebra with structure su (n) ® R [t,t -I], 
the gradation being now in 1:. They observed however that 
their generators corresponding to i < 0, iE'.l act trivially on 
the solution space.) In this direction, the next major step was 
taken by Takasaki8 for the self-dual Yang-Mills (SDYM) 
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system. His contribution was to interpret the solution of the 
linear system associated with SDYM equations as the evolu­
tion of a point in an infinite-dimensional Grassmann mani­
fold. With this picture, he was able, first, to integrate formal­
ly the equations and, second, to give a finite group action 
corresponding to the infinitesimal transformations given by 
Dolan. Even though the analogy is not complete yet, Takasa­
ki's work offers the first clear setting ofthe SDYM system in 
a context similar to the one used by the Kyoto school9

•
10 to 

describe other nonlinear systems like the Kadomtsev-Pet­
viashvili equation and the Korteweg--de Vries equation. 

The present paper deals with various classical u models 
on two-dimensional Minkowski space. More precisely, the 
models to be considered are the principal u models (u mod­
els whose fields take their values in a Lie group), the u mod­
els with values in a Riemannian symmetric space [these in­
clude, for example, the well-known nonlinear 0(3) model 
whose field lives on the sphere S 2], and u models with a 
Wess-Zumino term (to be referred to as WZU models). The 
second section provides a definition of these models together 
with the description of their associated linear system. The 
goal of this paper is twofold: first, to set these different u 
models in the language of infinite-dimensional Grassman­
nian as Takasaki did for the SDYM system (Sec. III) and, 
second, to construct an infinite set of symmetry transforma­
tions for each of these models. This latter goal is achieved in 
several steps. In Sec. IV, the starting point is the infinite­
dimensional algebra acting naturally on the infinite-dimen­
sional Grassmannian. We show how this action on the solu­
tion space of the linear system leads to an (almost) uniquely 
defined action on the solution space of the SI(n,C) principal 
umodel. To characterize the subalgebras acting on the solu­
tion space of the other principal models, we take advantage 
of the reduction procedure introduced first by Mikhai10v. 11 

(See also Ref. 6.) For nonlinear systems, there exist discrete 
symmetries that allow us to define subsystems by imposing 
the solutions to be invariant under these symmetries. [A 
simple example is the discrete symmetry 
g(5,1]) -+g-lt(5,1]) of the SI(n,C) principal model. The 
fixed points of this symmetry are of course the solutions of 
the SU (n) principal model.] The central idea ofMikhai1ov's 
reduction procedure is to formulate the content of a con­
straint (invariance under a discrete symmetry) at the level 
of the linear system. In Sec. V, the u models with a Wess­
Zumino term are studied. The only difference with the case 
of principal models lies in the fact that, to identify the alge­
braic structure spanned by the symmetry transformations, 
one has to perform a change of basis. (The generating func­
tions a la Wu are in this context a very useful tool.) Again 
the reduction procedure is applied to obtain the subalgebras 
for the WZu models with values in G = SU (n), SO (n), and 
Sp(n). Section VI is devoted to the analysis of the symmetry 
transformations for u models with values in a RSS. Again, 
the construction of these infinitesimal transformations relies 
heavily upon Mikhai10v's reduction procedure. Finally, 
changes of basis lead to the identification oftwo remarkable 
subalgebras for each of the models considered. 
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II. THE MODELS 

A. The lagrangian formulation 
We start with a Lagrangian description of the models 

that we are to consider. Space-time is two-dimensional Min­
kowski space and will be described by the light-cone coordi­
nates 

5= (t + x)/2, 1]= (t - x)/2. (2.1) 

Let G be any of the simple Lie groups contained in Cartan's 
classical series. The fields of the u models are maps g from 
Minkowski space into G. 

The dynamics of the principal u model with values in G 
is specified by the following action: 

y = ~ J d 2
xtrap gaPg- 1. (2.2) 

The Euler-Lagrange equation leads to the equation of mo­
tion 

al1 (as-g)g-l) + as-(al1g )g-l) = o. 
Defining the right-invariant fields 

AR == (as-g)g-I, 

BR = (al1g)g-l, 

the field equation becomes 

a l1A R + as-BR = o. 

(2.3 ) 

(2.4a) 

(2.4b) 

(2.5) 

Moreover, the new fields satisfy the following identity: 

a l1A R - as-BR + [AR,BR ] = 0 (2.6) 

ensuring that there exists a g related to A Rand B R by rela­
tions (2.4). 

Note that Eq. (2.3) is conformally invariant. Let g (5,1] ) 
be a solution (2.3) and define 

h(5,1]) =g(a(5),/3( 1]») 

for any strictly monotonous analytic functions a and p. 
Then h (5,1]) is still a solution of (2.3). Parity (interchange 
of 5 and 1]) and time reversal [transformation of (5,1]) into 
( -1], - 5)] are discrete external symmetry transforma­
tions. Equation (2.3) is obviously invariant under both oper­
ations. Moreover, we have the additional symmetries 

g(5,1]) -+g(5,1]), 

g(5,1]) -+g-l (5,1]), 

g(5,1]) -+gT(5,1])· 

Indeed, for (2. 7b ) , 

a l1 (as-g- 1)g) + as-(al1g- 1)g) 

= -g-l{al1 (as-g)g-l) + as-(al1g)g-I)}g = 0 

(2.7a) 

(2.7b) 

(2.7c) 

and the same argument applies for (2.7c). We shall make 
extensive use of (2.Th) in the sequel. 

The nonprincipal u models can be obtained from the 
principal models by a reduction procedure that will be de­
scribed below. So, we will not dwell any further on their 
Lagrangian formulation. 

Let us consider the G-valued u model with a Wess-Zu­
mino term. The action is given byl2 
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y =-1-fd2xtra ga/Jg-I 
WZ 4A 2 /J 

+ _n_ r d3 ~jktr A_I ag A_I ag A_I ag 
241T JB y g ayi g ayj g ayk ' 

(2.8) 

where g is any extension of g to B, a solid ball whose bound­
ary is the two-sphere, A is the coupling constant, and n is an 
integer, so that the second term is well-defined mod 21T. 
[Strictly speaking, the second term has to be defined on Eu­
clidean space taken to be S 2. We shall use the field equations 
obtained from (2.8) on Euclidean space after setting them 
back on Minkowski space.] The Euler-Lagrange equation 
gives 

a/J (g-Ial'g) - (nA 2/4'/T)e''' al' (g-I a"g) = 0. (2.9) 

Setting K=nA 2/41T, (2.9) is equivalent to 

(1- K)a1/(asg)g-l) + (1 + K)as(a1/g)g-l) = 0. 
(2.10) 

With the definitions (2.4) of A Rand B R' this means 

(1-K)a1/A R + (1 +K)asBR =0. (2.11) 

Equation (2.10) is still conformally invariant, but it is no 
longer invariant under parity and time reversal. Similarly, 
among the symmetries (2.7), only (2.7a) survives. How­
ever, the model remains invariant under special combina­
tions of all the previous symmetries. The generators of the 
finite group of discrete symmetries (both internal and exter­
nal) are 

g(t,1]) -g(t,1]), 

g(t,1]) _g-l( 1],t), 

(2.12a) 

(2.12b) 

g(t,1]) _gT-l(t,1]), (2.12c) 

g(t,1]) .... g( -t,-1])· (2.12d) 

Again, the discrete symmetry (2.12b) [g(t,1]) .... h(t,1]) 
=g-I (1],t)] will playa central role in what follows. 

B. The reduction procedure 

As emphasized by Mikhailov, 11 some integrable models 
can be viewed as subsystems of more general integrable mod­
els. The key point is to impose reduction constraints on the 
general model. 

For example, in the case of q models, it is sufficient to 
start from the SI(n,C) principal model.6 Let qbe an involu­
tion automorphism of Sl(n,C), which can be taken among 
the following ones: 

ql (g) = IgI -l, q2(g) = IgI-t, 

q3(g) =IgT- 1I-t, q4(g) =Igt- 1I-t, 

where I may be chosen, up to conjugation, as 13 

Cp Ip,q = ° _°1), J2n = (_Oln In) 
° ' 

C -J Kp,q = 
-lq 

Ip 
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(2.13 ) 

Then it is always possible to impose that g be in one of the 
classical groups by a condition of the type 

q(g) =g. (2.14) 

Turning now to the nonprincipal q models, we consider 
models with values in a Riemannian symmetric space. (One 
of the reasons for this choice being the so-called dual symme­
try. 14) Let G be one of the classical groups and q an automor­
phism of G of the type (2.13). Let Hbe a subgroup of G such 
that 

(Gu)oc;;,Hc;;,Gu, 

where G u is the subgroup of fixed points of q and (G u ) 0 its 
identity component. Denote by 9 and l) the Lie algebras of G 
andH, respectively. Then we have the canonical decomposi­
tion 

g=l)ffim 

with the relations 

[l),l)] c;;,l), [l),m] c;;,m, [m,m] c;;,l). 

(2.15 ) 

(2.16) 

The RSS G I H can be embedded in its isometry group G 
through the Cartan immersion i: G I H .... G defined by 

i(gH) = q(g)g-l. (2.17) 

The points in the image i( G I H) have the property to be such 
that q(g)g = 1. Let ~o be the submanifold of 
~ = {gEG Iq(g)g = I} which contains the identity in G. 
Then every solution g(t,1]) of the G-principal model whose 
values for all (t,1]) lie on ~o gives rise to a solution of the 
GIHmodel by14 

q(t,1]) = i- log(t,1])· (2.18) 

Of course, the condition 

q(g) =g-1 (2.19) 

doesnotensurethatglieson~o. (See Ref. 15.) However, we 
are interested in defining a transformation law between solu­
tions and we are going to treat the infinitesimal form of that 
law. Starting with a solutiong in ~o, we build a new solution 
g' which is infinitesimally close to g. Since ~o has an empty 
intersection with the other submanifolds of~, it is enough to 
require thatg' is on~, i.e., (2.19). 

Thus, in the sequel, we shall restrict ourselves to the case 
G = SI(n,C) and impose reduction constraints of the type 
(2.14) or (2.19) to proceed to qmodels with values either in 
a compact Lie group (principal models) or in a RSS which is 
not a Lie group. The complete list of irreducible RSS's to be 
considered here (essentially all the irreducible RSS's whose 
isometry group is one of the classical simple Lie groups) is to 
be found in Table I of Ref. 6 together with the algebraic 
constraint(s) necessary to construct them from the Sl(n,C) 
principal model. 

C. The linear systems 

The models defined above possess the important proper­
ty of being integrable in the sense that they enjoy a Lax for­
mulation. In this section we specify the linear systems whose 
integrability conditions are the nonlinear equations under 
study. 
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Let A be a complex (spectral) parameter. We first con­
sider the Sl(n,C) principalumodel. LetR = R(s,1/;A.) bean 
Sl(n,C)-valued function satisfyingl6--18 

asR = (l +A)-IARR, 

aTfR = (l-A)-IBRR. 

(2.20a) 

(2.20b) 

The integrability condition in the sense of Frobenius of the 
linear system (2.20) has to be fulfilled identically in A and 
yields precisely (2.5) and (2.6). Taking into account the 
symmetry (2. 7b) we also consider the same system for g- 1: 

AL=(asg-1)g= -g-IARg, (2.21a) 

BL=(aTfg-1)g= -g-IBRg, (2.21b) 

asL = (1 + A) -IALL, (2.22a) 

aTfL = (1 -A)-IBLL, (2.22b) 

for some Sl(n,C)-valued function L = L(S,1/;A.). Note that 
the systems (2.20) and (2.22) do not uniquely fix the solu­
tions R and L, respectively. Starting with solutions Rand L, 
we can build new solutions R ' and L ' by 

R , (S,1/;A.) = R(s,1/;A.)CJ (A), 

L , (s,1/;A.) = L(s,1/;A.)C2 (A), 

for arbitrary functions C J (A) and C2 (A). In order to deter­
mine uniquely the solutions Rand L, we have to impose a 
normalization condition. Let (So,1/o) be an arbitrary fixed 
point in Minkowski space; we fix R (A) and L (A) by requir­
ing that 

R(So,1/o;A.) =L(so,1/o;A.) = 1 (2.23) 

hold identically in A. With this normalization, the solutions 
Rand L of (2.20) and (2.22) are unique. Moreover the 
condition (2.23) has important consequences. First of all, 
taking (2.20) and (2.22) for A going to infinity, together 
with (2.23), gives 

R (S,1/;A. = 00) = L(s,1/;A. = 00) = 1. (2.24) 

Second, evaluating (2.20) and (2.22) atA = 0 gives 

R(S,1/;A. = 0) =g(S,1/)DI> 

L(S,1/;A. = 0) = g-J(S,1/)D2, 

for some constantsDJ andD2, while (2.23) forcesDI =g(j 1 
and D2 = go, where 

go=g(So,1/o)' 

Thus 

R(s,1/;A. = 0) = g(S,1/)go- I, 

L(s,1/;A. = 0) =g-I(S,1/)go' 

Finally, consider 

Y(S,1/;A.) =g(S,1/ )L(S,1/;A.)· 

A direct calculation shows that 

as Y(S,1/;A.) = (1 + l/A)-JARY(S,1/;A.), 

aTf Y(S,1/;A.) = (1- l/A)-IBR y(s,1/;A.), 

(2.25) 

(2.26) 

(2.27) 

i.e., Y(S,1/;A.) = R(S,1/;l/A)C(A) while (2.23) yields 
C(A) = go and thus 

L(S,1/;A.) =g-I(S,1/)R(S,1/;l/A)go' (2.28) 

As a last comment for this case, note that the normalization 
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condition (2.23) uniquely determines Rand L once g is giv­
en. However, the converse statement does not hold. As Eqs. 
(2.26) and (2.27) clearly show, Rand L only determine an 
equivalence class of solutions g, modulo their value at 
(So,1/o)' We shall come back to this question later. 

Turning now to the SI(n,C) u model with a Wess-Zu­
mino term, the associated linear system is simplyl7 

asR = (l +A)-l(l-K)ARR, 

aTfR = (1-A)-l(1 +K)BRR. 

The symmetry (2.12b) now suggests defining 
=g-l (1/,S»): 

(2.29a) 

(2.29b) 

(h(s,1/) 

AL (S,1/)=(ash(S,1/))h -I(S,1/) = - (g-IBRg)lcTf.sl> 
(2.30a) 

BL (S,1/) = (aTfh (s,1/))h -1(S,1/) = - (g-IARg) ICTf,s)' 

(2.30b) 

We introduce the analog of (2.22): 

asL = (1 +A)-I(1-K)ALL, 

aTfL = (1-A)-l(1 +K)BLL. 

(2.3Ia) 

(2.31b) 

Again, to fix completely Rand L, we impose the condition 

(2.32) 

In order to find simple analogs of (2.26)-(2.28), we choose 
So = 1/0' The consequences of (2.32) are derived in the same 
way as above and we simply list them here: 

R(s,1/;A. = 00) = L(s,1/;A. = 00) = 1, (2.33) 

R(s,1/;A. = - K) =g(S,1/)go- I, (2.34) 

L(S,1/;A. = -K) =g-I(1/,S)go, (2.35) 

L(s,1/;A. ) 

= g-I(1/,s)R (1/,s; - (1 +AK)/(A + K»)go' (2.36) 

The last step of this section is to implement constraints 
of the types (2.14) and (2.19) on the fieldg into constraints 
on the solutions Rand L of the linear systems listed above. 
The subgroup reduction (2.14) for the u models with or 
without a Wess-Zumino term is obtained by the constraint6 

u(R(A») = R(~), (2.37) 

where~ = A forul oru3 and~ = l foru2 oru4 [see (2.13)]. 
Indeed, evaluating (2.37) and A = 0 or at A = - K (de­
pending on the model), we get 

g-IU(g) = go- lU(gO) 

implying that, if go is such that u(go) = go, u(g) = g holds 
for all (S,1/). The quotient reduction (2.19) is implemented 
by the constraint6 

u(R(A») = L(~). (2.38) 

Once more, evaluating (2.38) atA = 0 gives 
gu(g) = gou(go) 

ensuring that, ifgo lies on l:, so doesg for all values of (s,1/). 

III. FORMULATION OF a MODELS IN TAKASAKI'S 
APPROACH 

A. Preliminaries 

In the case of the self-dual Yang-Mills equations in four 
(complex) dimensions, Takasaki8 proposed to encode the 
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information contained in the associated linear system into an 
infinite-dimensional matrix, the latter defining affine coordi­
nates in an infinite-dimensional Grassmann manifold. Using 
the geometry of this manifold, he was able to linearize the 
equations and formally solve them. Moreover, this interpre­
tation allowed him to give a nice description of a group ac­
tion on the space of solutions of the self-dual equations. 

Our aim in this section is to transpose this interpretation 
to the models described in Sec. II. First of all, notice that the 
linear systems (2.20), (2.22), (2.29), and (2.31) all have 
the same structure, namely, 

asR = (1 +,.O-IA R, 

a",R = (1-;O-IBR, 

with the normalization condition 

R(so,1]o;A.) = 1 

implying 

R(s,1];A. = 00) = 1. 

( 3.1a) 

(3.1b) 

(3.2) 

(3.3 ) 

In the present section we consider the generic system (3.1) 
with conditions (3.2) and (3.3 ).It is understood that all the 
results to be derived equally apply to the four linear systems 
(2.20), (2.22), (2.29), and (2.31). We will come back to 
these four specific forms in the next sections. 

The inverse R - I of R satisfies 

asR -I = - (1 +,.O-IR -lA, 

a",R -I = _ (1-A)-IR -IB, 

with the conditions 

R -1(so,1]o;A.) = I, 

R -I (s,1];A. = 00) = 1. 

(3.4a) 

(3.4b) 

(3.5) 

(3.6) 

The conditions (3.3) and (3.6) allow us to perform an ex­
pansion of R and R - I in terms ofinverse powers of A around 
A = 00: 

00 

R(s,1];A.) = LA -jRj (s,1]), 
j=O 

00 

R -1(S,1];A.)= LA -jRj(s,1]), 
j=O 

Ro=R~ = 1, 

Rj (So,1]o) = Rj(So,1]o) =0, for 1~1. 

Inserting (3.7) into (3.1) and (3.4) gives 

asRj + asRJ+ I - ARj = 0, 

a",Rj - a",RJ+ I - BRj = 0, 

(3.7a) 

(3.7b) 

(3.7c) 

(3.7d) 

(3.8a) 

(3.8b) 

asRj+asRj+1 +RjA=O, (3.9a) 

a",Rj-a",Rj+1 +RjB=O, (3.9b) 

forj>O. The relations (3.8) forj = 0, together with (3.7c) 
give 

A =asR I, 

B= -a",R I • 

Substituting this back into (3.8) and (3.9) gives 

2467 

asRj + asRJ+ I - (asRI)Rj = 0, 

a",Rj -a",RJ+I + (a",RI)Rj =0, 
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(3. lOa) 

(3.lOb) 

(3.11a) 

(3.11b) 

asR j + asR j+ I + R j(asR I) = 0, 

a",R j - a",R j+ I - R j(a",R I ) = 0. 

(3.12a) 

(3.12b) 

B. Interpretation In terms of Grassmann manifold 

Equations (3.11) and (3.12) can no longer be solved 
recursively. In order to avoid this difficulty, Takasaki intro­
duced an infinite-dimensional matrix M whose (nXn) 
blocks M ij ( - 00 < i< 00, - 00 <It;;;. - 1) are defined by 

-I 

Mij= L Rr_kRk_j' (3.13) 
k= - 00 

where it is understood that Ri = R r = ° for it;;;. - 1. We 
refer the reader to Ref. 8 for the proof of the following prop­
erties: 

Mij =8ijl, for i,j<O, 

MOj = -R_j , for j<O, 

(3.14) 

(3.15) 

Mi+l,j =Mi.j _ 1 +Mi._IMoj , for ieZ, j<O. (3.16) 

The last equation shows that the positive rows of M are en­
tirely determined by the zeroth row, i.e., the infinite matrix 
M contains exactly the same information as the solution R of 
the linear system (3.1). Note that (3.16) maybe rewritten in 
matrix form. Let A be the infinite shift matrix whose (n X n) 
blocks Aij (i,jeZ) are 

Aij = 8i + I.jl (3.17) 

and Cbe theM-dependent matrix whose (nXn) blocks Cij 
(i,j < 0) are defined as 

Cij =8i + l •j l, for i< -1, j<O, 

Cij = M oj , for i= -1. 

With these notations, (3.16) is simply 

AM=MC. 

(3.18a) 

(3.18b) 

(3.16') 

We can now interpret M as defining affine coordinates for a 
point in an infinite-dimensional Grassmann manifold.9 (See 
also Ref. 19.) Let Vbe an infinite-dimensional vector space 
with a decomposition, 

V=V_EBV+, (3.19) 

where V_is the (formal) linear span of the basis vectors 
numbered from - 00 to - 1 and V + is the (formal) linear 
span of the basis vectors numbered from ° to + 00. Points 
[P] in the Grassmannian are equivalence classes of maps 
from V_to V, modulo changes of frame in V _. Homogen­
eous coordinates can be given in terms of infinite rectangular 

[P] = {[;:: ] 13K: V _ -> V_invertible 

such that [;:: ] = [~ ::]} . 
(3.20) 

The affine part of the Grassmannian is the subset of points 
such that P _ is invertible and we identify 

M=P +P = I. (3.21) 

Equation (3.16') then means that the point in the Grass­
mannian associated to M is invariant under the map de­
scribed by A, C representing the change of frame. Note that 
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under an arbitrary change of frame 

M'=MK, 

the matrix C transforms according to 

C'=K-ICK. 

C. The dynamics of M 

(3.22) 

(3.23 ) 

We are now ready to state the main result of this section, 
namely reformulate Eqs. (3.11) and (3.12) in terms ofthe 
matrixM. 

+ 00 - 1 

Equations (3.11) are equivalent to 

(1 +A)asM +MS=O, 

(I-A)a7JM+MT=O, 

where the matrices Sand T are defined by 

Sij= -~i,-I asMOj' for i,j<O, 

Tij =~i, _ I a7JMoj , for i,j < O. 

(3.24a) 

(3.24b) 

(3.25a) 

(3.25b) 

ProoF We give the prooffor (3.24a) only. First, (3.lla) 
implies (3.24a). Indeed, for iE'l,j <0: 

{(l+A)M}ij= L L (~ik+~i+l,k)as(RLnRn_j) by (3.13 ) 
k= -00 n=-oo 

-I 

= L {(asRr-n +asRr+l_n)Rn_j + (Rr_n +Rr+l_n)asRn_ j } 
n= - 00 

-I -I -2 

L Rr_n(asRI)Rn_ j + L Rr_nasRn_j+ L R r-n asRn+ I-j by (3.12a) 
n= - 00 n= - 00 n = - 00 

-I -2 

= - L R r-n (asRI)R n_ j + L Rr_n(asR1)Rn_ j +Rr+1 asR_ 1_ j by (3.lla) 
n= - 00 n = - 00 

=Rr+I{- (asR1)R_ 1_ j +asR_ 1_ j } 

= - R r+ 1 asR _j by 
-I -I 

L L Rr-nRn-k~k,_1 asMOj 
k=-oon=-oo 

-I 

L Mik~k, - I asMOj 
k= - 00 

= - (MS)ij' 

Conversely, (3.24a) implies (3.lla): forj<O, 

0= {(l + A)asM + MS}oj 

= asMOj + asMlj - M o, - 1 (asMoj ) 

= asMOj + asMo,j_1 + (asMo, -I )Moj by (3.16) 

which is (3.lla). • 
Note that, under a general change offrame (3.22), solu­

tions M of (3.24) are preserved provided Sand T transform 
according to 

S' =K-ISK -K- 1 asK -K-lcasK, 

T' =K-ITK -K- I a7JK +K- Ica7J K. 

(3.26a) 

(3.26b) 

Of course, under (3.22), M' no longer satisfies (3.14) which 
means that C', S', and T' are no longer related to M' by 
relations like (3.1S) and (3.25). However, assume that we 
have a solution M' of (3.24) of the form 

M'= [M:_>] 
M<+> 

with M < _ > invertible and satisfying the constraint 
AM' = M'C'foracertainC'.Inotherwords,thepoint [M'l 
in the infinite Grassmannian is a fixed point of the map A. 
DefineMby 

M=M'(M<_> )-1 

and C, S, and T correspondingly by using (3.23) and (3.26) 
with K = (M < _ > ) -I. Then one easily gets that, because M 
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(3.lla) 

I 
still satisfies (3.16') and (3.24), the new matrices C, S, and T 
are now defined in terms of Mby (3.IS) and (3.25). This 
remark will be most important for the next section. 

Note also that the normalization condition (3.2) or 
(3.7d), expressed in terms of the matrix M, is 

(3.27) 

Finally, we want to mention that we have not been able 
to solve the evolution problem from Cauchy data for (3.24), 
contrarily to what happens for the self-dual Yang-Mills case 
itself 8 or for the supersymmetric (N = 3 ) Yang-Mills equa­
tions in four dimensions. 19 

D. Group action on the space of solutions of (3.24) 

Assume we know a solution MI of (3.24) (with SI and 
TI ) satisfying the constraint (3.16') (with CI). We wantto 
generate a new solution M2 from MI' This will be achieved 
through multiplication of MI on the left by a matnx D with 
blocks Dij (i,jE'l). The product DMI has still to satisfy 
(3.16') and (3.24) and this forcesD to fulfill 

[A,D] = 0, 

[(l + A)as,D ] = [(1 - A)a7J ,D ] = o. 

(3.2Sa) 

(3.28b) 

The first equation (3.28a) means thatthe blocks D ij lying on 
the same diagonal of D (i.e., forj - i fixed) are equal. Hence 
(3.28b) means that the blocks Dij have to be constant in 
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(S,1/). This allows us to introduce an (nxn) matrix func­
tion of a formal parameter A which we also denote by D: 

(3.29) 
j= - 00 

where Dj is the common value of the blocks on the jth diag­
onalofD. 

The quantity DMI does not satisfy (3.14). We denote by 
(DMI) ( _) the upper block of DMI and assume it to be in­
vertible. Then M2 is defined by 

M2 = (DMI)(DMI)( _) -I. (3.30) 

This being a change of frame, M2 still satisfies (3.16') and 
(3.24) with matrices C2, S2' and T2 obtained from CI, SI' 
and TI by transformations of the type (3.23) and (3.26). 
Moreover, M2 fulfills (3.14) and C2, S2, and T2 are given in 
terms of M2 by relations (3.18) and (3.25), as argued atthe 
end of the previous subsection. 

Decomposing D into four infinite blocks according to 
(3.19), 

(3.31 ) 

M2 is explicitly given by 

M2 =Cd3 + d4MI( +) )(~I + d~l( +) )-} (3.32) 

Assume now MI satisfies the normalization condition 
(3.27), i.e., MI( +) (so,1/o) = O. Solution M2 will satisfy 
(3.27), too, provided that 

0= M2 ( +) (So,1/o) 

= (d3 + d4MI( +) (so,1/o»)(d l + d~1( +) (So,1/0»-1 

=d3d l-
l, 

i.e., d 3 = O. Due to the structure of D imposed by (3.28), this 
forces d l and d4 to be (block) upper triangular matrices and 
thus D has to be (block) upper triangular. ( We use block 
upper triangular to characterize a matrix whose blocks un­
der the main diagonal are zero.) This transforms (3.29) into 

+00 
D(A) = LA -jDj' (3.33) 

j=O 
Note that (3.30) provides us with an obvious group law un­
der multiplication of infinite matrices (when this product 
makes sense). However, this group law is expressed at the 
level of the infinite matrix M and it does not seem possible to 
give an explicit form of the group action on the finite matrix 
R (and thus at the level of the solutions of the nonlinear field 
equations under study). On the other hand, what is possible 
is to express for R the infinitesimal action corresponding to 
this group law, and this is what we are going to describe now. 

We assume that D is close to the identity, which means 

di = I + Eo for i = 1,4, 

di = Ei for i = 2, 

and all Ei infinitesimal. The lower block of M2 in (3.32) is 
then given by (at first order in the E's) 
(1 + E4)MI( +) (l + EI + E~I(+) )-1 

e;(MI(+) +E4MI(+»(I-EI-E~I(+» 

e;MI(+) +E4M I (+) -MI(+)EI-MI(+)E~I(+l' 
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which is a Riccati-type transformation law, already well 
known to play a crucial role in two-dimensional integrable 
models.6

•
7 Looking at the zeroth row of the previous expres­

sion, we can define an infinitesimal transformation law for 
the coefficients Rk of R (k> 0): 

- 6Rk = (E4MI( +) - MI( + )EI - MI( + )E~I( +) )O,-k 
+00 

= L (E4 )On (MI( +) )n, - k 
n=O 

-I 

L (MI(+»O.n(EI)n,_k 
n = - 00 

-I + 00 

L L (MI( +) )On (E2 )nm (MI( +) )m, - k 
n= -00 m=O 

+«> +00 +00 

= L Dn L R ~+jRk_j + L RnDn_k 
n=O j=1 n=1 

+00 +00 +00 

+ L L RnDn+m L R !+jRk_ j. 
n=lm=O j=1 

Assume now D(A) to be D(A) =A -iT, where t;;.O is fixed 
and Tis a generator ofsl(n,C). Then 

+00 
- 6 T(i)R k = Rk+iT + T L R r+jRk_j 

j=1 
i +00 

+ L L Rn TR r-n+jRk- j 
n= I j= I 

i k 

=Rk+iT+ L L RnTRr_n+jRk_j' 
n=Oj= I 

(3.34) 

In order to make expressions more compact, we introduce a 
formal parameter A' and a generating function 6T (A') de­
fined as 

+00 
6T (A')= L A,-i6T(i). (3.35) 

i=O 
The following result links the infinitesimal action (3.34) ob­
tained in the context of infinite Grassmann manifolds to 
Wu's generating function2

: In terms of the generating func­
tion, the transformation law (3.34) is given by 

{6T (A ')R(A)}R -I(A) 

= [A '/(A' - A) ]{R(A ')TR -I(A') 

- R(A)TR -I(A)}. (3.36) 
Proof: Introducing the notation 

m 

T m= LRi TR !-o 
i=O 

one has 

{6 T (A ')R(A)}R -I(A) 

[ 
A]-I+OO = 1--, L (A'-m_A -m)Tm 
A m=1 

= Y (-A -m) [1- (AlA ')m] Tm 
m=1 [I-AlA'] 

- Y A -m"'i 1(~)jTm 
m=1 j=O A 
+00 +00 

= - L L A '-iA -nTn+i. 
n= 1 ;=0 
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Then 
+00 +00 

-~T(A.')R(A.) = - L L A.·-iA. -(k+n)Tn+iRk 
i.k=O n= I 
+co+cok-I 

= - L L L A. -kA. '-iTk+i-nRn, 
k= I i=O n=O 

which gives 
k-I 

-~TU)Rk = L Tk+i-nRn 
n=O 
k-I k+i-n 

= L L Rm TR t+i-n-mRn 
n=O m=O 

i k 

= L L RmTRr+j_mRk_j 
m=Oj=1 

i+k 
+ L RmT~O,j+k-m 

m=i+l 

i k 

=Ri+kT+ L L RnTRr_n+jRk_j, 
n=Oj= I 

which is relation (3.34). • 
We are now going to apply relation (3.36) to the differ­

ent linear systems we introduced in Sec. II. 

IV. THE PRINCIPAL 0' MODELS 

A. The transformation laws for the SI(n,q model 

The aim of this subsection is to give the explicit transfor­
mation laws corresponding to (3.36) for the case of the 
Sl(n,C) principalo-model. Taking the symmetry (2.7b) into 
account, we apply (3.36) to the solutionsR(A.) andL(A.) of 
the linear systems (2.20) and (2.22) associatedtogandg-I, 
respectively. We thus get two different types of transform a­
tions ~ R and ~ L> defined by 
{~~ (A. ')R(A.)}R -I(A.) 

= [A. '/(A. ' - A.) ]{R(A. ') TR -I(A. ') 

-R(A.)TR -I(A.)}, 

{~r(A.')L(A.)}L -I(A.) 

= [A. '/(A. ' - A.) ]{L(A. ') TL -I(A. ') 

-L(A.)TL -I(A.)}, 

for TEsI(n,C). 

(4.1 ) 

(4.2) 

We now want to derive the action of ~R and ~L on the 
field g itself. Evaluating (4.1) and (4.2) at A. = 0 and using 
(2.26) and (2.27), we get 

{~~ (A.') (ggo-I)}(g~-I) 

= R(A. ')TR -I(A.') - (ggo-I)T(g~-I), 

6:;()") 6~()') 

g - g +~:; (A. ')g - (g +~:; (A. ')g) + ~i' (A.)(g +~:; (A. ')g) 

{~r (A. ') (g-lgO ) (go Ig) 

= L(A. ')TL -I(A.') - (g-lgo)T(go-lg ), 

which gives 

g-I~~ (A. ')g - g-IR(A. ')TR -I(A. ')g 

= go-I~~ (A. ')go - go-ITgo, 

(~r (A. ')g)g-I + gL(A. ') TL -I(A. ')g-I 

= (~r (A. ')gO)gO-1 + goTgo-
l . 

The rhs's of these equations being independent of (5,'/> , the 
lhs's have to be arbitrary functions of A. ' only. The problem is 
now to fix these functions. Clearly, relations (4.1) and (4.2) 
do not fix them. This is linked to a fact already underlined in 
Sec. II: the correspondance between g and R (A.) [or L (A. ) ] 
is not one-to-one. With normalization (2.23), R(A.) and 
L (A.) are uniquely fixed by g, but the converse is not true. 
Here R (A.) [resp. L (A.)] only fixes an equivalence class of 
solutions g, the equivalence relation being given by right 
(resp.left) multiplication of the solution by a constant ma­
trix, as (2.26) [resp. (2.27)] easily shows. We thus now 
have to choose a class representative in order to determine 
~~ (A. ')g and ~r (A. ')g. Note that the way we make this 
choice is irrelevant. Indeed, a different choice would corre­
spond to taking linear combinations of the ~jf) (resp. ~r» 
and ~iO) (resp. ~1°» and thus this would be a change of basis 
in the algebra spanned by them. We take the simplest choice, 
namely set the aforementioned arbitrary functions of A. ' 
equal to zero and get the transformation laws for g: 

~~ (A. ')g = R(A. ')TR -I(A. ')g, (4.3) 

~r (A. ')g = - gL(A. ') TL -I (A. '). (4.4) 

We ultimately want to compute the commutators between 
all these ~'s. As (4.3) and (4.4) show, we also need to know 
~RL and~LR in order to proceed further. Using (2.28) and 
(4.1 )-( 4.4), we immediately get 

{~r(A. ')R(A.)}R -I(A.) 

= [1!(A.A. ' - 1) ] {gL (A. ') TL -I (A. ')g-I 

- R(A.)goTgo IR -I(A.)}, 

{~~ (A. ')L(A.)}L -I(A.) 

= [1!(A.A.' -1)]{g-IR(A.')TR -1(A.')g 

B. The commutation rules 

(4.5) 

(4.6) 

We are now ready to compute the commutation rules 
between all the different~'s. For example, we treat explicitly 
the case oftwo~R 'so Using (4.3) and (4.1), we get for U, Vin 
sl(n,C), 

= g + R(A.') VR -I(A. ')g + {R(A.) + [A. '/(A.' - A.) ](R(A.') VR -I(A. ')R(A.) - R(A.) V)}U 

2470 

X {R -I(A.) - [A. '/(A. ' - A.)](R -I(A.)R(A. ') VR -I(A. ') - VR -I(A.) )}{g + R(A. ') VR -I (A. ')g} 

= g + R(A. ') VR -I(A. ')g + R(A.) UR -1(A.)g + R (A.) UR -I (A.)R(A. ') VR -I(A. ')g 

- [A.'/(A.'-A.»)[R(A.)UR -I(A.),R(A.')VR -1(A.')]g+ [A.'/(A.'-A.)]R(A.)[U,V]R -1(A.)g 
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up to second order in U, Vand thus 

[15~(A),I5~(A ')]g= [A '/(A' -A)1R(A)[U, V]R -1(A)g+ [AI(A -A ')]R(A ')[U,V]R -I(A ')g 

= [lI(A' -A)]{A 'l5kU, VI (A) -Al5ku,Vl(A ')}g. (4.7) 

Similary, using (4.4), (4.2) and (4.5), (4.6) we can derive 

[151' (A),I5[ (A ')]g = [lI(A ' - A)]{A 'I51.U,Vl(A) - AI51.u,VJ(A ')}g, (4.8) 

(4.9) [15~ (A),I5[ (A ')]g = [lI(AA ' - 1) ]{151 u,g.Vgo- ' ] (A) + 151g0
- 'Ug .. V] (A ')}g. 

Inserting expansion (3.35) in both sides of ( 4.7 )-( 4. 9) and collecting identical powers orA, A ' gives, after some manipulation, 

(4.10) 

(4.11 ) 

if i>i>l, 

if j>i>1. 

(4.12) 

Equations ( 4.1 0) and ( 4.11) indicate that the 15 R 's and 15 L 's separately span two loop algebras graded over N. The relationship 
between these two algebras is described by (4.12). The global structure generated by both sets of transformations is identified 
by performing the following two steps. First define 

81'(i)g=l5f IUg.(i)g. 

Then, relations (4.11) and (4.12) are transformed into 

[81'(i),8[(j)]g = 81.u,V)(i+j)g, 

Second, introduce generators {jU(I) for ieZ by 

{jU(i)=I5~(i), for i>l, 

{jU(O) =15~(0) + 81'(0), for i = 0, 

for it(. - 1. 

if i or j = 0, 

if i =ji=O, 

if i>j>l, 

if j>i> 1. 

(4.14 ) 

Note that there remains one independent combination, 
namely 

~U = £U(O) _ £U(O) 
U -UR UL' (4.15) 

The above commutation relations then become 

[{jU(i),jjV(j)]g = {jIU,v)(i+j)g, for i,jeZ, (4.16) 

[{jU(i),8 V]g = 0, for ieZ, (4.17) 

which shows that the algebra spanned by the symmetry 
transformations has the structure of the direct sum of a fin­
ite-dimensional Lie algebra with a loop algebra graded over 
Z: sl(n,C) !B (sl(n,C) ® qt,t -I]). 

C. The subgroup reductions 

The last step of this section is to consider the principal 0' 
models with values in a subgroup G ofSI (n,C). We thus start 
with a solution g satisfying the constraint (2.14) and the 
associated solution of the linear system R (A) subject to 
(2.37). In order that the new solution generated by the sym­
metry transformation also lies in G, we have to impose 
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O'(g + 15:;' (A )gj = g + 15:;' (1 )g, 

O'(g + 15"[ (A )gj = g + 15"[ (1 )g, 

(4.13) 

(4.11') 

(4.12') 

(4.18) 

the1 in the rhs being there so that the constraint be holomor­
phic in A. For example, we treat the R case. Let 0'. be the 
differential of the automorphism 0' at the identity in Sl (n, C) . 
Due to (2.14), (2.37), and (4.3), we have 

O'(g + 15:;' (A)gj = 0'(1 + 15:;' (A)g'g-ljO'(g) 

=g + 0'.(15:;' (A)g'g-IJg, 

where 

0'.(15:;' (A)g'g-Ij = 0'. (adR(A) n = ado(R(A»)O'. (n 
= adR(x) 0'. (n. 

Using (2.37), relation (4.18) is seen to be equivalent to the 
condition 

O'.(n = T, ( 4.19) 

which means that T lies in g, the Lie algebra of the group G. 
The main result of this section is then the following: For 

the principal 0' model with values in the Lie group G, with Lie 
algebra g, the generators of the symmetry transformations 
defined by (4.14) and (4.15) span an infinite-dimensional 
Lie algebra with structure 9 !B (g ® C [t,t - I ] ) or 
9 !B (g ® R [t,t - I ] ) according to whether 9 is a complex or a 
real algebra. [Strictly speaking, the only groups which are 
irreducible RSS are SU(n), SO(n), and Sp(n) and thus we 
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should only consider the second structure.] 
We would like to close this section by showing how the 

subgroup reduction can fit nicely in the setting of Sec. III. 
We shall give the example of the reduction from the 
SI(n,C)(7 model to the SU(n)(7 model. For this reduction, 
the constraint (2.37) on the solution of the linear system 
reads 

R t - I (X) = RCA.), 

which is simply 

R rt = Ri for i>O. 

(4.20) 

(4.21) 

This implies on the n X n blocks of the matrixM representing 
the point [P] in affine coordinates U>O,j <0): 

-I 

Mij = L RLjRi _ k 
k=j 

-I 

=8ijl- L R~j_k_IRi+k+1 
k= -i-I 

= - M _ j _ I. _ i-I' for i>O, j < O. ( 4.22) 

This constraint is equivalent to the following (infinite-di­
mensional) matrix equation: 

(4.23) 

whereMqsdefined by (4.22): (Mt)ij = (M -j-I.-i-I )t. 

This definition of the t consists of taking the usual matrix t of 
each n X n block and then transposing by blocks the result 
with respect to the diagonal blocks Mi,i _ I' i>O. In terms of 
the geometry of the infinite Grassmann manifold, the condi­
tion (4.23) is really eloquent. It means that the points 
[P] = (1) representing solutions of the SU (n) (7 models 
are totally isotropic planes with respect to the bilinear form 
defined in (4.23). [This is analogous to what happens in the 
construction of soliton solutions with the soliton correlation 
matrix6,20; in that context, the soliton correlation matrix (re­
lated to the dressing matrixl6) represents a point in a finite­
dimensional Grassmannian. The subgroup reduction im­
plies also that this point is a totally isotropic plane with 
respect to a given bilinear form.] 

Let Y be the group of infinite matrices D with blocks 
Dij' i,jEZ solving Eqs. (3.28). The group Yo preserving the 
constraint (4.20) through the action (3.30) is the subgroup 
of Y leaving the bilinear form (4.23) constant, i.e., such that 

DtD = looxoo' (4.24) 

[Again t should be understood as in (4.23).] At the infini­
tesimallevel, D = 1 + EfP (E < 1 ), this condition reads 

fPt + ~ = 0 (4.25) 

or, equivalently, 

~t_ _ + ~ + + = 0, 

fPt+ _ + ~ + _ = 0, 

~~ + +~ _ + =0, 

if we write ~ as 
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(4.26) 

[A - or + sign means that the index at that position be­
longs to ( - 00, - 1] or [0, + 00) c Z, respectively.] The 
above equations (4.26) mean that each block fP ij' i,jeZ 
should be an anti-Hermitian matrix 

~ ij = - fPij, (4.27) 

which is Eq. (4.19). Hence the geometric condition (4.23) is 
equivalent to the reduction equation (4.20). 

v. THE 0' MODELS WITH A WESS-ZUMINO TERM 

In this section, the (7 models with a Wess-Zumino term 
(WZu models) will be studied. Only the models with values 
inG = SU(n), SO(n), and Sp(n) will be considered. (These 
groups are the only irreducible RSS's that are Lie groups. 
See the remark in Sec. IV C.) To our knowledge, a Wess­
Zumino term for (7 models with values in a RSS which is not 
a Lie group has not yet been devised. (See, however, Ref. 
21.) The goal of this section is to define an infinite set of 
symmetry transformations for these models and to identify 
the algebraic structure they span. As by-products, another 
example of the reduction procedure will be presented and a 
useful tool will be introduced: the changes of basis preserv­
ing a gradation over N. 

A. The infinitesimal transformations (,R9 and (,L9 and 
the reduction problem 

As for the principal models, the starting point of the 
discussion is the infinitesimal variations 8~ (A ')R(A) and 
8[ (A ')L (A) of the solutions of the associated linear systems 

{8~(A ')R(A)}R -1(..1.) 

= [A '/(..1.' -A)]{R(A ')TR -1(..1.') 

- R(A)TR -I(A)}, 

{8[(A ')L(A)}L -1(..1.) 

= [A '/(..1.' - A) ]{L(A ')TL -1(..1.') 

-L(A)TL -I(A)}, 

(5.1) 

(5.2) 

together with Eqs. (2.34) and (2.35) which show how 
g(s,'T]) and g-I('T],S) are retrieved from R(A) and L(A), 
respectively: 

R(S,'T]; ..1.= - K) = g(s,'T])go-1, 

L(s,'T]; ..1.= -K) =g-I('T],S)go' 

Setting A = - K in (5.1) and (5.2), one gets 

g-l(s,'T]){8~ (A ')g(s,'T]) 

(2.34 ) 

(2.35) 

- [A '/(..1.' +K)]R(s,'T];..1. ')TR -1(S,'T];..1. ')g(s,'T])} 

=go-I{8~ (A ')go - [A '/(..1.' + K)] Tgo} (5.3) 

and 

{8[ (A ' )g( 'T],s) + [A ' / (A ' + K) ]g( 'T],s)L (s, 'T];..1. ') 

xTL -I (s,'T];..1. ')}g-I('T],S) 

= {8[ (A ')go + [A '/(..1. ' + K) ]goT}go- I. (5.4 ) 

As in Sec. IV, we note that the right-hand sides of (5.3) and 
(5.4) depend only onA ' and so should the left-hand sides. A 
similar argument leads then to the following generating 
functions for the infinitesimal transformations 8 Rand 8 L on 
g in the WZ(7 models 
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t5~ (A ')g(s,7]) 

= [A '/(A' + K) ]R(s,7];A ')TR -I (S,7];A ')g(S,7]), 
(5.5) 

t5f (A ')g( 7],5) 

= - [A '/(A' + K) ]g(7],s)L(s,7];A ')TL -I (S,7];A '). 
(5.6) 

These relations are the analog ofEqs. (4.3) and (4.4) for the 
principal models. Note that the (5,7]) dependency is 
explicitly written because L at (5,7]) is related to g-I at the 
parity-transformed point (7],5), 

The reduction constraints are all of the type group-sub­
group and are identical to those of the principal models 
(without the Wess-Zumino term). [The fact that the solu­
tions g(s,7]) and g-I (7],5) are obtained, respectively, from 
R (A) and L (A) evaluated at A = - K (instead of at A = 0) 

does not alter the algebraic constraint on R (A) or L (A) be­
cause KeR. For example, R t(':i) = R -I(A) is indeed the 
unitarity condition for the solution g(s,7]) of the WZu mod­
el. Setting A = - K, one gets gtg = g6go, i.e., g(s,7]) is uni­
tary at all (5,7]) ifit is at any point, for example, at (50,7]0)'] 
Hence the reduction conditions 

a(g + t5~ (A )g) = g + t5J; (~)g, 

a(g + t5f (A )g) = g + t5f (~)g, 
(5.7) 

lead to the same constraint on T as discussed in Sec. IV C, 

u. (T) = T, (5.8) 

where u. is the differential map associated to the automor­
phism u. Note, finally, that the realization of the reduction 
conditions as geometric constraints on the point [P] in the 
Grassmann manifold (presented in Sec. IV C) applies to the 
present case without any change. 

B. The commutation rules [t5::;(}..),t5r<}..')]9 

Even though the symmetry transformations for 
t5~ (A ')R (A) and t5f (A ')L (A) are identical to those of the 
principal u models, the infinitesimal t5f (A ')R (A) and 
t5J; (A ')L (A) are different. The reason for that is twofold: 
first, the induced transformations ong are different and, sec­
ond, the relationship between R (A) and L (A) is more com­
plex than in the case of the principal models. 

A calculation similar to the one performed in Sec. IV 
using Eqs. (5.1), (5.2), (5.5), (5.6), and (2.36) leads to the 
following infinitesimal transformations: 

{t5~ (A ')L(s,7];A)}L -I (s,7];A) 

A'(~-I) 

(A +K)(A' +K)(A' +K(A») 
X{g-I(7],s)R(7],S;A ')TR -I (7],S;A ')g(7],s) 

- L(s,7];A)go-ITgoL -1(S,7];A)}, (5.9) 

{t5I(A ')R(s,7];A)}R -I (S,7];A) 

A '(~ - 1) 

(A +K)(A' +K)(A' +K(A») 
X {g(s,7])L(7],S;A ')TL -I (7],s;A ')g-I(S,7]) 

- R (S,7];A )goTgo- I R -I (S,7];A)}, (5.10) 
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where 

(5.11 ) 

The set of relations (5.1), (5.5), and (5.9) can be trans­
formed in the set (5.2), (5.6), and (5.10) by the following 
identification: 

subindex R~subindex L, 

R (5, 7];A )~L (5, 7];A), 

g(s,7])~g-1 (7],5), 

go~go-I. 

(5.12) 

With these expressions, the commutator [t5J{ (A),t5j; (A ')]g 
can be obtained directly, 

[t5J{(A),t5r(A ')]g 
(~-l) 

(1 + (A +A ')K +AA') 

X { A' 151 u.govgo-'j (A) 
A'+K 

+ ~lg0-'Ugo.vj (A ')}g. 
A+K 

(5.13) 

Again the value of go appears explicitly in the right-hand side 
and can be taken care of as previously by a redefinition of 

t5[ --+8[ =.lfl'Tgo• The main problem here is the appearance 
of this complicated function of A and A ' in front of the curly 
brackets which makes the structure of the algebra spanned 
by 15 Rand 15 L unreadable. A change of basis will be necessary 
to shed light on the structure of this algebra. This is the 
subject to be discussed in the next paragraph. 

As a closing observation, it should be noted that, as 
K--+O, the commutator does not give back the commutator 
for the principal model but 

[c5J{ (A),c5r (A') ]gIK=O 

= [-l/(AA' + 1)]{t51u.goVgO-'j (A) 

+ c51g0-'U
go.Vj (A ')}g. (5.14) 

The discrepancy comes from the fact that, in the precedent 
case, L was the solution associated tog- l (s,7]) contrarily to 
the present case where L is the solution associated to 
g-I (7],5), (Recall that the WZU model is invariant neither 
under the parity transformation nor under the inversion op­
eration but only when both discrete symmetries are per­
formed simultaneously.) On the solution of the linear sys­
tem, the parity transformation reads 

(5.15 ) 

Hence the transformations 15 L for the principal models and 
those for the WZu models are related by changing the formal 
parameter A into -A. Changing A '--+ -A' in (5.14), one 
recovers (4.9). 

C. The changes of basiS preserving a gradation over N 

Let Ii = 9 ® R [t] be a Lie algebra graded over N with 9 a 
finite-dimensional semisimple algebra with dim 9 = d. As 
before, the elements of the ith graded subspace are denoted 
t5 U

(i) where Ueg. Hence 

(5.16) 
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If {e l ,e2, ... ,ed} is a basis of g, then {c5a(i) ==ea ® t i, a = l, ... ,d 
andiEN}isa basisofg = 9 ® R[t]. Leta be a change of basis 
acting only on the gradation index, i.e., preserving the d sub­
spaces ga: 

ga = Ell iENea ® t i, a = l, ... ,d. (5.17) 

The following lemma will be helpful in disentangling the 
algebra generated by the c5 Rand c5 L for the WZU model. 

Lemma: Let 8a
(i) be the elements defined by the follow­

ing generating function: 

8a(A) == LA - i8a(i) 

iEN 

=c5a(A-P>la)/(l-PIA), a,{3ER, a:f:O. 
(5.18 ) 

/),(a,fJ) A 

Then {c5a(i)} -+ {c5a(i)} are the only changes of basis shar-
ing the two following properties: (i) each element 8a

(i) (resp. 
c5a(i» is a finite linear combination of c5a(i) (resp. of 8a

(i», 

and (ii) the elements 8a
(i) verify the same graded commuta­

tion rules 
[8a(i) ,8b(j)] = 8[a,b I (i + j), 

where [a,b] is set for [ea ,eb ]. 

The proof is straightforward. First notice that for any 
change of basis a satisfying (ii) 8a

(0) = c5a(O). For if 
8a

(0) = ~f= oa~c5a(i) with N:f:O and a~ :f:0, then 
[8a(0),8b(0)] will contain a term (a~)2c5[a,b](2N) (different 
from zero for a certain choice of a and b since 9 is semisim­
pIe). This would violate (ii). The condition (ii) also implies 
that if 8a

(l) = ~ia:c5a(j) is given, the whole set {8a
(i)} is 

uniquely defined. Indeed the aJ are defined recursively on 
the index i by noting that 

[8a(i) ,8b(l)] = 8[a,b ](i + I), i> 1, 

and hence 
i+1 

Ai+1 "Ai AI 
I.l.j = ~ I.l.k I.l.i + I _ k' 

k=O 

(5.19) 

It is then sufficient to study 8a
(l). The condition (i) forces 

8a
(l) to be of the fOnD 

A N 
c5a(l) = L a:c5a(i), 

i=O 

for a given l<N < 00 such that a1:f:0. The elements 8a
(i) 

will then contain a nonvanishing contribution of c5a
(iN). The 

condition (i) also requires that c5aU) be a finite linear combi­
nation of the 8a( j). Suppose then that 

M A 

c5a(l) = L (a -I )Jc5a(j), 

j=O 

for a certain finite M. Since 8a
(M) is the only term in the sum 

to contain c5a(NM), condition (i) implies that both Nand M 
have to be 1. Hence 

8a
(l) = ac5a

(l) + Pc5a(O). (5.20) 

As observed before, the 8a(i), i>2 are then totally deter­
mined. They are found to be 

8a
(i) = ± (~)aiP i - jc5a

(j) • (5.21) 
j=O J 
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Hence the generating function 8a (A) is 

8a(A) = i: A -i ± (~)aiPi-jc5a(j) 
i=O j=O j 

00 A -jaic5a(j) 00 (n +j')' =" "pnA-n '. 
~ ., ~ , 

j=O J. n=O n. 
Since 

C(;IA») l-~/A = n~o (n;j)! (~r 
the generating function is 

A 00 A - jaic5a
(j) ( d )j 1 

c5
a
(A) = i~o j! d(PIA) I-PIA 

= c5a«A - p)la)/(l - PIA). 

The fact that a is indeed a change of basis-that is, invert­
ible-is obvious. One can convince oneself of the invertibi­
lity of a either by noticing that, in matrix notation, a is an 
upper triangular matrix with powers of a on the diagonal or 
by inverting the generating function 

(5.22) 

which also shows that the group of changes of basis of the 
form (5.18), 

(5.23) 

is isomorphic to the upper triangular subgroup of S1(2,R) 
imbedded as 

( lla -aP ), a(a,{3)+-+ 0 (5.24) 

This ends the proof of the lemma. • 
[Note that if condition (i) is relaxed, there are still more 

changes of basis possible. For these new a's, the elements of 
the new basis might be expressed in terms of finite linear 
combinations of the initial basis but for the inverse a -I, this 
property will not hold. ] 

The usefulness of this lemma is that we can change the 
commutation rule (5.13) without altering the gradation of 
the subalgebras generated by {c5~U)} and by {c5[(i)}, respec­
tively. Indeed, let us change the basis in the following way: 

8~ (A) = c5~(K + l)A - K)(l - KI(K + l)A )-1, 
(5.25a) 

8[ (A) = c5[(K - l)A - K)(l - KI(K -l)A )-1. 
(5.25b) 

According to the lemma, the following commutation rules 
remain the same: 

[8~(A),8~(A ')]g 

= [lI(A' -A)]{A '8kU,V1(A) -A8ku,Vl(A ')}g, 
(5.26) 

[8f(A),8[(A')]g 

= [lI(A' -A)]{A '8iu,VJ(A) - A8iU' v 1 (A '}}g. 
(5.27) 

However, the commutator [8~ (A),8[ (A ')]g is 
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[8J{ (,1),8[ (A ')]g 

(K + 1),1 (K - 1),1 

[(K-l»,1 -K] 

x [15J{(K + 1),1 - K),I5[(K - 1),1 - K)]g 

and, using (5.13), one gets directly 

= [11(,1,1 ' - 1)] 

x{81 U,goVgo-1j (A) + 8igO-lugo,Vj (A ')}g. (5.28 ) 

Hence the commutation rules (5.26 )-( 5.28) are the same as 
in the case of the principal models. From this point on, the 
discussion is identical to the one of Sec. IV. Hence the final 
result of this section is that the infinite-dimensional algebra 
of infinitesimal transformations for the WZu models with 
values in G = SU(n), SO(n), and Sp(n) is 
g Ell (g ® R[t,t -I]), where g = su(n), so(n), and sp(n), re­
spectively. 

VI. THE u MODELS WITH VALUES IN A RIEMANNIAN 
SYMMETRIC SPACE G/H 

This final section deals with symmetries for 0' models 
with values in Riemannian symmetric spaces G / H that are 
not Lie groups. Again, we shall restrict our study to the 
irreducible RSS's of the classical series. (See Table I of Ref. 
6.) 

To our knowledge, the problem of finding infinitesimal 
symmetries for these models has been addressed in two dif­
ferent ways. Uen05 considered the SO( 3) nonlinear 0' mod­
el, i.e., the 0' model with values in S 2. Modifying the linear 
system for the SU (2) principal model, he was able to find a 
genuine linear system for the reduced system-genuine in 
the sense that it is not an algebraically reduced linear system 
as we shall use. The problem with his contruction is that is 
does not seem to be generalizable for other RSS's. (It relies 
heavily on properties that hold only for 2 X 2 matrices.) 
Moreover, the solutions of the linear system are not uniquely 
determined (even though the linear system is supplemented 
with normalization conditions) and the correspondence 
between solutions of the linear system and of the nonlinear 
model is thus more complicated. It is not clear (to us) 
whether the algebraic structure carried by the infinitesimal 
transformations acting on the solution space of the linear 
system remains the same when "projected" on the solution 
space of the 0' model under consideration. 

The second approach has been proposed by Uhlen­
beck22 and the present authors. 23 In Ref. 22, Uhlenbeck uses 
the constraint g2 = 1 to characterize the solution space of 
the 0' models with values in complex Grassmannians as a 
subset of the solution space of the SU (n) principal model 
and proceeds to find the subalgebra leaving this constraint 
satisfied. In Ref. 23, we give an example of a similar con­
struction for the cpn - 1 0' models, making explicit the use of 
the Cartan immersion and hence paving the way towards 
models with values in other RSS's. 

The content of this approach can be outlined as follows. 
As it was shown before, the solution space of the model with 
values in G / H appears to be a subset of that of the principal 
model with values in G. The Cartan immersion provides an 
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algebraic constraint defining this subset. The substance of 
Mikhailov's reduction procedure is to translate this algebra­
ic constraint on the solution space of the linear system. Using 
the latter, the algebra ofinfinitesimal transformations for the 
model with values in G / H appears to be a subalgebra of the 
algebra found in Sec. IV for the G-valued principal model. 
As this section will show, this algebra is, however, no longer 
graded with respect to the original gradation. The commuta­
tion rules will be computed and two remarkable graded sub­
algebras identified. 

A. The generators satisfying Mlkhallov's reduction 
condition 

Any RSS is defined through an involutive automor­
phism 0' of the isometry group G. [The involution 0' is one of 
the four described in (2.13). See Sec. II B.] The (necessary) 
condition for afieldg(t,,,) to lie on the image l:oC G ofG /H 
by the Cartan immersion is 

O'(g) =g-I, for all (t,,,). (6.1) 

On the solutions of the linear systems, this equation reads 

O'(R(A») = L(,1), (6.2) 

where A = A if 0' does not involve a complex conjugation [0'1 
and 0'3 in Eq. (2.13)] andA = X if it does (0'2 and 0'4)' This is 
Mikhailov's reduction constraint. [See Eq. (5.8) of Ref. 6 
where reductions of the type (6.1) are denoted by 0' _.] Note 
that the reduction (6.2) relates R (A) and L (A) contrarily to 
the reductions encountered in Sec. IV which were of the type 
group-subgroup. 

The infinitesimal transformations I5g in the algebra for 
the G / H-valued 0' models have to preserve the algebraic con­
straint (6.1), i.e., they are such that 

O'(g + I5g) =g-I +l5g-I, (6.3) 

or, since 0' is an automorphism, 

0'(1 + (l5g)g-l) = I + (l5g- 1 )g, 

since the original solution is taken to solve the G / H-valued 
model. Using 0'., the differential of the involution 0' at the 
identity, the reduction condition for I5g finally reads 

0'. (l5g)g-l) = (l5g- l )g. (6.4) 

We shall now calculate the action of 0'. on the generators 
(I5~U)g)g-1 and (I5[U)g)g-1 of the algebra for the G-valued 
principal model, 

0'. «(15~ (,1)g)g-I) = O'.(R(,1)TR -1(,1»), 

0'. «(15[ (,1)g-I)g) = 0'. (L(,1) TL -1(,1»). 
(6.5) 

If the isometry group is a real group G, R (A) does not belong 
to G but to G c, the associated complexified group. All the 
objects in g or G can be understood to be in gC or G C by the 
inclusion map and the automorphisms 0'. and 0' can be ex­
tended in a trivial way. Hence 

0'. «(15~ (,1)g)g-I) = 0'. (adR(,t) T) 

= ado{R(,t»)O'. (T) 

= adL(~)O'. (T) 

= (15~·m(A)g-I)g. 
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A similar calculation leads to 

o'. ((8[ (A )g)g-l) = (8~.<n (l )g-l)g. 

Hence for solutions whose values are on l:o, the variations 
8R and8L are related by the involution 0' through Eqs. (6.6). 

The solution of (6.4) is simplified if we define on the 
algebra generated by {8~(i), 8[(i), Teg, ieN} the following 
automorphism which will also be denoted by o'. for obvious 
reasons: 

0' (8T(i») =8u.<n(i) 0' (8 T (i») =8u.<n(i) (6.7) 
• R -L , • L -R , 

where 8 Rand 8 L are to be understood as infinitesimal trans­
formations globally defined on the whole solution space. 
This automorphism is involutive, 

u;. (8~(i») = 8~(i) and u;. (8[<0) = 8[(i), 

thanks to the involutiveness of o'. : g -+ g. Hence, its eigenval­
ues are + 1 and - 1 and 

(8<n(i) + 8u.<n(i») (6.8) R _ L 

are the eigenvectors with eigenvalues ± 1, respectively. 
Equation (6.4) simply picks out the eigenvectors associated 
to + 1. Hence a basis for the algebra f preserving condition 
(6.1), i.e., acting on the solution space ofthe 0' model with 
values in G IB, is 

{aT(i)==8~(i) + 8~·<n(i), Teg, ieN}. (6.9) 

Since the 8~(i) and 8[<0 are, respectively, identified with sub­
spaces (+ i) and (- i), respectively, the subalgebra 
spanned by (6.9) does not inherit the gradation of the alge­
bra spanned by the 8~(i) and 8[(i) together. In the next sub­
section, we compute the commutation rules. 

B. The commutation rules [Au(J .. ),AV().')]g 

The generating functions turn out to be the most useful 
tool to obtain the commutation rules between the a T(i). Us­
ing the generating function aT (A), 

00 

aT(A) == L a T(i)A - i 

i=O 

(6.10) 

C. Two remarkable graded subalgebras of f 

In order to identify the structure of the algebra f 
spanned by the set (6.9), it is natural to look for a gradation 
on f. We have not been able to find such gradations over N or 
Z. (Gradations over Z2 are easy to find but not very informa­
tive.) However, we have found two remarkable infinite-di­
mensional graded subalgebras in f. In neither case is the gra­
dation extendable to the whole algebra f or, at least, not 
through a change of basis whose elements are finite linear 
combinations ofthe elements of the other. 
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the commutation rules are 

[au(A),av(A') ]g 

= [1I(A ' - A)]{A ' a[ U.V] (A) - Aa[U,V] (A ')}g 

+ [1I(AA' -1)]{81u,g"".<V)go-'](A) 

+ 81g0-'Ug",u.<V)] (A') 

+ 81gou.< U)go- ',V] (A ') + 81u.(U),go-'Vgo] (A) }g. 

Clearly, for goel:o, 

[0'. (U),gO-l Vgo] = o'. [U,goO'. (V)go-I], 

[goO'. (U)go-I,V] = o'. [go-IUgo,O'. (V)]. 

Now define the automorphism 

O'o(X) = goO'. (X)go- I, (6.11 ) 

which depends on the point in the solution space. Observe 
moreover that 0'0 is itself an involution: 

~ (X) = O'o(goO'. (X)go-I) 

= goO' • (goO'. (X)go- 1 )go- 1 

= goO'(go)u;. (X)O'(go- 1 )go- 1 

=X. 

The commutation rules can be finally rewritten as 

[au(A),av(A') ]g 

= [1I(A' -A)]{A 'a[U,V](A) _Aa[U,V](A ')}g 

+ [1I(AA ' - 1)]{a [U,uo< V) 1 (A) 

(6.12) 

Recall that, in Sec. IV, the 8[(i) had been redefined to absorb 
the explicit dependency of the commutation rules on go. This 
trick is not possible in the present context because the con­
straint (6.4) forces us to mix the generators 8R and 8L in 
precisely the linear combination (6.9). 

The commutation rules (6.12) can be spelled out by 
expanding around A = A ' = 00: 

(6.13) 

Let 90 and tt10 be the eigenspaces of 0'0 associated with 
+ 1 and - 1, respectively. The first graded subalgebra 

.? 1 C f is spanned by the generators {a U(i), Ue90' ieN}. For 
this case, the involution 0'0 can be simply dropped out ofthe 
generating functions in the commutation rules (6.12). Let 
us look for a change of basis defined by a generating function 

6U(A) =1(A)au(g(A))== fA -i6U(i), (6.14 ) 
;=0 

where I(A) and g(A) are expandable around A = 00 and 
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such that the subalgebra,jl will be graded over N, 

[~U(i),~v(j)] = ~[U,V](i+j), for U,Veljo, i,jeN. (6.15) 

Such commutation rules are summarized in the following 
relation [seeEq. (4.7)]: 

[~u(A),~v(A') ] 

= [V(A' -A)]{A '~[U'V](A) _A~[U,V](A ')}. (6.16) 

This relation leads to functional equations for f(A) and 
g(A). Indeed, 

[~u(A),~v(A') ] 

=./f' [a u(g),av(g')] 

./f' 
(g' - g)(gg' - 1) 

X {g(g,2 _l)a[U,V](g) -g'(i _l)a[U,V](g')} 

1 {f'g(g,2 _ 1)~[u,v](A) 
(g' - g)(gg' - 1) 

-g'/(i _I)~[U,V](A ')}, (6.17) 

where the following shorthand notation has been used: 
f=f(A), f'=f(A '), g=g(A), and g'=g(A '). Comparing 
(6.16) and (6.17), one gets 

1 f'g(g,2 - 1) 
--- = -......::........:::....:""------'--- fg'(i -I) 

A' -A A '(g' -g)(gg' - 1) A(g' - g)(gg' - 1) 
( 6.18) 

The most general solutions f(A) and g(A) depend on two 
constants a and /3 and read 

(6.19) 
g ± (A) = (aA + /3)/2 ± ~(aA + /3)2/4 - 1. 

Since the generating function ~u(A) is to be expanded 
around A = 00 [see Eq. (6.14)], this requires that the be­
havior of g(A) as A -+ 00 should be linear in A. However, 

(6.20) 

which forces the set of solutions (f _ (A),g _ (A») to be dis­
carded. Hence, the solutionsf(A) andg(A) are 

f(A) = aA /~(aA + /3)Z - 4, 

g(A) = (aA + /3) /2 + .jr7'"( aA-'--+-/3=)""-z /-:-:-4---=-1. 

The first ~U(i) are, for a = 1 and /3 = 0, 

~U(O) = a U(O), 

~U(1) = aU(1), 

~U(2) = a U(2) + a U(O), 

~U(3) = a U(3) + 3aU(1), 

~U(4) = a U(4) + 4a U(2) + 3a U(O), 

~U(~) = aU(S) + 5aU(3) + lOaU(1). 

(6.21) 

(6.22) 

The inverse of this change of basis can also be written in 
terms of a generating function 

aU(A) =F(A)~U(G(A») (6.23) 

again to be expanded around A = 00. The functions F(A) 
and G(A) are 
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F(A) = (A 2 - 1 )/(A 2 - /3A + 1), 

G(A) = (A 2 - /3A + l)/aA. 
(6.24) 

The generating functions (6.14) and (6.23) have a simple 
interpretation. Indeed replacing ~U(i) simply by Xi in (6.23) 
allows us to identify which polynomials have as coefficients 
those of the change of basis, 

co 

X(A,x) =F(A) L (G(A»)-iXi 
;=0 

X[1 ax ]-1 
A(VA 2-,8/A+I) 

1 - VA 2 
(6.25) 

Setting z= VA, a = 1, and /3 = 0, this is nothing but the 
generating function for the Chebyshev polynominals of the 
first kind Cn (x) (Ref. 24): 

co l-r L z"Cn(x) = r + 1, 
n=O I-xz+ 

for - 1 <x< 1 and Izl < 1. (6.26) 

[Only the zeroth polynomial Co(x) = 2 is different (by a 
factor 2) from the zeroth polynomials defined by (6.25).] 
The reason why the Chebyshev polynomials arise in this 
context is that their recurrence relations have precisely the 
structure of the commutation rules (6.13) restricted to ,j I' 
Indeed 

(6.27) 

Hence the coefficients in (6.22) are the coefficients in the 
expression of the powers Xi of x in terms of Chebyshev poly­
nomials Cn • (A similar graded subalgebra has been identi­
fied for the self-dual Yang-Mills system by Chau and WU.25 

However, its existence has been proved recursively and, 
hence, the relationship with the Chebyshev polynomials 
missed.) Attempts to find a change of basis for the elements 
of the form a U(i), Uelllo, consistent with the gradation 
(6.15) have failed. It does not seem possible to find a grada­
tion on f whose restriction to ,j 1 is (6.15). 

The second graded algebra ,j2 C f is spanned by {a U(i) , 
Ueljo, i even eN and a u(j), Uelllo, j odd eN}. It is also graded 
overN: 

[8U(i),8v(j)] = 8[U,V](i+j), (6.28) 

for i,jeN and U and Vin ljo or mo according to whether i andj 
are even or odd, respectively. Since the two subspaces go or 
mo of g alternate in the graded structure, it is harder here to 
take advantage of the compactness of the formalism of gen­
erating functions. However it is straightfoward to transform 
the results obtained above for ,j I' Indeed, let us first intro­
duce tilded Chebyshev polynomials Cn (x) by 

Cn(x) =i-nCn(ix). (6.29) 

Since the Cn (x) are of the same parity as the integer n, the 
Cn (x) 's have real coefficients. Their generating function is 

(1 +r)/(1-xz-r) + 1 (6.30) 

M. Jacques and Y. Saint-Aubin 2477 



                                                                                                                                    

and their recurrence formula is 

Ci (X)<:; (X) = Ci+j(X) + (-I)jCi_j(x), t~j, 
(6.31) 

which has exactly the form of the commutation rules (6.13) 
restricted to '?2: 

[.::l U(i) ,.::lv(j)] = .::l[U,V](i +j) 

+ (- 1)j .::l[U,vlU-j), i>I~1. (6.32) 

Again, the coefficients a5 in the change of basis 
i 

8U
(i) = L aJ.::lu(j) (6.33) 

j=O 

will be the coefficients in the expression of Xi in terms of the 
tilded polynomials Cj (x). As before, we did not succeed in 
defining a change of basis on a complementary subspace of .?2 

compatible with the gradation (6.28) on '?2' 

Let us recapitulate the results obtained in this section. 
A Lie algebra f of infinitesimal transformations for the a 
model with values in a RSS G / H has been constructed. Even 
though f does not seem to bear any N or Z gradation, two 
graded subalgebras .? 1 C f and .?2 C f have been identified. The 
first has structure .? 1 Z 1) ® R [ t] and the second is .?2 

Z ( ED ieN 1) ® t 2i) ED ( ED ieN m ® t 2i + I), where 1) and m are the 
eigenspaces of the involution a defining the Riemannian sym­
metric space G / H with eigenvalues + 1 and - I, respective­
ly. 

VII. CONCLUSION 

One of the hopes triggered by the introduction of infi­
nitely many symmetry transformations by Dolan was that 
they might give rise to an infinite set of conserved quantities 
through the Noether theorem and hence be used to solve 
both the classical and (ifthere is no anomaly) the quantum 
theories. A closer analysis shows, however, that this is not 
quite so. Davies, Houston, Leinaas, and Macfarlane26 ob­
served indeed that the Noether theorem cannot be naively 
used because the symmetries are nonlocal. Using a general­
ized Noether theorem, they concluded that the infinitesimal 
transformations of 91 (the subspace i = I in the gradation) 
are not canonical transformations. Setting these transforma­
tions of 91 in Hamiltonian formalism changes the structure 
ofthe loop algebra. We refer the reader to de Vega, Eichen­
herr, and Maillee7 for a discussion of the algebraic structure 
spanned by these transformations. 

These infinite-dimensional Lie algebras are more prom­
ising when viewed as in Takasaki's approach. There, they 
might lead to a better understanding of the structure of the 
solution space of nonlinear a models. There exist remarkable 
similarities between this formulation of the SDYM system 
and the a models (Sec. III) on the first hand and that of the 
Kadomtsev-Petviashvili and Korteweg-de Vries equations 
in the framework of the Kyoto school on the other hand. If 
these similarities are more than formal, the techniques devel­
oped by the Kyoto school could become available and new 
types of solutions for the a models be uncovered. But there 
are many unresolved problems. 

First, there is the problem of the formal integration of 
the a models. Takasaki8 had succeeded in giving all formal 
power series solutions of the SDYM equations. Hamad and 
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one of the authorsl9 have extended this result to the super­
symmetric (N = 3) Yang-Mills equations. However, for 
the a models, we have not been able to give such a construc­
tion. 

Second, there is no explicit form of the action for the 
group associated to these infinitesimal symmetries. Accord­
ing to the workofUeno and Nakamura4 (see also Ref. 8), it 
is natural to think that the action of an element in this group 
is equivalent to solving a (S, rJ) -dependent Riemann-Hilbert 
problem. But this is a notoriously difficult problem. To our 
knowledge, there is no example of solution of a (regular) 
Riemann-Hilbert problem for either the SDYM equations 
or for the a models. 

As a third and last point, we would like to underline the 
possibility of the existence of finite dimensional orbits under 
the action of this infinite-dimensional group. In the case of 
the Kadomtsev-Petviashvili equation, these finite-dimen­
sional orbits are known to exist and can be characterized, at 
least formally. It is fair to think that, for the SDYM equa­
tions and/or the a models on Euclidean space, such orbits 
exist. On these orbits, only the few first infinitesimal trans­
formations would be linearly independent. Further investi­
gations are necessary to clarify these questions. 
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Baker-Campbell-Hausdorff relations are obtained for the connected supergroup associated 
with the super-Poincare algebra iosp ( 114). 

I. INTRODUCTION 

The super-Poincare algebra in its simplest form is an 
extension of the Poincare algebra that includes four anti­
commuting generators, called supersymmetry generators, in 
addition to the four translation, three rotation, and three 
boost generators. This superalgebra has been the basis for 
much research in the past 15 years, especially in high-energy 
physics, where its representations are involved in the con­
struction of globally supersymmetric field theories, super­
gravities, and superstring theories. A description of many of 
these applications may be found in Ref. 1. 

Although the basic properties of superalgebras are well 
established, the mathematically rigorous definition of super­
groups as abstract groups and as superanalytic supermani­
folds2 is relatively recent? Since the original papers of Rog­
ers, much progress has been made in elucidating the 
properties of these supermanifolds4

,5 and supergroups,6,7 
Explicit results for practical calculations exist, however, 
only for a few of the simpler supergroups. Thus, for example, 
the supergroup based on the super-Poincare algebra with 
four anticommuting generators, called the super-Poincare 
group, was first presented within Rogers' formalism in Ref. 
3. In this formulation, the supergroup has not been studied 
extensively, although there are applications to physics mak­
ing use of Rogers' formalism. 8 

The importance of Roger's supermanifolds stems from 
their generality, in that they incorporate various earlier su­
permanifold theories.9 Working with Rogers' supergroups is 
advantageous because group elements may be assigned co­
ordinates in ways similar to Lie groups. In Refs. 6 and 7, we 
have defined and explored three canonical coordinate 
schemes and related them to matrix supergroups. Although 
matrix techniques for the super-Poincare group have also 
been used, 10 these typically do not take into account Rogers' 
supermanifold structure. 

In Ref. 7, we examined Baker-Campbell-Hausdorff 
(BCH) relations for simple supergroups. 7,11.12 These formu­
las link different coordinate schemes for a given Lie group or 
supergroup. In applications of Lie groups, as, for example, in 
the theory of coherent states, it is often convenient, for phys­
ical reasons, to define the group action in one coordinate 
scheme but to carry out the group action in a different sys­
tem that is more accessible computationally. Significant ap­
plications of BCH relations to supergroups remain to be 
made in the study of supercoherent states. 

In this paper, we present BCH relations for the super-

Poincare group. The basic forms of the relations are derived 
as solutions of a set of differential equations obtained by an 
appropriate method.7,13 The method was applied previous­
ly7 to two other supergroups, CSQM(2) and CIOSP( 112); 
however, the super-Poincare group has significantly more 
generators (14) than either of these cases (3 and 5, respec­
tively). Thus, in addition to their intrinsic interest and prac­
tical application, the calculations presented here provide 
further evidence of the viability of the differential equation 
approach 13 to BCH relations, The differential equation tech­
nique lends itself quite naturally to treating infinite-dimen­
sional unitary representations of noncom pact supergroups, 
In principle, finite-dimensional matrix methods could en­
counter difficulties in correctly defining BCH formulas for 
such cases. 

In Sec. II, we present our notation and conventions both 
for the super-Poincare algebra and for the various canonical 
and noncanonical forms of the supergroup elements that we 
use. The BCH relations for canonical coordinates in normal 
sequence are obtained in Sec. III, which also contains a de­
scription of the various techniques involved in their deriva­
tion. In Sec, IV, we extend these results to BCH relations for 
canonical coordinates in non-normal sequence. The results 
are further extended to noncanonical coordinates in Sec, V. 

Note that our conventions are those of Refs. 6 and 7, 
which were based on those of Rogers,2,3 We remark, in par­
ticular, that we do not use the summation convention. Also, 
we do not repeat here basic results for supergroups devel­
oped elsewhere. To follow the calculations in detail, the 
reader will need some familiarity with Ref, 7. However, the 
BCH relations presented should be readily accessible for 
practical use. 

II. THE SUPER-POINCARE ALGEBRA AND THE SUPER­
POINCARE GROUP 

A. The super-Poincare algebra 

The super-Poincare algebra with four supersymmetry 
generators may be derived from the simple superalgebra 
osp( 114) by an Inonii-Wigner contraction14 that leaves the 
usual Poincare algebra as a subalgebra, The procedure is 
analogous to that presented in Ref. 7 for obtaining iosp ( 112) 
from osp( 112). There exist also other inhomogeneous super­
algebras, generically referred to as N-extended super-Poin­
care algebras, that may be obtained by contraction from the 
simple superalgebra osp(N 14). In the remainder of this pa-
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per, "super-Poincare algebra" is taken to mean exclusively 
the case N = 1. 

In our notation, the nonvanishing graded commutation 
relations of the super-Poincare algebra are 

{QI,Q3} = PI' {Q2,Q3} = P3, (2.1) 

[JI,Q21 = - QI' [J2,Qd =!QI' 
(2.2) 

[J2,Q21 = - !Q2' [J3,Qd = Q2; 

[J4,Q41 = Q3' [J5,Q31 = - !Q3' 
(2.3) 

[J5,Q41 = !Q4' [J6,Q3] = - Q4; 

[JI,P3] = - PI' [JI,P4] = - P2, 

[J2,PI] = !PI, [J2,P3] = - !P3, 
(2.4) 

[J2,P21 = W2' [J2,P4] = - W4' 

[P3,Pl l = P3, [P3,P2] = P4; 

[J4,P2] = PI' [J4,P41 = P3, 

[J5,PI] = -Wi' [J5,P2] = W2' 
(2.5) 

[J5,P31 = - !P3, [J5,P41 = !P4, 

[J6,Pd = - P2, [J6,P31 = - P4; 

[JI,J2] = -Ji' [J4,J5] = J4, 

[JI,J3] = - 2J2, [J4,J61 = 2J5 , (2.6) 

[J2,J3] = -J3, [J5,J6 ] = J6 • 

The Qm' m = 1, ... ,4, generate supersymmetry transfor-
mations, the PI' I = 1, ... ,4, generate translations, and theJn , 

n = 1, ... ,6, generate rotations and boosts. These generators 
satisfy the following adjoint relations l: 

Qr = -Q3' Qi = -Q4' Q1 = -QI' Q1 = -Q2' 

pr =PI, pi =P3, Pl =P2, pl =P4, 

Jr =J4, n =J5, n =J6, 

Jl =JI, JI =J2, n =J3, 

(2.7) 

which are essential for computing unitary supergroup opera­
tors. 

Several different conventions and notations for the su­
per-Poincare algebra exist in the literature. In Eqs. (2.1)­
(2.7), we have adopted the conventions of Ref. 1, Chap. 3. To 
make formulas and calculations less cumbersome, however, 
our notation is different. The notation of Ref. 1 may be recov­
ered by effectuating the following replacements: 

QI++Q+, PI++P + .:r, JI++J++, J4++J.:r .:r, 
Q2++Q-, P2++P + ~, J2++J+_, J5++J ~ ~, 

(2.8) 
Q3++Q.:r , P3++P - .:r, J3++J __ , J6++J ~ ~, 

Q4++Q ~, P4++P - ~ 

The conventions of Ref. 1 are especially convenient for 
calculational purposes. Note, however, that the operators PI 
andJn are not the usual momentum and angular-momentum 
physical observables. The PI are light-cone-type variables 
defined I as linear combinations of the standard four-mo­
menta. Furthermore, as is usual practice, the Hermitian gen­
erators of the Lorentz algebra so(3,1) have been linearly 
combined to form the I n • We remark that any BCH relation 
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presented in this paper may readily be converted to an 
expression in terms of the standard four-momenta, using 
Lemma 2 of Ref. 7. This is possible because the PI form an 
Abelian subalgebra of iosp ( 114) . 

B. The super-Poincare group 

Associated with the super-Poincare algebra is a con­
nected supergroup whose elements may be obtained (see 
Theorem 2 of Ref. 6) by exponentiation of the superalgebra 
generators with Grassmann-valued variables. We refer to 
this supergroup as the super-Poincare group. 

The precise form of the supergroup elements depends 
upon the parametrization scheme adopted for the exponen­
tiation. For supergroups, there exist three kinds of canonical 
coordinates.6•

7 For elements g of the super-Poincare group, 
canonical coordinates of the first kind take the form 

(2.9) 

where thei andr are variables taking values in the even part 
°BL of a Grassmann algebra BL over CL, and where the qm 
are variables taking values in the odd part IBL • For a com­
plete description of this construction and the discussion that 
follows for the case of a general supergroup, the reader 
should consult Refs. 6 and 7. Note that a Hermitian basis for 
the Grassmann algebra is established in Kostelecky and Ra­
bin.s 

Canonical coordinates of the second kind for a super­
group are constructed6 in terms of exponentials of the indi­
vidual basis elements of the Lie algebra that is associated 
with the superalgebra in question. However, because each 
Qm anticommutes with itself, it turns out that these canoni­
cal coordinates are identical to the canonical coordinates of 
the third kind (corollary to Theorem 1 of Ref. 7). Therefore, 
in this paper we proceed directly to consideration of canoni­
cal coordinates of the third kind, which for elements g of the 
super-Poincare group take the form 

4 4 6 

gIll = IIexp(alpl ) IIexp(,8mQm) II exp(Y'Jn )· 

1=1 m=1 n=1 

(2.10) 

Here, ai, Y'Eo B L and,8 mEIB L' Note that the order of appear­
ance of the 14 exponentials in Eq. (2.10) is important; by 
definition, we say that this sequence is "normal."7 Other 
non-normal sequences are possible and, indeed, will appear 
in the subsequent sections. 

In addition to the canonical coordinate schemes, var­
ious noncanonical parametrizations may also be defined. In 
Sec. Y, we shall consider extensions of the BCH relations to 
certain noncanonical coordinate schemes. For elements g of 
the super-Poincare group, these noncanonical coordinates 
take the form 

gNC = expctl alPI ) exp ct 1 b mQm ) exp Ctl cnJn ). 

(2.11 ) 

where al,cnEoBL and bmEIBL. Again, this is defined as the 
normal sequence; several non-normal sequences may also be 
introduced. 
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To obtain unitary supergroup operators in terms of ca­
nonical coordinates of the first kind, Eq. (2.9), we require 
the condition 

Kt = KI- I. (2.12 ) 

Computing the adjoint and the inverse of (2.9) and using the 
properties (2.7) of the generators, we obtain the conditions 
on the Grassmann parameters, 

tI = - (ql)*, q4 = _ (q2)*, 

pI = _ (pl)*, p3 = _ (p2)*, p4 = _ (p4)*, (2.13) 

l' = - (/)*, ! = - (/)*, /' = - (/)*. 

Note that pI and p4 are pure imaginary as a consequence of 
the fact that PI and P4 are self-adjoint. 

Thus requiring that the parameters pi, qm, jn of Eq. 
(2.9) satisfy Eq. (2.13) ensures that the supergroup ele­
ments are unitary. In the remainder of the paper, the con­
straints (2.13) are not assumed. However, they may be im­
posed if desired. 

III. BCH RELATIONS FOR CANONICAL COORDINATES 
IN NORMAL SEQUENCE 

Here, we construct explicitly the BCH relations 
between canonical coordinates of the first and third kinds 
using the differential equation method expounded in Ref. 7. 
Only canonical coordinates of the third kind in normal se­
quence are considered in this section. 

Applying the general method of Ref. 7, we introduce a 
real parameter t and write 

exp[tCtl iPI + mtl qmQm + nt/~Jn)] 
4 4 

= II exp(al'pl,) II exp(/3 m'Qm') 
1'=1 m =1 

6 

X II exp(1""Jn,), (3.1) n'-I 
where a l',/3m', 1"" are taken as unknown functions ofi, qm, 
j", and t: 

ai' = al'(i,qm,j",t)eoBL, 

/3m' = am' (p1,qm,j",t)eIBL, 

1"" = 1""(i,qm,j",t)eoBL, 

pl,j"eoBL' qmeIBL' teR. 

(3.2) 

For t = 1, Eq. (3.1) and knowledge of the functions in Eq. 
(3.2) together form the desired BCH relation. 

We can obtain the explicit form ofEqs. (3.2) by solving 
a set of 14 coupled linear first-order differential equations in 
the real parameter t. These equations are obtained by differ­
entiating Eq. (3.1), simplifying, and equating coefficients of 
the superalgebra generators. The appropriate boundary con­
ditions7 are al(O) = /3 m(o) = 1"'(0) = O. The details ofthe 
process for obtaining the differential equations have been 
discussed in Ref. 7; the present case is a straightforward ap­
plication of those techniques. 

The methods yield the following 14 differential equa­
tions, where a dot above a symbol means differentiation with 
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respect to t: 

jfier' =/', 
1? + 2'1jfier' = p, 
~ + '11? + ('I) 2jfier' =1', 
-?e-r' =/, 
r - 2y l-?e-r' =/, 
yl - ylr + (yl)2-?e-r' =/, 
iJ4 _ !/3 41? + jfier'(/3 3 _ '1/3 4) = q4, 

iJ3 + 1?(!/33 - '1/3 4) 

+ jfier''1(/3 3 _ '1/3 4) _ /34~ = q3, 

iJ2 + !r/3 2 - -?e- r'(yl/32 + /3 1
) = q2, 

iJ 1+ yl/32 - r(yl/32 + !/31) 

+ -?e - r' yl (/31 + yl/32) = ql, 

a4 - /3 2iJ 4 + !ra4 

- -?e- r'(a2 + yIa4) + !1?(/32/34 _ a4) 

+ jfier'[a3 _ /32/33 + '1(/32/34 _ a4)] = p4, 

a3 - /32iJ3 + !ra3 

- -?e - r' (a l + y Ia 3) + ~(/32/34 _ a4) +!1? 

X [a3 - /3 2/3 3 + 2'1(/32/34 - a 4)] + jfier''1 

X [a3 - /32/33 + '1(/32/34 _ a4)] = p3, 

a2 - /3 liJ4 + a4yl 

- r(!a2 + y la4) + -?yle-r'(a2 + yla4) 

+ !1?(/31/34 - a 2) + jfier' 

X [a l - /31/33 + '1(/31/34 _ a 2)] = p2, 

al - /3liJ3 + a 3yl - r(!a l + y Ia 3) 

(3.3 ) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

+ -?yle- r'(a l + yla 3) + ~(/31/34 - a 2) +! 1? 

X [a l - /31/33 + 2'1(/31/34 - a 2)] + jfier''1 

(3.16) 

The remainder of this section is concerned with solving these 
equations. 

In fact, each ofthe ordered sets of Eqs. {( 3.3) - ( 3.5) }, 
{(3.6)-(3.8)}, {(3.9)-(3.1O)}, and {(3.11)-(3.12)} is 
self-coupled and can be solved using only the solutions to the 
sets occurring earlier in the ordered sequence, as we show 
below. This occurs because the I n form a direct-product Lie 
subalgebra, because the Qm commute with the PI' and be­
cause QI,Q3 anticommute with Q2,Q4' respectively. 

The differential equations thus admit a natural sequence 
for solution. We outline first the solution of Eqs. (3.3)­
(3.5). Substitution of (3.3) and (3.4) into (3.5) yields a 
Riccati equation IS for 'I: 

( 3.17) 

The solution may be shown by standard methods 13 to be 

'I = l sinh(K2t)/[K2 cosh(K2t) + !! sinh(K2t)], 

(3.18) 
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where 

..:l~ = 1!(/)2 -/l'l, 
0"2 = sgnU</)2 -/t], 0-2 = + JU;, (3.19) 

K2 = 0-2..:l2' 

and where we used the initial condition y4 (0) = O. Then, the 
solutions for rand f' can be obtained by straightforward 
integration of Eq. (3.4) followed by (3.3), again using the 
initial conditions: 

r = 21n[ cosh (K2t) + ~/K 2- 1 sinh (K2t) ], (3.20) 

f' = l sinh(K2t)/[K2 cosh(K2t) + ~/sinh(K2t)]. 
(3.21 ) 

By inspection, the corresponding solutions yl, r, r to 
Eqs. (3.6)-(3.8) are obtained by substituting l'++j3, 
/++-/,/++i, f'++r, r++-r, y4++yl. Explicitly, this 
yields 

yl =i sinh(Klt)/[KI cosh(Klt) -!/ sinh (KIt) ], (3.22) 

r = - 21n[ cosh (KIt) - !/K I-I sinh (KIt) ], (3.23) 

r = l sinh(Klt)/[KI cosh(Klt) -!/ sinh(Klt)], (3.24) 

where 

..:li = 1!(/)2 -ill 
0"1 = sgn[l(/)2 -ilL 0-1 = +.,fU;, (3.25 ) 

KI = (TI..:lI· 

The results (3.18) and (3.20)-(3.24) are the same as 
those yielded for a BeH relation of the direct-product Lie 
algebra su ( 1,1) ® su ( 1,1) (see, for example, Ref. 13). This 
occurs because the J m generate this Lie subalgebra of the 
super-Poincare algebra. 

Next, we tum to the solution ofEqs. (3.9) and (3.10). 
By substitution for~, y, Y' from Eqs. (3.3)-(3.5), we ob­
tain 

(3.26) 

iJ3 + !/P 3 _/P 4 = q3. (3.27) 

Solving Eq. (3.26) for P 3 and using the result together with 
its t derivative in Eq. (3.27) yields a second-order equation 
for /34. The solution is straightforward, as is the subsequent 
solution of (3.26). Fixing the four integration constants by 
using the initial conditions and by requiring consistency of 
the solutions with Eqs. (3.26) and (3.27), we find 

p 4 = q4K 2- I sinh(K2t) 

+K 2-2(!/q4 -l't)(cosh(K2t) -1), (3.28) 
p 3 = q3K 2- I sinh(K2t) 

- K 2- 2(!/q3 -/q4)(cosh(K2t) - 1). (3.29) 

In a similar manner, Eqs. (3.11) and (3.12) may be 

( He'" 
l./,e<,t i/e<3t 

i¢i+ e<,t _ i(Js_ e<,t _ i(Js_ e<3t 

\fI(t) = _/(J2_ e<,t /(J2+ e<,t _/(J2_ e<3t 

_ (J2_ (Js+ e<,t _ (J2+ (Js_ e<,t (J2_ (Js_ e<3t 
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reexpressed as 

iJ2 + !/P2 -lp i = q2, 

iJ 1_ !/Pl + iP2 = ql. 

(3.30) 

(3.31) 

Making the substitutions l++l, /++ -/, /++i, p4++/P, 
p3++ _ P l,q4++q2,q3++ _ qlenablesustowritethesolutions 
by inspection: 

p2 = q2K 1- I sinh(Klt) 

- K 1- 2(!/q2 -lql)(cosh(Klt) - 1), (3.32) 

pi = qlK 1- I sinh(Klt) 

+ K 1- 2q/ql - iq2)(cosh(Klt) - 1). (3.33) 

Weare left with the four coupled differential Eqs. 
(3.13)-(3.16) for ai, a2, a3

, a4
• As for the other variables, 

these equations may be simplified by substitution of Eqs. 
(3.3)-(3.12) for y" and iJ m. Introducing the four-compo­
nent column vector 

(3.34) 

these four equations may be written in abbreviated form as 

a= Pa + r(t) . 
Here, P is the constant 4 X 4 matrix 

(

F / 
_ -l r 

P- l 0 

o l 
where 

.± _ l( ·2 + :5) j - 2 j _J , 

'1 -j 

o 
.+ 

-j 

-l 

(3.35 ) 

(3.36) 

(3.37) 

and where r(t) is the four-component vector given by 

rl =p Iq3 + pi, r =p Iq4 + p2, 

r = p2q3 + p3, r4 = p2q4 + p4. 

Equation (3.35) has as general solutionl6 

a = \fI(t)c + \fI(t) f \fI-I(s)r(s)ds. 

(3.38) 

(3.39) 

The constant vector c is to be determined by the initial condi­
tions. Also, \fI (t) is a fundamental 4 X 4 matrix solution, 16 
i.e., \fI (t) is a 4 X 4 matrix whose columns are four linearly 
independent solutions to the homogeneous equations 
a = Pa. Since \fI (0) #0, as we argue below, the initial condi­
tion a(O) = 0 implies c = O. 

A fundamental matrix solution to the homogeneous 
equation a = Pa may be constructed by applying the trial 
solution a = Ae<' and diagonalizing the resulting matrix of 
coefficients for A. The method is described in detail in Ref. 
16. We obtain 

iN" ) i(Js+ e<.t 

/(J2+ e<.t , 

(J2+ (Js+ e<.t 

(3.40) 
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where 

AI = -A2 =KI +K2' A3 = -A4 =KI -K2' 

and 

_ p(p_ e-A.,t 

pifJs+ e-A.,t 

-PifJs+ e-A.,t 

pifJ5_ e-A.4 t 

(3.41 ) 

(3.42) 

(3.43) 

With expressions (3.38), (3.40), and (3.43), the general solution for a may now be obtained from Eq. (3.39). The 
integrations are straightforward. After some algebra, the expression for a l takes the form 

a l = 2Klk -2q1C 2 sinh(Klt) + k -2C IC 2 cosh(Klt) + k -2K :; I [KI cosh(K+t) + K 2] [qlq3k -!C IC 2
] 

+ k -2K = I[KI cosh(K_t) +K2] [ _qlq3k - !C IC 2] + k -2KIK:; I sinh (K+t) [K2C lq3 -Klq1C 2] 

- k -2KIK = I sinh(K_t) [K2C Iq3 +Klq1C 2] +!k -IK:; 1[1 - cosh(K+t) ][KID I _Kp2] 

-!k -IK = 1[1 - cosh(K_t)] [KID I +K:zD2] +!k -IK:; I sinh(K+t) [plk - !(D 3l- W')"')] 

+!k -IK = I sinh(K_t) [plk + !(D 3l- 2D')"')]. 

In this expression, we have defined 

k=2KIK2, K± =KI ±K2' 

and 

C 1= q'i2 _ 2q2P, C 2 = q3l- 2q')"', 

D I =p~ _ 2p2/, D2 =p'i2 _ 2p3P, 
D3 =p'i2 - 2p3P, D4 =p2/_ 2py. 

(3.45 ) 

(3.46) 

The reader should note that C I and C 2
, like the qm, are odd 

Grassmann variables. 
Similarly, the solutions for a 2, a\ and a 4 may be ob­

tained. Due to the structure of the differential equations 
(3.35), these solutions can be expressed in the form of Eq. 
(3.44) with simple parameter substitutions. If we write ex­
plicitly the functional dependence of a l in Eq. (3.44) as 

a l = a l(p\p2,p3,p4;ql,q2,q\q4;j\/,/,/,/,/,), (3.47) 

then the solutions a 2, a 3, a4 may be written 

a2 = a l (p2,p\p4,p3;ql,q2,q\q3; 

P,/,/, -/', -l, -/), (3.48) 

a3 = a I (p3 ,p4,p l,p2;q2 ,q I ,q3 ,q4; 

;3 ·2 '1 '" '5 :6) - J , - j , - J ,J ,j ,J , (3.49) 

a4 = a l (p4,p3,p2,pl;q2,ql,q4,q3; 

-/, -/, -p, -/', -I, -/), (3.50) 

Note in particular that under any of these parameter changes 
K I and K2 remain unaffected. 

In summary, we have obtained in this section the BCH 
relation between canonical coordinates of the first and third 
kinds, in normal sequence. The relation is of the form ofEqs. 
(3.1) and (3.2) with t = 1, where the 14 equations in (3.2) 
are given explicitly by Eqs. (3.18), (3.20)-(3.24), (3.28), 
(3.29), (3.32), (3.33), (3.44), and (3.48)-(3.50). We re-
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(3.44) 

mark that the results may also be applied in the limit in 
which any ofthe parameters/, qm,r are taken to zero. 

IV. BCH RELATIONS FOR CANONICAL COORDINATES 
IN NON-NORMAL SEQUENCE 

In this section, we construct BCH relations between ca­
nonical coordinates of the first and third kinds for certain 
non-normal sequences. Although we could proceed as in 
Sec. III, obtaining and solving sets of 14 differential equa­
tions for each BCH relation, it is simpler to proceed by relat­
ing the various non-normal sequences for canonical coordi­
nates of the third kind to the normal sequence. Combined 
with the BCH relation already obtained, these results will 
yield BCH relations of the desired type. 

We begin by recalling that the PI commute among them­
selves and with the Qm. Furthermore, QI' Q3 anticommute 
with Q2,Q4, respectively. Therefore, by Lemma 2 of Ref. 7, 
the explicit solutions of the form (3.2) that we have obtained 
in Sec. III will be valid for a BCH relation of the form (3.1) 
but with the exponentials involving PI' and Qm' taken in any 
order, provided all exponentials with PI' and Qm' are to the 
left of those with I n, and provided the exponentials with QI' 
Q2 appear to the left of those with Q3 and Q4' In particular, 
this means that the BCH relation 

exp ttl/PI + mtl qmQm + nt/Jn ) 
4 4 6 

= II exp({3 m'Qm') II exp(al'pl,) II exp(y"'Jn,) 

m'=1 1'=1 n'=1 

(4.1 ) 

is obtained with the same explicit solutions of the form (3.2) 
as we found in Sec. III. 
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Next, we establish a link of the following kind: 
4 4 6 

IT exp( alpl ) IT exp(p mQm) IT exp( l' J" ) 
1=1 m=1 ,,=1 

4 6 4 

= IT exp(al'pl') IT exp(y"'J",) IT exp(q""Qm')' 
1'=1 ,,'=1 m'=1 

(4.2) 

where the quantities q"" are functions of pm and 1'. We 
proceed by inserting the identity I, in the form 

6 I 

I = IT exp (y"Jd IT exp ( - y"'Jk ,), 
k= I k'=6 

(4.3) 

between the PI and Qm exponentiations on the left-hand side 
ofEq. (4.2). Then, the piece 

I 4 6 IT exp (-y"'Jk ,) IT exp(pmQm) IT exp(y"J,,) 
k'=6 m=1 ,,=1 

(4.4) 

of the resulting expression can be simplified by repeated use 
of Theorem 2, Theorem 3, and Lemma 7 of Ref. 7, in a fash­
ion analogous to their use in obtaining the differential equa­
tions (3.3)-(3.16). 

Thus, for example, we find 
4 

exp( - ylJI ) IT exp(p mQm )exp(yIJI ) 

m=1 

= e - y'/'eP'Q'ey'/"e- y'/'eP'Q'ey'/"e - y'/, 

= (1 +pIQI)[1 +p2(Q2 + y'Q,)l 

X (1 + P 3Q3)( 1 + P 4Q4) 

= e(P' + P'y')Q'eP'Q'eP'Q'eP 4
Q.. (4.5) 

Proceeding in this manner ultimately yields expressions for 
the q"" of Eq. (4.2) in terms of p m and 1': 

0'1 = (Pi +p2y l) e-(i/2)y', 

~ = f3 2e(I/2)y' _ (f31 + f3 2y4)re - (1/2)y" 

~ = (P3 _p4y4) e(1/2)y", 

0'4 = f34e - (1/2)y" + (P3 _ f34y4)y6e(l/2)y". 

(4.6) 

Substitution of the solutions for f3 m, l' obtained in Sec. 
III and using the resulting form of Eq. (4.2) yields the BCH 
relation of the form 

4 6 4 

= IT exp(al'pl,) IT exp(y"'J",) IT exp(q""Qm')' 
1'=1 ,,'=1 m'=1 

(4.7) 

By an analogous method, we can establish the BCH re­
lation of the type 

expct/PI + mtl qmQm + "t/"Jn) 
4 6 4 

= IT exp(p m'Qm') L exp(y"'Jn,) IT exp(/'pl')' 
m' = I n' = I I' = I 

(4.8) 

In this case, the /' are functions of the a l and l' of Sec. III, 
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given by 

pi = (a l _ a2y4 _ a3yl _ a4yly4)e- (i/2)y-, 

p2 = (a l _ a 2y4 + a3yl _ a4yly4)y6e - (i/2)y­

+ (a2 +a4y l)e-(i/2)Y+, 

p3 = _ (a l _ a 2y4 + a 3y l _ a4y'y4)re- (1/2)y-
(4.9) 

+ (a3 _ a 4y4)e(i/2)y+, 

p4 = _ (a l _ a 2y4 + a3yl _ a4y'y4)ry6e- (i/2)y­

_ (a2 + iz4y l)re - (1/2)y+ 

+ (a3 _ a 4y4)y6e(l/2)Y+ + a 4e(i/2)y-. 

In these equations, y ± = r ± r. Again, substitution of the 
solutions of Sec. III for a l and l' yields the desired BCH 
relation. 

Finally, consider the BCH relations of the type 

expCtl/PI + mtl qmQm + nt/J,,) 

6 4 4 

IT exp(y"'J",) IT exp(pl'pl,) IT exp(q""Qm')' 
n'=1 1'=1 m'=1 

(4.10) 

This is, in fact, a class of relations of the same size as that of 
the coordinates in normal sequence, for the same reasons 
[see Eq. (4.1) and the associated discussion] . Furthermore, 
the solution is already known, since Eq. (4.10) can be ob­
tained from Eq. (4.7) by applying a similar derivation to 
that of Eq. (4.8). Thus, the solutions for /' and q"" in Eq. 
(4.10) are just those of Eqs. (4.6) and (4.9). As before, 
substitution of the solutions for ai, pm, and l' from Sec. III 
then yields the desired BCH relation. 

In summary, this section contains BCH relations for 
canonical coordinates in non-normal sequence. Schemati­
cally, the expressions obtained relate el:(P + Q + I) to 
neQnePJI~ and certain permutations [Eq. (4.1) 1, to 
nePJI~neQ [Eqs. (4.6) and (4.7)], to neQn~ne [Eqs. 
(4.8) and (4.9)], and to n~nePJIeQ and certain permuta­
tions [Eq. (4.10) ] . Note that all expressions remain valid in 
the limit in which any of the parameters /, qm,j" are taken to 
zero. 

v. BCH RELATIONS FOR NONCANONICAL 
COORDINATES 

It is also possible to obtain BCH relations between ca­
nonical coordinates of the first kind and certain noncanoni­
cal coordinate schemes. We present in this section some of 
the methods for obtaining such relations. 

First, consider noncanonical coordinates as defined in 
Eq. (2.11). A relationship is readily found between canoni­
cal coordinates of the third kind in normal sequence, Eq. 
(2.10), and the noncanonical coordinates of Eq. (2.11). 
From this, BCH relation between Eqs. (2.9) and (2.11) can 
be established. 

To begin, we note that since the J" form a subalgebra of 
the Poincare subalgebra, there exists a BCH relation of the 
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form 

"~I exp(y"'J",) = expct/J ,,). (5,1) 

where the y'" are given as functions ofthej" by Eqs. (3.18) 
and (3.20)-(3.24). Next, recalling that the PI commute 
among themselves, we have 

i!X exp(alpl ) = expCtlal'PI'} (5.2) 

Finally, using the anticommutators for the Qm in Eq. (2.1) 
and also Lemma 2 of Ref. 7, we have 

4 

II exp(/3 mQm ) 
m=1 

= exp(/3 IQI + /3 2Q2)exp(/3 3Q3 + /34Q4) 

= expctl /3mQm 

+ H/3 IQI +/3 2Q2,B3Q3 +/34Q4]) 

= expct l/3mQm )exP( - H/3I/33PI 

+/31/34P2 +/32/33P3 +/32/34P4])· (5.3) 

Combining Eqs. (5.1 )-(5.3) and the results of Sec. III 
yields the desired BCH relation as 

( 
4 4 6) 

• exp 1"f:,l lPI + m~1 qmQm + "~/'J,, 

= eXPCtlal'PI,)expC~ I /3 m'Qm,)expCtlj"'J",), 

where 

al = a l _lj31/33, a2 = a 2 _lj31/3 4, 

a3 = a 3 _lj32/33, a4 = a4 _lj32/3 4. 

(5.4) 

(5.5) 

Since the PI commute with the Qm' we can interchange 
the order of the PI' and Qm' exponentials on the right-hand 
side of Eq. (5.4) without changing the solutions (5.5). This 
immediately gives another BCH relation with the noncanon­
ical coordinates in non-normal sequence: 

expCtllPI + mt I qmQm + "t/J" ) 

= expC~ I qm'Qm,)expCtl aI'PI')expct/"J".). 

(5.6) 

Other non-normal sequences are possible for this type of 
noncanonical coordinates. For instance, a BCH relation of 
the form 

( 
4 4 6) 

exp 1~/lPI + m~1 qmQm + "~/"J,, 

= expC~ I qm'Qm' )expct I j"'J", )expct I Xl 'pI' ) 

(5.7) 
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may be obtained by insertion of the identity I, 

I = expCtllJk )exp( - k~ /k'Jk,) 

6 I 

== II exp(y"Jk ) II exp( -y"'Jk ,), (5.8) 
k=1 k'=6 

between the Qm' and PI' exponentials on the right-hand side 
ofEq. (5.6). From the similarity to the analysis leading to 
Eq. (4.8), we find immediately 

x = p(al,y"), (5.9) 

where p (ai, y") are given by Eqs. (4.9). This establishes the 
explicit form of the BCH relation (5.7). 

Next, consider the BCH relation of the type 

expCtllPI + mt I qmQm + "tl j"J" ) 

= expct I al'pl, )expct I j"'J", )expC~ I b m'Qm'} 

(5.10) 

We obtain this form by inserting the identity IofEq. (5.8) 
between the PI' and Qm' exponentials of Eq. (5.4) and using 

k~6 exp( - y"'Ik, )expC~ I qm'Qm') "~I exp(y"'J",) 

= expL~6exp( - y"'Ik, )C~ I qm'Qm') 

(5.11) 

which follows from Theorem 3 of Ref. 7. Thus the b m' ofEq. 
(5.10) must be functions of qm and y". By comparison with 
the calculation leading to Eq. (4.7), we find 

(5.12) 

where a (/3 m,y") are the solutions (4.6). Thus the BCH rela­
tion (5.10) is also explicitly obtained. 

Finally, we may readily determine the BCH relations 

expLtl lPI + mtl qmQm + "t/'J,,] 

= expct I j"'J", )expCt IXI'PI' )expC~ I b m'Qm') 

==exPCt/'J",)exPC~1 bm'Qm,)expCtl XI'PI'} 

(5.13 ) 

The identity (5.8) is inserted in front of the PI' exponential 
ofEq. (5.10), and the steps leading to Eq. (5.9) are repeat­
ed. Thus the expressions for b m' and Xl' in Eq. (5.13) are 
precisely those ofEqs. (5.9) and (5.12). 

In this section, we have obtained BCH relations for cer­
tain noncanonical coordinates. In schematic form, the re­
sults may be summarized as relating el:.(P + Q + J) to el:.P el:.Qe"1:.J 

[Eqs. (5.4) and (5.5)], to el:.Qel:.Pe"1:.J [Eq. (5.6)], to 
el:.Qel:.Je"1:.P [Eqs. (5.7) and (5.9)], to e"1:.Pe"1:.Je l:.Q [Eqs. (5.10) 
and (5.12)], and to e"1:.Je"1:.Pe l:.Q ore"1:.Jel:.Qe"1:.P [Eq.(5.13)]. As 
for other BCH relations in this paper, the results remain 
valid in the limit in which any of the parameters l, qm ,j" are 
taken to zero. 

V. A. Kostelecky and D. R. Truax 2486 



                                                                                                                                    

ACKNOWLEDGMENTS 

One of the authors (D.R. T.) thanks the members of the 
Department of Physics in Indiana University for their kind 
hospitality. The other author (V.A.K.) thanks Andre Ne­
veu for a careful reading of the manuscript. 

This work was supported in part by the United States 
Department of Energy under Contract No. DE-AC02-
84ER40125, Task B; and by the Natural Sciences and Engi­
neering Research Council of Canada. 

IS. J. Gates, Jr., M. T. Grisaru, M. Rocek, and W. Siegel, Supers pace (Ben­
jamin-Cummings, Reading, MA, 1983). 

2A. Rogers, J. Math. Phys. 21, 1352 (1980). 
3A. Rogers, J. Math. Phys. 22, 939 (1981). 
4A. Rogers, J. Math. Phys. 22, 443 (1981); 26, 385, 2749 (1985). 
sc. P. Boyer and J. Gitler, Trans. Am. Math. Soc. 258, 241 (1984); J. 
Hoyos, M. Quiros, J. Ramirez Mittelbrunn, and F. J. de Urries, J. Math. 
Phys. 25, 833, 841, 847 (1984); J. M. Rabin and L. Crane, Commun. 
Math. Phys. 100, 141 (1985); 102, 123 (1985). 

6D. R. Truax, Y. A. Kostelecky, and M. M. Nieto, J. Math. Phys. 27, 354 
( 1986). 

2487 J. Math. Phys., Vol. 28, No.1 0, October 1987 

7y. A. Kostelecky, M. M. Nieto, and D. R. Truax, J. Math. Phys. 27,1419 
(1986). 

·Y. A. Kostelecky, Nucl. Phys. B219, 167 (1983); Y. A. Kostelecky and J. 
M. Rabin, J. Math. Phys. 25, 2744 (1984); inSupersymmetry in Physics, 
edited by Y. A. Kostelecky and D. K. Campbell (North-Holland, Amster­
dam, 1985), p. 213. 

9B. Kostant, Lecture Notes in Mathematics, Vol. 570 (Springer, New York, 
1977), p. 617; F. A. Berezin and D. A. Leites, Sov. Math. Dok!. 16, 1218 
(1975); M. Batchelor, Trans. Am. Math. Soc. 253, 329 (1979); 258, 257 
(1980); B. DeWitt, Supermanifolds (Cambridge U.P., Cambridge, 1984); 
see also Ref. 2. 

lOSee, for example, R. G. Yates, Commun. Math. Phys. 76, 255 (1980). 
"J. E. Campbell, Proc. London Math. Soc. 28, 381 (1897); H. F. Baker, 

ibid. 34, 347 (1902); 35, 333 (1903); 2, 293 (1905); F. Hausdorff, Ber. 
Sachsischen Akad. Wiss. Math. Phys. Kl. Leipzig 58, 19 ( 1906). 

12For further developments, see, for example, R. M. Wilcox, J. Math. Phys. 
8,962 (1967); B. Mielnik, Ann. Inst. H. Poincare A 12, 215 (1970); R. 
Gilmore, Lie Groups, Lie Algebras, and Some of Their Applications (Wi­
ley, New York, 1974). 

13D. R. Truax, Phys. Rev. D 31, 1988 (1985). 
14E. Inanii and E. P. Wigner, Proc. Natl. Acad. Sci. (USA) 39, 510 (1953). 
ISSee, for example, E. Ince, Ordinary Differential Equations (Dover, New 

York, 1956). 
16W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and 

Boundary Value Problems (Wiley, New York, 1969). 

V. A. KosteleckY and D. R. Truax 2487 



                                                                                                                                    

Chiral symmetry breakdown. I. Gauge dependence in constant vertex 
approximation 
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An approximate quark propagator equation in a Landau-like gauge is analyzed and it is shown 
th~t there is a critical value of the coupling constant, corresponding to the onset of dynamical 
chlral symmetry breakdown, provided that (a) there is an infrared cutoff which can be 
supplied by an effective gluon mass, and (b) there is an ultraviolet cutoff: which may be 
engendered by a running coupling constant. Dynamical chiral symmetry breakdown is shown 
not to occur in other gauges under the same circumstances, thus casting doubt upon the 
approximations commonly used. 

I. INTRODUCTION 

The idea that quarks obtain effective (constituent) 
masses as a result of a dynamical breakdown of chiral sym­
metry has received a great deal of attention in recent 
years. 1

-
IO We propose to examine this attractive hypothesis 

by a detailed analysis of truncated Dyson-Schwinger equa­
tions for the quark propagator. In this paper, we will restrict 
attention to the approximation in which the gluon-quark 
vertex is replaced by the bare value, whereas the gluon ac­
quires an effective mass, while its propagator retains the ten­
sor structure of the bare propagator. This resembles the first 
Johnson-Baker-Willey (JBW) approximation for the elec­
tron propagator of QED. ll-J3 

In pioneering work over a decade ago, Maskawa and 
Nakajima2 studied the truncated Dyson-Schwinger equa­
tion in a JBW -like approximation. Their analysis in a "Lan­
dau-like" gauge showed that spontaneous chiral symmetry 
breakdown occurs when a Pauli-Villars ultraviolet cutoff 
parameter A is introduced, and that spontaneous break­
down survives in the continuum limit A -+ ao. We obtain sim­
ilar conclusions in that gauge, but using a smooth ultraviolet 
cutoff function, the choice being motivated by QCD. Like 
Maskawa and Nakajima in Ref. 2, and unlike several recent 
authors,3-9 we have gone to some care in analyzing coupled 
Dyson-Schwinger equations for the two functions appear­
ing in the quark propagator. The formalism is described in 
Sec. II, and the Landau-like gauge is analyzed in Sec. III. 

The Landau-like gauge of Ref. 2 leads to Dyson­
Schwinger equations which are relatively well behaved in the 
ultraviolet, whereas in other covariant gauges they become 
more singular. The case of Feynman gauge with finite mo­
mentum cutoff parameter A has also been analyzed in Ref. 2. 
We show in Sec. IV that, because of ultraviolet singularities 
in the continuum limit, A -+ ao, in Feynman gauge the regu­
larized quark propagator corresponds to massless, free 
quarks. The Dyson-Schwinger equations exhibit spontane­
ous chiral symmetry breaking at finite cutoff A, because the 

aJ Permanent address: Physics Department, Illinois Institute of Technolo­
gy, Chicago, Illinois 60616. 

quark mass operator satisfies a homogeneous Fredholm in­
tegral equation in that case, but the solution becomes "trivi­
alized" upon renormalization in the continuum limit. Our 
logarithmic ultraviolet cutoff function reduces the degree of 
the divergence in the continuum limit, before renormaliza­
tion, from log A (Ref. 2) to log log A; but it does not elimi­
nate the need for regularization. 

We have established that, in the JBW-like approxima­
tion, the quark propagator exhibits a sensitivity to the choice 
of gauge. This apparent "gauge dependence" of spontaneous 
chiral symmetry breaking is a consequence of the fact that 
truncated Dyson-Schwinger equations in the JBW-like 
scheme have ultraviolet singularities in most gauges. It is our 
conclusion that such a truncation is inadequate for studying 
spontaneous chiral symmetry breaking, and we intend in the 
future to study the problem for truncation schemes in which 
our choice of vertex function is motivated by the Slavnov­
Taylor identities. In addition, asymptotic freedom imposes 
constraints upon the ultraviolet behavior of the propagator 
and vertex function. 

II. DYSON-SCHWINGER EQUATION 

The quark propagator satisfies the integral equation 

iA f S p -l(p) = P - (217')4 d 4p' yllS p(p')YvD ,/V(p' - p), 

(2.1 ) 

where we have approximated the full by the bare vertex. 
Here A is the square of the QCD coupling constant, times a 
color factor, and the bare quark mass is zero. We suppose 
that the gluon has an effective mass, generated by self-inter­
action. The correct form for a massive vector propagator in a 
gauge theory is 

1 [-gllv+(1_a) kllk
v 

] 
k 2 _ m 2 + iE k 2 - am2 + iE • 

(2.2) 

We multiply this by a factor w ( - k 2) that satisfies w (0) = 1 
and w( - k 2) _ [loge - k 2)] -\ as - k 2 -+ ao, in order to 
allow for the decrease of the running coupling constant in a 
non-Abelian gauge theory. Thus 
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x ( k 2 _ !2 + iE - k 2 _ a~2 + iE )] , 
(2.3) 

where we have rearranged the tensor for calculational con­
venience and where a is the gauge parameter. A suitable 
form for w is 

2 k 2 [( k 2 . )] -1 w( -k ) = . log 1---IE , 
k 2 _ m 2 +IE m 2 

(2.4) 

although the results do not depend on the detailed expres­
sion. 

The inverse quark propagator has the form 

S;.-I(p) =a( _p2) +J(3( _p2), (2.5) 

where a and (3 are scalar functions, so that 

S;'(p) = a( _p2) -J(3( _p2) 
a2( _ p2) _ p2(32( _ p2) 

(2.6) 

Upon insertion of these formulas into (2.1), two coupled 
equations for a and (3 can be obtained; and, after Wick rota­
tion, one gets (with x = p2,y = p'2), 

A. 100 

ya(y) a(x) = -2 dy K(x,y) 2 2' 
11 0 a (y) +y(3 (y) 

(2.7) 

(3(x) = 1 + ~ 100 

dy L(x,y) 2 y(3(y) 2 ' 
1T 0 a (y) + y(3 (y) 

(2.8) 

where 

K(x,y) = 1trdBsin2 B'w(k 2)[ 23 2+ 2
a 2] 

o k +m k +am 
(2.9) 

and 

L(x,y) 

with 

p = (p' _ p)2 =x + Y _ 2(xy) 1/2 cos B. (2.11) 

L(x,y) = ayk 2 (x,y,m2) - (1/16m2x) 

X[[ (y - X)2 + m2(y + x) ]k(x,y,m2) 

- [(y - X)2 + am2(y + x) ]k(x,y,am2)] 
(2.14 ) 

with 

k(x,y,m2) 
= [x + y + m2 + [(x + y + m2

)2 - 4xyj112rl. 
(2.15) 

This was essentially the case considered by Maskawa and 
Nakajima,2 together with the Pauli-Villars cutoff version. 

In the limit that the gluon mass m tends to zero, we find 

k(x,y,O) = B(x - y) + B(y - x) . (2.16) 
2x 2y 

For m #0, the approximation 

k( 2)_ B(x-y) + B(y-x) x,y,m _ 
2(x + m2) 2(y + m2) 

(2.17) 

is exact in the limits x --+ 0 and x --+ 00, y --+ 0 and y --+ 00, and it 
is a strict upper bound for all positive x and y. In this paper, 
we shall use the form (2.17) exclusively, although we pro­
pose to consider the exact expression in a future publication. 

The above approximation is imprOVed by reinstating the 
running coupling constant. Unfortunately, the dependence 
of k 2 on the angle B in (2.9) and (2.10) makes it impossible 
to evaluate the integrals in closed form when thew of (2.12) 
is present. However, if one sets 

w(k 2) zw(p2)8(P2 _ p,2) + w(P,2)8(p'2 _ p2), 
(2.18) 

one obtains, instead of the kernels K and L of Eqs. (2.13) 
and (2.14), respectively, 

[w(x)B(x - y) + w(y)(}(y - x) ]K(x,y), 

[w(x)B(x - y) + w(y)(}(y - x) ]L(x,y). 

(2.19) 

(2.20) 

The approximation (2.18) for the smooth, monotonic func­
tion a>(k 2) is good whenp2>p,2 orp2<p'2, but not whenp2 
and p'2 are comparable in magnitude. However, the approxi­
mation is not expected to affect either the infrared or the 
ultraviolet behaviors of the solution. 

With the approximations (2.17) and (2.18), the kernels 
read 

K(x,y) = -h[w(x),u(x)(}(x - y) + a>(y),u(y)(}(y - x)] , 
(2.21 ) 

We require that a>(x) be a monotonically decreasing L(x,y) = (y/32) [w(x)v(x,y)8(x - y) 

function of x for Euclidean momenta. With the Euclidean + w(y)v(y,x)(}(y - x)] , (2.22) 
version of (2.4), namely, 

w(x) = x: m2 [log(1 + ;2 )] -I, (2.12) 

it is not possible to evaluate the kernels K and L in terms of 
elementary functions. 

A simplification is to replace w(k 2) by unity, i.e., the 
coupling does not run. This has a profound (and nonphysi­
cal) effect on the behavior ofthe equation. The kernels can 
now be evaluated, 

(2.13 ) 
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where 

,u(x) = 3/(x + m2) + al(x + am2), 

_ (Y_x)2+ am2(y+x)]. 

x+am2 

(2.23) 

(2.24) 

The Feynman gauge (a = 1) is especially simple, 

D'j'V(k) = [_gl'v/(k2_m2+iE)]W( _k2), (2.25) 

D. Atkinson and P. W. Johnson 2489 



                                                                                                                                    

",,(x) = 4/(x + m2
), 

V(X,y) = 2/(x + m2)2. 

(2.26) 

(2.27) 

It turns out that in this gauge (and others), an ultraviolet 
cutoff is necessary (see Sec. IV). On the other hand, no such 
cutoff is required in the Landau gauge (a = 0), 

D;fV(k) = _g}w+kf.lk
v
/(k

2
+i€) cu( k 2 ), 

k 2 _ m2 + i€ 

",,(x) = 3/(x + m2), 

2 y-3x 
v(x,y) = 2 2 + 2 2 

(x + m ) x (x + m ) 

(2.28) 

(2.29) 

(2.30) 

As can be seen from the denominator in (2.30), an infrared 
singularity has been introduced, a gauge artifact, and this 
turns out to be a nuisance. To avoid this difficulty, Maskawa 
and Nakajima2 introduce what they called the Landau-like 
gauge, with the gluon propagator 

D ;fV(k) 

= + cu( - k ), [ 
_gf.lV kf.lkV] 2 

k 2 _m2+i€ (k 2 _m2 +i€)2 
(2.31) 

for which the kernels K and L, with the approximations 
(2.17) and (2.18), have the form (2.21) and (2.22), with 

",,(x) = 3/(x + m2) + m2/(x + m2)2, (2.32) 

(2.33) 

Here the good ultraviolet properties have been retained, 
while the artificial infrared divergence has been removed. 

In Sec. III, we consider this Landau-like gauge, without 
ultraviolet cutoff; while the Feynman gauge is treated in Sec. 
IV. In the latter case, a Pauli-Villars cutoff has to be intro­
duced. 

The major purpose is to find out conditions under which 
there is a criticalAc >0, such that, forO <A <..1c' Eqs. (2.7) 
and (2.8) only have the chiral solution a=O, while for 
A >..1c ' there is also a nontrivial solution, a:;;fO. To investi­
gate such a bifurcation point ..1c we differentiate the equa­
tions functionally w.r.t. a, and set a = 0, 

~a(x) = ~ ("" dy K(x,y) ~(y) , 
11 Jo 13 (y) 

(2.34 ) 

..11"" 1 f3(x) = 1 + --2 dy L(x,y) --. 
11 0 f3(y) 

(2.35) 

III. LANDAU-LIKE GAUGE 

In the case (2.31)-(2.33), we can write the bifurcation 
equations (2.34) and (2.35) in the form 

A {(X 1"" } ~a( ) ~a(x) = 16t? Jo dy p(x) + x dy p(y) 13 2~) , 

(3.1 ) 

f3(x) = 1 + ..1_
2

{ (X dyq(x) + 1"" dyq(y)} -y_, 
1611 Jo x f3(y) 

(3.2) 
where 
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p(x) = [3/(x + m2) + m2/(x + m2)2]cu(x), (3.3) 

q(x) = [m2/(x + m2)3J cu(x). (3.4) 

We study first Eq. (3.2). To this end, consider the map-
ping 

P(x) = P(P;x) , (3.5) 

where P(f3;x) is just the right-hand side of (3.2). Let B be 
the Banach space of real, continuous functions I(x) with 
supremum norm, for which the following inequalities hold: 

O<Pm<./(x)<,PM < 00. (3.6) 

We shall specify 13 m and 13 M in a moment. 
Next, define the function 

P(x) = 1:t? {f'y dy q(x) + l"" y dy q(y)}. (3.7) 

It is easy to see that P(x) is non-negative and monotonically 
decreasing in 0 <x < 00. Thus 

O<.P(x) <.P(O) < 00. (3.8) 

A computer estimate gives 

1 L"" cu
2 

P(O) = L --2 dcu 4 ;::::0.001 82. 
1011 0 (l + cu) log(l + cu) 

(3.9) 

Because of the positivity of q(x), we see from (3.2) and 
(3.5) that 

P(x»1 (3.10) 

and 

P(x)<.1 + ..1P(O), 

so that, if we define 

13m = 1 

and 

13M = 1 + ..1P(O) , 

(3.11 ) 

(3.12) 

(3.13 ) 

we see that the space B is mapped into itself by the nonlinear 
operator, P. Indeed, the image of B is actually compact in 
norm, since 

~P(x) = ..1--2 [~q(X)] (X ydy . 
dx 161T dx Jo f3(y) 

(3.14) 

Now dq/dx is negative, so dP /dx is also negative, and 

-~P(x)<. _~X2 [~q(x)]<.const, (3.15) 
dx 32t? dx 

i.e., IdP / dx I has a bound that is independent of p. 
Since P is a completely continuous operator that maps B 

into itself, we can use the Schauder theorem to assert that 
there is at least one fixed point, P = 13, in B, i.e., at least one 
solution of (3.2). To show that the solution is unique in B, 
we subtract 13(0), 

P(x) =P(O) +--:::::2 dy[q(x) -aCyl] -y-. A LX 
1611 0 f3(y) 

(3.16) 

Any solution of (3.2) is also a solution of (3.16), on the 
condition thatp(O) has the correct value. We first show that 
no two different solutions in B can have the same P( 0). For 
suppose that 131 and 132 both satisfy ( 3.16) , and that 
131 (0) = P2(0). Then 
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A LX /31 (x) - /32 (X) = lW 0 y dy[u(y) - U(X)] 

x /31(y) -/32(Y) . 

/31 (Y)/32(Y) 
(3.17) 

Hence 

where 

L (x) = LX ydy[u(y) -u(x)]. (3.19) 

Let us take x> 0 to be so small that, for any XE [O,x] , 

L (x)< 
161-:" K (3.20) 

with K < 1. Then 

(3.21) 

which is only possible if /31 (x) = /32(X) for O<X<X. Since 
/3(x) satisfies the differential equation 

[
/3'(X)]' A x 
o'(x) = lW /3(x) , 

(3.22) 

it is easy to extend this identity to all x values. 
Next consider the case that/31 (0) =1/32 (0). For definite­

ness, we set/3I(O) >/32(0). Instead of (3.17) we have 

/31(X) -/32(X) 

A LX = /31 (0) - /32(0) + --::2 y dy[u(y) - u(x)] 
1611 0 

X /31(Y) -/32(Y) . (3.23) 
/31 (Y)/32(Y) 

This has the structure of a linear Volterra equation for 
/31 - /32' given/3Jf32; and the Neumann series is guaranteed 
to have an infinite radius of convergence. Since u(y) ;>u(x) 
for y<x, each term in the series is non-negative, and so, for all 
x 

(3.24) 

Now it follows from (3.2) that /3( (0) = 1, so by taking 
x = 00 in (3.24) we find /32(0);>/31(0), which contradicts 
/31 (0) >/32(0). Hence/31 (0) = /32(0) and, as we have seen 
this implies/31 (x) =/32(X). 

Having shown that (3.2) has a unique solution in B, we 
turn to (3.1). Let us write it in the form 

A L'" e>a(x) = --::2 dy H(x,y)e>a(y), 
1611 0 

(3.25) 

where 

H(x,y) = [p(x)O(x - y) + p(y)O(y - x)]/3 -2(y). 
(3.26) 

Thanks to the fact that/3(y) is bounded from below, we can 
show that H is a positive L 2 kernel, 
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X(3 + _1_)2 < 00. 

1+Cl) 
(3.27) 

Hence (3.25) is a classic Fredholm equation, and thus, if we 
require e>a(x) to belong to L 2, the spectrum is discrete; in 
particular, there is a smallest value Ac > 0 such that (3.25) 
has only the trivial solution, e>a(x) =0, if 0 <A <Ac' while it 
has a nontrivial solution if A = Ac. 

The existence of a critical point Ac is crucially depen­
dent on limiting e>a to L 2. Equation (3.1) is equivalent to the 
differential equation 

d [(dldx)e>a(x)] A e>a(x) 
dx (d Idx)p(x) = 16"; /32(X) , (3.28) 

with the boundary condition 

~e>a(x) -+ O. 
dx x-a 

(3.29) 

The asymptotic behavior of (3.28) for large x is 

d[2 X d ] 3A - x log-2 -e>a(x) + £....2e>a(x)-O, 
dx m dx 1011 

(3.30) 

where we have used the fact that /3( (0) = 1. This admits 
two solutions, which have the asymptotic behaviors 

fR (x) - (llx)[log(xlm2)] -I +3,t1l61T', (3.31) 

,h (x) - [log (xlm2) ] - 3A1161T'. (3.32) 

The general solution of (3.28) is 

e>a(x) =AfR(x) +B,h(x), (3.33) 

but in order for this to solve the integral equation (3.1), the 
boundary condition (3.29) needs to be imposed. This fixes 
the ratio B I A, the remaining constant being a trivial norma­
lization.1t should be noted that a solution of the form (3.33) 
exists for any A, but that it is not in L 2 in general. The small­
est value of A for which B = 0 is precisely Ac ' and 6a is then 
the regular solution fR' which is in L 2. 

In conclusion, we have seen that the bifurcation equa­
tions, in the Landau-like gauge, yield a critical pointAc only 
if some information external to the Dyson-Schwinger sys­
tem is used, in order to exclude the irregular solution 
,h(X).3.8.9 

IV. FEYNMAN GAUGE 

In Feynman gauge the bifurcation equation (2.35) for /3 
has the specific form 

A L'" y /3 (x) = 1 + --::2 dy u(xmax ) --, 
167T 0 /3(y) 

(4.1 ) 

where X max = max (x,y) , and where by hypothesis the func­
tion 

(4.2) 
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is positive and monotonically decreasing. Notice that the 
function u has one inverse power of (x + m 2

) less than that 
of Sec. III. We shall in fact show that (4.1) has no solutions. 

Equation (4.1) is equivalent to the integrodifferential 
equation 

{3'(x) = ---:=2u'(x) dy-
y
-, A. L" 

161T 0 {3(y) 

along with the boundary condition 

{3( (0) = 1. 

(4.3) 

(4.4) 

Let us consider the case in which {3(O) > 0, and define the 
domain SO on which {3 remains positive, 

SO = {xl{3(y) > 0 for yE[O,x]}. (4.5) 

It follows from (4.3) that {3 is monotonically decreasing on 
SO. As a consequence 

{3'(x)<[A. 132rr{3(O) ]x2u'(x) (4.6) 

for xeSO. Integrating, we obtain 

A. LX {3(O)-{3(x» rr: dyyu(y). 
16 P(O) 0 

(4.7) 

It follows from (4.2) and the definition (2.4) of m that, at 
largey, 

u(y)_l/y2 10gy, (4.8) 

so that the integral in (4.7) approaches log log x asymptoti­
cally at large x. Because of this divergence, the function 
{3(x) must approach zero at a finite point Xo on the positive 
real x axis. In the vicinity of such a point, the solution to the 
differential equation (4.3) has the behavior 

{3(x) - (xo - x) [(A.xol8rr)u'(xo)log(xo - x)] 1/2. 
(4.9) 

The solution to Eq. (4.3) consequently has a branch point at 
x = xo, with the real-analytic continuation having a branch 
cut for x> Xo' Furthermore, this solution of (4.3) has the 
asymptotic form 

{3(x)- ± [( -A./8rr)loglogx]1/2 (4.10) 

as x becomes large within the cut plane. Such solutions are 
not consistent with the boundary condition (4.4), so that 
they do not satisfy the integral equation (4.1), even if x is 
allowed to be complex. 

We have shown that there are no solutions of (4.1) for 
{3(x) positive. Since - {3(x) satisfies Eq. (4.3) if {3(x) is a 
solution, there are also no solutions of (4.1) for {3(O) nega­
tive. For {3(O) = 0, the solution to (4.3) has the following 
asymptotic behavior at small x: 

{3(x)- ± [(A.II2rr)u'(O)x3 ]1/2, (4.11) 

where u' (0) < O. In this case the real-analytic solution has a 
branch cut for x > 0, and it also has asymptotic behavior 
(4.10) at large x. Therefore there are no solutions to the 
integral equation for this case either. 

The integral equation ( 4.1 ), considered for any positive, 
strictly decreasing weight functions m(x), has no solutions 
whenever 

lim (X dy yu(y) = 00. 

x- 00 Jo (4.12) 
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If the weight function m (x) were chosen to decrease slightly 
faster-say,O [ (log x) - I -~] fOfE> O-the integral (4.12) 
would converge and the integral equation would have a solu­
tion. This might well be affected by modifying the approxi­
mation for the quark-gluon vertex function-a matter we 
propose to take up in the future-but for the present we shall 
discuss the more standard Pauli-Villars cutoff procedure. 

In the Pauli-Villars approach, we replace the function 
u(xmax ) in the nonlinear integral equation (4.1) by the func­
tion 1'(xmax )' 

1'(x) =m(x) [l/(x+m2)2_l/(x+A2)2]; (4.13) 

with A>m. Equivalently, the function {3(x) will satisfy the 
nonlinear Volterra equation 

{3(x) ={3(O) +---:=2 dy-
y

- [1'(x) -1'(Y)], A. LX 
161T 0 {3(y) 

along with the boundary condition 

{3( 00 ) = 1. 

(4.14 ) 

(4.15) 

Let us consider the solution of Eq. (4.14), starting from a 
given initial value {3 (0) > O. We define SO as the domain over 
which {3 remains positive; vide Eq. (4.5). For x in SO, the 
Volterra equation has a unique monotonically decreasing 
solution {3(x). Furthermore, the value of {3 at fixed x is mo­
notonically increasing as a function of the initial value {3 (0) . 
On the domain SO, {3(x) satisfies the bound 

{3(x»{3(O) - I 1{3(x) , (4.16) 

where 

A. Loo 1=---:=2 dy Y1'(y)· 
161T 0 

( 4.17) 

If we choose 

{3(O) > [41] 1/
2

, (4.18 ) 

it follows from (4.16) that{3(x) is positive for all x>O. 
We have shown that, for {3(O) chosen sufficiently large, 

the nonlinear integral equation (4.14) has a unique positive 
solution for x> O. For a particular choice of {3( 0), one satis­
fies condition (4.15). One can show directly from the inte­
gral equation that, to meet (4.15), the initial value {3( 0) lies 
somewhere between the limits 

1+ [/ 2 + 4] 1/2/2<{3(O)<J + 1. ( 4.19) 

Consequently, there is a unique solution to the integral equa­
tion corresponding to (4.1), with a Pauli-Villars cutoff in­
serted. 

We have shown the existence of a unique positive solu­
tion of the cutoff integral equation, but the question remains 
as to the limit in which the cutoff parameter A becomes 
large. For our case the integral I(A), defined in (4.17), has 
the form 

A ("" [1 1] 
I(A) = 16rr Jo dy ym(y) (y + m2)2 - (y + A2)2 . 

(4.20) 

Because of (4.12), the integral I(A) must diverge in the 
limit A -+ 00. In fact, one can show that 

I(A) - (A. 116rr)log log A (4.21) 
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at large A. Because of this asymptotic behavior, along with 
the bounds (4.19), it follows that 

(3(O,A) - (A 116r)log log A (4.22) 

as A ...... 00 • In fact, one may show that, for fixed x, the renor­
malized function 

P(X)= lim [(3(x,A)I{3(O,A)] = 1. (4.23) 
A-oo 

The integral equation (2.34) for8a(x), with{3(x,A) insert­
ed, exhibits chiral symmetry breaking, in that for A less than 
some critical value Ac > 0, the only solution is 8a = 0. The 
analysis in Feynman gauge is similar to that of Sec. III in 
Landau gauge. The critical coupling Ac depends upon A, and 
in fact 

Ac-[{3(0,A)]2. (4.24) 

In other words, the only consistent solution of (2.34) for 
fixed coupling A in the limit as the cutoff A becomes large is 

8a(x,A) = 0. (4.25) 

The renormalized function 8ii(x) is also zero, 

1;:-( )=1' 8a(x,A)_0 uaX_lm -. 
A- 00 (3(O,A) 

We therefore find that in Feynman gauge, the normal­
ized inverse quark propagator S -1 (p) corresponds to a 
massless, free quark, 

S- -1 ( ) _ l' a(x,A) + ;{J(x,A) -.I P - 1m -I" 
A- 00 {J(O,A) 

(4.26) 

In summary, we have shown that there is no solution of 
the bifurcation equation ( 4.1) in Feynman gauge, because of 
problems in the ultraviolet. There is a solution to the Dyson­
Schwinger equations when a Pauli-Villars cutoff parameter 
A is introduced, but the renormalized propagator corre­
sponds to free, massless quarks in the limits as A ...... 00. One 
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would expect the phenomenon of chiral symmetry breaking 
to gauge invariant, but our algorithm for truncation of the 
Dyson-Schwinger equation is explicitly gauge dependent. 
The difficulty can be plausibly traced to the naive JBW treat­
ment of the full vertex function. 
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An earlier analysis of the Dyson-Schwinger equation for the quark propagator is improved by 
taking the Slavnov-Taylor identity into account in the ultraviolet. It is found that chiral 
symmetry breaking occurs above a critical coupling in the Landau gauge; but that this result 
does not hold in other gauges. 

I. INTRODUCTION 

Much study has been devoted to the tantalizing possibil­
ity that the (constituent) masses of quarks arise from the 
nonperturbative breakdown of chiral symmetry.I-5 More 
specifically, it is supposed that the bare quark mass vanishes; 
and the Dyson-Schwinger equation for the quark propaga­
tor is then analyzed for signs of chiral symmetry breaking. 
The most popular scenario is that in which this breakdown 
occurs only if the QCD coupling A is greater than a certain 
critical value Ac: this point constitutes then a bifurcation of 
the mass function from the trivial to a nontrivial solution of 
the equation. 

Some authors confine themseleves to the Landau gauge 
and assume that the trace of 1 times the inverse quark propa­
gator is p2. This is only correct if the gluon remains massless. 
If the gluon acquires an effective mass, as a result of self­
interaction, this trace is p2f3(p2), where f3 is a function that 
has to be obtained from the Dyson-Schwinger equation. In 
Refs. 6 and 7, we showed that, in the approximation 
f3(p2) == 1, a positive bifurcation point Ac exists only ifboth 
infrared and ultraviolet cutoffs are introduced. In Ref. 8 we 
elaborated the analysis by treating f3 properly: in the pres­
ence of an infrared cutoff, in the form of an effective gluon 
mass, and an ultraviolet cutoff, provided naturally by the 
logarithmic decrease of the running coupling constant, we 
found again that Ac > 0 in the Landau gauge. However, in 
the Feynman gauge (and in other gauges), it turned out that 
there is no solution of the equation for f3(p2), unless a Pauli­
Villars cutoff A is introduced. As A - 00, so Ac -0, thus 
indicating an extreme gauge dependence that casts doubt on 
the credibility of the approach. 

The most questionable approximation made in Ref. 8 is 
the replacement of the full quark-gluon vertex r v (p' ,p) by 
its bare value r v' Since the difficulties in the Feynman gauge 
are associated with ultraviolet divergences, and since the in­
verse quark propagator behaves like IfJ(p2) as p2 _ 00, a bet­
ter approximation for r v should be r", multiplied by f3, 
since this is consistent with the Ward-Takahashi identity in 
the ultraviolet regime. It is true that the correct Slavnov­
Taylor identity of a non-Abelian theory contains matrix ele­
ments of ghost fields, as Miransky has pointed out9

; but it 
might reasonably be hoped that these do not alter the ultra­
violet behavior of the quark propagator. 

In this paper we undertake a treatment of the quark 
propagator, with the above-mentioned improvement in the 
approximation for r 1" We find that the analysis is much 
easier than that of Ref. 8; but the fundamental conclusions 

remain unchanged: Ac is positive in the Landau gauge, and 
Ac -0 as A- 00 in the Feynman gauge. 

Ten years ago, Weinberg10 suggested that a positive bi­
furcation point Ac is not to be expected, since, if it were to 
exist, it would surely be gauge dependent; and the onset of a 
phenomenon such as chiral symmetry breaking presumably 
ought not to depend on the gauge that one chooses. Our 
conclusions support this conjecture; and, in this connection, 
a parallel analysis that employs Delbourgo's gauge tech­
nique, II in which the Ward-Takahashi identity is respected 
at all momenta, similarly yields a gauge dependence of Ac. 

In Sec. II, we briefly recall the formalism, while the 
analysis is carried out in Sec. III. An Appendix is devoted to 
the bifurcation theory that is required in the body of the 
paper. 

In conclusion, although the general result of this work 
suggests that the existence of a gauge-independent bifurca­
tion point Ac > 0 is untenable, the hope might reasonably be 
entertained that our general methods will yield more posi­
tive results in other situations. In particular, in finite-tem­
perature field theory, one expects a phase transition to the 
plasma state above a critical temperature Tc and bifurcation 
theory should prove a useful tool. 

II. DYSON-SCHWINGER EQUATION AND SLAVNOV­
TAYLOR IDENTITY 

The Dyson-Schwinger equation for the quark propaga­
tor may be written in Euclidean space in the form 

S;, -I(p) =1 + (2~)4 J d 4
p' rI-'S;'(p')r1'(p',p) 

X D ;'1-'1' (p' - p ) , (2.1 ) 

where A is the square of the QCD coupling constant, times a 
color factor. Here D;' is the gluon propagator, and we shall 
equip it with a mass and a running coupling, 

D;'I-'1'(k) = w(k2)DFI-'1'(k). (2.2) 

Here DF is the bare propagator for a massive vector field, 
and w(x) is a given function with the following properties: 

w(O) = 1, w(x)-(logX)-1 asx-oo, dw(x) ,.;;0. 
dx 

(2.3 ) 

The Slavnov-Taylor identity, with ghosts neglected, is 

(p' -p)1'r1'(p' -p) =S;,-'(p) -S;,-'(p'), (2.4) 

and this relates the longitudinal part of the quark-gluon ver­
tex to the inverse of the quark propagator. If we set 
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(2.5) 

then we expect that, as p - 00 at fixed p', (2.4) will read 
asymptotically 

Pvr v (P',p) _p{3(p2) (2.6) 

and similarly for p' - 00 at fixed p. This motivates the ansatz 

r v (p',p)-:::;rv{3(p;), (2.7) 

wherep; = max(p2,p,2), which should respect the ultravio­
let behavior of the theory better than does the constant ver­
tex approximation of Ref. 8. 

As in Ref. 8, we approximate the running coupling func­
tion (j) by 

(j)(k 2) = (j)( (p' _ P )2)-:::;(j)(p; ), (2.8) 

and we evaluate the angular integrals in (2.1). This results in 
the coupled integral equations 

a(x)=~i'" dyK(x,y) ya(Y){l(x» , 
"r 0 a2(y) + y{l2(y) 

(2.9) 

{3(x) = 1 +~i'" dyL(x,y) y{3(Y){3(x» . 
"r 0 a 2(y) + y{32(y) 

(2.10) 

The kernels K and L were given explicitly in Ref. 8, and we 
do not reproduce them here, nor shall we repeat the discus­
sion of their further approximation. 

III. BIFURCATION EQUATIONS 

As in I, we shall consider the Feynman gauge, and a 
modification of the Landau gauge, the so-called Landau-like 
gauge of Maskawa and Nakajima,1 for technical conven­
ience. Upon differentiating (2.9) functionally with respect 
to a, and setting a = 0, we obtain the following equations: 

c5a(x) = 16,1,-2i"" dyp(x> ){3(x> )c5~(y), (3.1) 
n- 0 {l (y) 

and 

A. i'" flex) = 1+ 16-2 dyu(x> ){l(x> )-y_, 
~. 0 {ley) 

(3.2) 

where x> = max (x,y), and where 

p(x) = [4/(x + m2) ](j)(x), 

u(x) = [1I(x + m2)2](j)(x), 

in the Feynman gauge, and 

(3.3) 

(3.4) 

p(x) = [3/(x + m2) + m2/(x + m2)2](j)(x), (3.5) 

u(x) = [m2/(x + m2)3](j)(x), (3.6) 

in the Landau-like gauge. Here m is the effective gluon mass, 
which is assumed to arise from gluon-gluon interaction. 

Consider first Eq. (3.2), which can be written 

flex) = 1 + ,1,-2iXydyu(x){3(X) +~i"'YdYU(Y) 
16~ 0 {3(y) 16"r x • 

(3.7) 

The last integral here is convergent in the Landau-like 
gauge; but it is log log divergent in the Feynman gauge. Con­
vergence can be achieved in this case by the imposition of a 
Pauli-Villars cutoff, which has the effect of replacing (3.4) 
by 

u(x) = [1I(x + m2)2 - 1I(x + A2)2](j)(X). (3.8) 
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Divide (3.7) throughout by flex) and define 
= [{3(x)] -I, thus obtaining 

rex) 

rex) A. r 
lex) = 1 - 161r u(x) Jo y dy r(Y), (3.9) 

where 

[/(x)] -I = 1 + 1~ L"" y dy u(y). (3.10) 

Note that (3.9) is a linear Volterra equation that can be 
converted into a linear differential equation for r(x). The 
unique solution of the Volterra equation is 

(3.11 ) 

From (3.10) we see that/ex) -1 asx- 00, whether we 
take u to be given by (3.6), the Landau-like gauge, or by 
(3.8), the Feynman gauge with Pauli-Villars cutoff. Hence, 
from (3.11), rex) -1 asx- 00. 

Further, 

[ A. 1'" ]-1 reO) =/(0) = 1 + 16"r 0 ydyu(y) >0; 

(3.12) 

and moreover, it is easy to check from (3.11) that 

A. r 
y'(x) = - 16"r u'(x) Jo dyI2(y), (3.13 ) 

which is positive, since u'(x) is negative. Hence, as x in­
creases from zero to infinity, rex) increases monotonically 
from/CO) to unity, and{l(x) decreases monotonically from 
[/(0)] -I to unity. 

We tum now to (3.1), which we rewrite 

A. 1'" c5a(x) = 16"r 0 dy F(x,y)c5a(y) , (3.14) 

where 

F(x,y) = p(x){l(x) O(x-y) + p(y) O(y-x). (3.15) 
{32(y) {ley) 

The kernel F is square integrable, 

IIFII2 = i'" dx i
X 

dy p2(X){l2(X) 
o 0 {l4(y) 

+ i'" dxi'" dy p2(y) 
o x {l2(y) 

<[[/(~)]2+1]i'" dXxp2(X). (3.16) 

In the Landau-like gauge, 

p(x) = [3/(x + m2) + m2/(x + m2)2](j)(x) 

<[4/(x+m2)](j)(x), (3.17) 

and the last expression is just p in the Feynman gauge. So in 
both gauges 

IIFII2<16[[/(~)]2 + 1] 1'" dx (x +Xm2)2 (j)2(X), 

(3.18 ) 

which is convergent, since (j)2(X) - (log x) -2 asx- 00. No­
tice that the running coupling function (j) is essential for this 
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convergence. Since (3.14) is a homogeneous Fredholm 
equation, it only has a nontrivial L 2 solution oa for A on a 
point set. The smallest positive point in this set, say Ac ' 

which necessarily satisfies 

(3.19) 

corresponds to the bifurcation of a nontrivial L 2 solution 
a(x) ofEqs. (2.9) and (2.10) away from the trivial solution 
(see the Appendix). 

Equation (3.14) is equivalent to the differential equa­
tion, 

d [ (d Idx)oa(x) ] A oa(x) 
dx (d Idx) [p(x).B(x)] = l6r .B 2(x) 

with the boundary condition, 

d 
- oa(x) -+ O. 
dx x_o 

(3.20) 

(3.21) 

According to the general theory oflinear, second-order, or­
dinary differential equations, Eq. (3.20) has two indepen­
dent solutions, say fR and h, and the general solution of 
(3.14) is 

oa(x) =AfR(X) +Bh(x); (3.22) 

and the ratio of A to B is determined by the boundary condi­
tion (3.21). The solution is thus unique, up to a normaliza­
tion. 

The ultraviolet behaviors of the regular and irregular 
solutions follow from the fact that .B(x) tends to unity as 
x .... 00, thatp(x) is given by (3.3) or (3.S), and that w(x) 
satisfies (2.3). We find 

fR (x) -x-I(log x) -I + b, 

h(x)-(logX)-b, 

(3.23 ) 

(3.24) 

as x .... 00, where b = A 14r in the Feynman gauge and 
b = 3A 116r in the Landau-like gauge. The solution (3.22) 
is square integrable only if B = 0, and the smallest value of A 
for which this happens is precisely Ac ' the bifurcation point. 

The whole analysis is applicable to the Landau-like 
gauge without cutoff, or the Feynman gauge with cutoff. As 
A .... 00 in the latter case, however, {J(O) -log log A. Sub­
tract{J(O) from (3.7), 

.B(x) =.B(O) + A-2 (X ydy [U(X) .B(x) -U(y)] , 
1611 Jo .B(y) 

(3.2S) 

and define a renormalized /:lex) = Z2.B(X), where Z2 
= [.B(O) ]-1. The renormalized version of (3.2S) is 

/:lex) = 1 + AZ~ (X ydy [U(X) ~(x) _ U(y)] . 
l67T Jo .B(y) 

(3.26) 

As A .... 00, Z2 .... 0 and /:l(x) .... 1. The renormalization con­
stant Z2 may not be absorbed into a redefinition of the cou­
pling 1 = AZ2 for the coupling should be renormalized by 
the gluon renormalization constant Z3 which we have effec­
tively approximated by unity. In the usual perturbative re­
normalization, one would expand the integral in (3.26) to 
order An, and Z2 to order A ,. - I, allowing the infinities to 
cancel in the usual way. However, the present nonperturba­
tive approach, if it is to be viable, must deal with all diver-
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gences in one fell swoop. The renormalized 
= Z2oa(X) satisfies 

oa(x) = _~ dyp(x> ).B(x> ) +, AZ ioo 
- oa( ) 

1611 0 .B (y) 

oa(x) 

(3.27) 

from which we see that oa(x) .... O as A .... 00. Hence, as the 
cutoff is removed, the quark propagator tends to the bare 
form, (1) -I. Thus we have demonstrated a gauge depen­
dence of a most extreme kind: chiral symmetry breakdown 
in the Landau-like gauge and none in the Feynman gauge-a 
most absurd result. 

APPENDIX: BIFURCATION THEORY 

We present a theorem in bifurcation theory and apply it 
to the coupled equations (2.9) and (2.10), in a neighbor­
hood of the trivial solution, a(x) = O. 

Theorem: Suppose that 

a(x) = AT(a;x), (AI) 

where a belongs to some real Hilbert space H, Tis a nonlin­
ear operator on H, and A is a real number. Suppose further 
that T is thrice Frechet differentiable, and that 

T( - a;x) = - T(a,x), (A2) 

so that T(O;x) = 0, which implies that (AI) possesses the 
trivial solution. Let the first Frechet derivative at the trivial 
solution T'(O;x) be compact on H, and suppose that Ac is 
such that the linear equation 

oa(x) =Ac[T'(O;' )oa](x) (A3) 

has precisely one nontrivial, linearly independent solution 
[i.e., A c- 1 belongs to the (point) spectrum of T' (0; . ), the 
corresponding null space of 1 - Ac T' (0; . ) being one di­
mensional] . 

Then there exist precisely two nontrivial solutions of 
(A 1), differing only in sign, for A in a half-neighborhood of 
Ac (i.e., A >Ac or A <Ac)' A proof can be found in Pimbley's 
book. 12 

In Eqs. (2.9) and (2.10), there is the complication that 
a and.B satisfy coupled equations, the trivial solution corre­
sponding to a(x) =0 and 

A ioo 
.B(x> ) .B(x) = 1 + -2 dy L(x,y) --. 

11 0 .B(y) 
(A4) 

However, we can treat .B as an implicit function of a. On 
differentiating (2.9) and (2.10) functionally with respect to 
a, we find 

A (00 
oa(x) = r Jo y dy K(x,y) 

X [oa(y).B(x> ) + a (y)o.B(x > ) 

a 2(y) + y.B2(y) 

_ 2a(y).B(x> ) [a(y)oa(y) + Y.B(y)o.B(Y)]] 

[a2(y) + y.B2(y)]2 ' 
(AS) 
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A ("" 
8{3(x) = -rr Jo y dy L(x,y) 

x [ 8{3(y ){3(x > ) + {3(y )8{3(x > ) 

a 2(y) + y{32(y) 

_ 2{3(y){3(x> ) [a(y)8a(y) + y{3(y)8{3(y)]] . 

[a2(y) + y{32(y)]2 
(A6) 

These equations reduce, at a(x) = 0, to 

A Sa"" {3(x> ) 8a(x) = ~ dy K(x,y) -2- 8a(y), 
~ 0 {3 (y) 

(A7) 

8{3(x) =.! ("" d L(x ) [8{3(X> ) _{3(x> )8{3(y)]. -rr Jo y ,y {3(y) {32(y) 
(A8) 

The bifurcation equations (A7) and (A4) are, respectively, 
equivalent to Eqs. (3.1) and (3.2). The possible existence of 
a nontrivial solution of (AS) is irrelevent to the applicability 
of the theorem, since Eqs. (A7) and (AS) are decoupled 
from one another. 

We must now check the conditions of the theorem. The 
space is L 2, and the nonlinear operator T is given in implicit 
form by Eqs. (2.9) and (2.10). The oddness condition (A2) 
is clearly satisfied, and it is easy to check that T is thrice 
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Frechet differentiable. In Sec. III it is shown that (A7) is a 
classic Fredholm equation, which means that T'(O; . ) is 
compact on L 2. The fact that the null space of 
I -AcT'(O;' ) is one dimensional is implied by the analysis 
ofEq. (3.14) in Sec. III, in which it is shown that the solu­
tion is unique, up to a normalization. 
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A ~ie-t~eo~etical classific~tion .of the aberrations of systems modeled by asymmetric optical 
deVIces IS gIven. The claSSIficatIon is done on the basis of aberration order and axial symmetry 
of the first-order part. This leads to finite-dimensional (nonunitary) representations of 
sp ( 4,R) reduced with respect to its sp (2,R) subalgebra, with helicity and "symplectic spin" 
labels. Based on pure-magnifier systems, a weight label reproduces and completes Seidel's 
traditi.onal classification of axis-symmetric aberrations. Based on other first-order systems such 
as optical fibers, other classification schemes are indicated. 

I. INTRODUCTION 

In this series of articles,I.2 we study the Lie theoretical 
aspects of aberrating systems, i.e., systems whose action on 
phase space is nonlinear and amenable to expansion by aber­
ration order. 

First order corresponds to linear transformations of an 
ideal "design" system. Departures from linearity are termed 
aberrations. The model we regard here is that of geometrical 
optics, but applications and problems also lie in ring and 
linear accelerator design, wave optics, and radar detection. 
Reference 3 contains several basic accounts of these direc­
tions of inquiry. 

In the first two parts of this series, we considered aligned 
lens l and fiber2 systems in detail to third aberration order. 
Optical alignment means that the elements of such a system 
are all invariant under rotations around that common opti­
cal axis. For these systems, the aberrations have been given 
names such as spherical and oblique spherical aberration, 
circular and elliptic coma, astigmatism, curvature, and dis­
tortion.4 These designations have been attributed to Seidel, 
whose generally quoted papers in fact does not establish the 
full nomenclature and treats only meridional rays to third 
aberration order. No visible, systematic classification is 
known to the author for asymmetric optical systems. 

When no symmetry axis is present, the three-dimension­
al optics of two-dimensional screens requires the four-di­
mensional symplectic algebra sp( 4,R). In accelerator de­
sign,6 the program MARYLIE treats sp ( 4,R) -asymmetric 
magnetic elements; chromatic dispersion requires sp (6,R). 
Aberrations are handled in a Cartesian basis, by lexico­
graphical order of monomials. 

Our purpose here is to enlarge the sp (2,R) symplectic 
classification I to sp ( 4,R) and to present some specific re­
sults in aberration order 4. Section II recapitulates the con­
cepts of optical phase space,7-9 Lie operators and Lie trans­
formations,1O needed for the Dragt-Finn factorization II of 
symplectic maps by aberration order. We then present the 
problem of classification of aberrations in the basis provided 
by axis-symmetric optical systems of pure magnification. 
Section III proceeds to construct an appropriate basis for 

a) Member of Centro Internacional de Fisica y Matematicas ApJicadas, AC 
(Mexico). 

sp( 4,R) to accommodate asymmetric aberrations of any or­
der labeled by symplectic spin, Seidel weight, and helicity. 

The explicit expressions of the zero-helicity aberration 
generators has been given in Ref. 12 and appears developed 
in Ref. 9. They lead, in fact, a close parallel with the states of 
a symmetric-quantum harmonic oscillator with angular mo­
mentum classification of orbitals. 13 The Seidal third- and 
fifth-order aberrations coincide with the orbitals of the 
2s-1d and 2p-lfshells in the nuclear model. 

The introduction of helicity lifts aberrations out of 
sp(2,R). Section IV shows how the sp(4,R) multiplets 
build: each spin:i aberration multiplet unfolds into 2j + 1 
copies of different helicities up to j. For aberration orders 2, 
3, and 4, there are, respectively, 20, 35, and 56 independent 
aberrations. Section V contains the analytical formulas for 
the general case and tables for orders 2 and 3. 

The simple model of multi pole kicksl4 and quasiftat re­
fracting surfaces is given in Sec. VI. The concluding discus­
sion in Sec. VII gives some pros and cons of the Lie-theoreti­
cal classification of aberrations. Selection rules for 
aberration coefficients in refracting surfaces9,12 as well as 
computational simplicity favor the Cartesian monomial 
classification of aberrations in optical elements. Full optical 
systems designed on pure magnifier and fiber properties, we 
contend, may profit from the insight of Lie methods. 

II. OPTICAL PHASE SPACE AND sp(4,R) 

The phase space of geometrical light rays that cross a 
reference plane z = 0, is parametrized by a position two-vec­
tor qER 2 (the intersection of the ray with the plane), and a 
momentum two-vector p. The latter is the projection of a 
three-vector ii along the rayon the reference plane. The 
length of the three-vector is n (q), the refractive index of the 
medium at q. We introduce Cartesian coordinates on the 
plane and write 

(2.1 ) 

We should distinguish by a sign s, rays in the + z direction 
(s = + 1) that we regard as "forward," and "backward" 
rays in the - z direction (s = - 1). Optical systems act 
through canonical transformations (i.e., symplectomor­
phisms) of phase space, preserving the Poisson brackets of 
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functions f, g thereof, 

{/,g}(w) = L (at ag _ a/ ag ) = (Ig)(w), 
j = "',y aqj apj Pj aqj 

(2.2) 

at least locally. In the last expression we define the Lie opera­
tor lassociated to the function/(w). We use the circumflex 
notation as in Refs. 1 and 2. Other common notations are ;f:,7 

{f, ~ }, 10 / Op.I5 A fundamental property of the association 
I-lis that it carries Poisson brackets into commutators, 

({/,g})~ = [/,g]. (2.3) 

Lie operators generate Lie trans/ormations lO G through 
the exponential map 

(2.4 ) 

Lie transformations are locally canonical; those having the 
origin of phase space invariant may be written as a factorized 
produce I 

Gf = .. 'exp/s exp~ exp/3 exp/2' (2.5) 

where /N (w) is a polynomial homogeneous of degree N in 
the components of w. This is a formal expansion and we 
cannot at present say much about its global properties except 
in the framework that follows. 7 We simply replace the opti­
cal system by a system that exhibits a mechanical-type mo­
mentum. We disregard the bound Ipl<n(q), i.e, that the 
space of directions is a sphere, 16 in favor ofpeR 2. This allows 
us to suppress the backward rays to treat metaxial rays in 
regions still "far" from rays perpendicular to the optical 
axis. 

For N = degr/N' we note that 

degr{/,g} = degr/ + degr g - 2. (2.6) 

From (2.4) and (2.6) we see thus that); returns the degree 
of g and so generates linear transformations of the phase 
space vector w corresponding to paraxial optical systems 
(i.e., Gaussian thin lenses, small angles). Such systems are 
well known to be amenable to 4 X 4 matrix algebra6 (2 X 2 
matrices for axis-symmetric systems) that indeed necessi­
tate an R 4 phase space with peR 2. 

Due to (2.6), the general factor exp IN' N> 2, generates 
aberrations, i.e., nonlinear transformations of phase space as 

explNw = w + {/N'W} + (l/2!){/N'{/N'W}} + ... 

=W+WN_ I +W2N - I + "', (2.7) 

where WN -I (w) is a function of degree A = N - 1 of w, 
definedasA = N - 1 aberration order of the Lie transforma­
tion eXPPN' On/N, the number dN of independent mono­
mialsp", mXpy myq", nxqy ny, m", + my + n", + ny = N, is d l = 4, 
d2 = 10, d3 = 20, d4 = 35, ... , dN = f,(N + 1)(N 2 + 5N 
+ 6). For N> 2, d N gives the number of independent aber­

rations of order A = N - 1. 
The problem of classification of aberrations is that of 

labeling them in accord with some clear criterion. The first 
label, aberration order A, has been given. This is tailored to 
the Dragt-Finn factorization (2.5) and seems to correspond 
closely with what is needed in practice. The second criterion 
we introduce13 is that our interest lies around image-forming 
devices. Ideally, these perform linear maps of pure magnifi-
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cation 

(2.8) 

Unfortunately, aberration is unavoidable. This is due to 
the basic geometric fact that even free propagation by z in a 
homogeneous medium is already nonlinear: ~p but 

qt-+q + zp/~ (n2 - p2) the last summand is of size z tan (), 
where () is the angle between the ray and the optical axis. 
This transformation is generated by the optical Hamilto­

nian7 H(p) = - ~ (n2 - p2) (times the sign factor s if we 
were to include backward rays). Free propagation is the Lie 
transformation 

G -zH = exp(z~n2 _ p2) ~ 

= III ex (z (2k - 3)!! ( 2)k)~. (2.9) 
k= '" P (2k)!!n2k - 1 p 

The k th factor above is/2k , function of only the ray direction 
p, in the form of powers of p2 = p; + p;. (This is spherical 
aberration of order A = 2k - 1, excluding k = 1, i.e., N = 2, 
A = 1, the linear term.) Also, optical refraction surfaces ine­
vitablyaberrate.9 

The ideal magnifier (2.8) has two invariants, 
poq = p",q", + Pyqy and pXq = p",qy - Pyqx' The first is the 
generator of the transformation, while the second merits 
some attention, since its square is called the Petzval (or 
skewness) invariant in optics. 7,9 If p X q = 0, the ray is meri­
dional and contained in a plane with the optical axis; rays for 
which pXq#O are skew rays of the system, and those for 
which pXq = Ipllql aresaggital. The set oflinear transfor­
mations for which pXq is an invariant is the group 
Sp(2,R) XSO(2). The first factor is the set of all axis-sym­
metric optical systems generated by degree-2 polynomials in 
the rotation-invariant variables 

exp (ap2 + f3poq + yq2) ~ (:) 

= (cos m + ~ sinc m 2y sinc ~ ) (p), (2. lOa) 
- 2a SlUC m cos m - /3 SlUC m q 

m = ± ~4ay - /3 2, sinc m = m- I sin m, (2. lOb ) 

and the second factor that of pure rotations around the opti­
cal axis, 

R=(COS¢ 

sin¢ 
- sin¢). 

cos¢ 

(2.11) 

Canonical transformations of phase space preserve 
areas, 17 and pure-magnification devices, even in geometrical 
optics, contain a germ of the uncertainty principle in that 
they allow a reduction of image size qt---rl! - li q only at the 
cost of a spread in directions: pt---rl! + li P (in the peR 2 model). 
Pure rotators (2.11), on the other hand, do not exist in axial­
ly symmetric light optics. 18 These systems exhibit in addi­
tion the discrete space reflection symmetry Px ~ - p", , 
q",~ - q", but PY~PY' qy~y (across any meridional 
plane). Under reflection, p2, poq, and q2 do not change sign, 
but p X q does. Only the former three variables thus may 
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app.~r in the aberration functions of axially symmetric opti­
cal systems. 

The discussion in this section points to our use of the Lie 
operators of P'q and p X q to classify aberrations as, we 
should note, the associated Lie operators commute since 
{p.q, p X q} = O. Through their effect on phase space we see 
that the former is noncompact and the latter compact. This 
classification is not complete, however, as in the example7 of 
the degeneracy of astigmatism [generated by (p.q)2] and 
curvature offield (generated by p2q2), where both have zero 
eigenvalue under (p.q) A and (pXq) A. 

We shall now use the known structure of sp ( 4,R) to 
accommodate the linearly independent aberrations into 
multiplets where (p.q)A and (pXq)A will be weight opera­
tors, embedding the extant results1,12 on axis-symmetric 
sp(2,R) systems. 

III. sp(4,R) AND AXIS-SYMMETRIC ABERRATIONS 

The pure-magnifier matrix (2.8) is diagonal, but the 
pure rotator (2.11) is not. We thus begin by introducing the 
helicity basis of phase space 

P± = (l/..j2)(px ±ipy), q± = (lI..j2)(qx ±iqy). 
(3.1 ) 

The following expressions and brackets may be seen to hold: 

p+p_ = ~p2, q+q_ = !l, (3.2a) 

p+q_ + p_q+ = P'q, i(p+q_ - p_q+) = pXq. 
(3.2b) 

Lie operators are 

f= af ~+ af ~_ af ~_ af ~. 
aq_ ap+ aq+ ap_ ap_ aq+ ap+ aq_ 

(3.3 ) 

In particular, the basic Poisson brackets are now 

{q ± ,p ± } = 0, {q ± ,P+} = 1; {qU,qT} = {PU,PT} = O. 
(3.4 ) 

Magnification distinguishes between p and q while rota­
tion classifies w + and w _. In terms of the coordinates p +' 
P _, q +' q _ we may write the functions corresponding to the 
generators 18 of sp ( 4,R) in the Weyl-Cartan basis (see Fig. 
1); they are 

K ~ =q2+, Ko+ =p+q+, K t =p2+, 

K O
_ = q+q_, Kg = !(p+q_ + p_q+), 

K
O
+ =p+p-, 

K = =q2_, Ko- =p_q_, K.+ =p2_; 

L = !(p+q_ - p_q+). 

The two weight operators are described by 

Kg = !P'q, L = - (i12)PXq; 

( 3.Sa) 

(3.Sb) 

(3.Sc) 

(3.6) 

(3.7a) 

AO 1 (a a a a ) Ko =- p+--+p_---q+---q_--, 
2 ~+ ~_ ~+ ~_ 

A 1( a a a a ) L = - p+-- - p_-- + q +-- - q_-- , 
2 ~+ ~_ ~+ ~_ 

(3.7b) 

(3.7c) 
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FIG. I. Root diagram for sp(4,R). (For convenience we tilt it 45' with 
respect to the usual presentation of the C2 Cartan root diagram.) 

with /-l,A, = - ,0, + . The coordinates of the root vectors in 
the diagram will be a = (/-l,A,). 

We have several subalgebras worth noting. Our former 
work 1,2.9,12 regarded the "horizontal" monomials relevant to 
axis-symmetric systems,p2, P'q, and q2. These are the gener­
ators of the horizontal sp (2,R) subalgebra in Fig. 1: 

(3.8a) 

(3.8b) 

(3.9) 

In Ref. 9, the K~ were denoted simply as Ku' 
A second subalgebra is the "vertical" one of Fig. 1, gen­

erated by K 0+ , L, and K 0- • Since {K 0+ ,K 0- } = 2L it is the 
compact su(2) subalgebra. The two "diagonal" subalgebras 
are {!K t , !K = } - 2 U and {!K .+ ' !K ~ } = - 2 V with 
U = !(Kg + L) and V = !(Kg - L). The factor! in the 
Poisson brackets come from the roots being the "long" ones 
of the algebra. Poisson brackets between functions corre­
sponding to root vectors follow the standard form19 

A A A 

[xa,xll] =NaIlXa+ ll , Nail =N-a,-Il = -Nila . The 
root vectors at 90', if long, commute; if short, N(o, + ),( + ,0) 
= N(o, + ),( _ ,0) = - 1. At 135' we have N(o, + ),( _ , + ) 

= N(o, + ),( _ , _) = - 2 and N( +, + ),(0, _ ) 

= - N( _, + ),(0, _) = - 2. [The signs for the compact al­
gebra usp( 4) are simpler and may be put as Nail 

= la+JW·] 
For axis-symmetric systems involving only the horizon­

tal sp(2,R) of Fig. 1, the classification of aberration generat­
ing functionsfN' N = 2k even, is performed in the following 
way. We define the coordinates12 

and 

- (1I..j2}(51 + i52) = 5 + = (l/..j2)p2 = ..j2p+p_, 

(3.1Oa) 

53=50=P'q=p+q- +p_q+, (3.1Ob) 

(l/..j2)(51 - i52) = 5- = (l/..j2)q2 = ..j2q+q_, 

(3.1Oc) 

(3.11) 

Forp and qreal, the 5 ± ,50,51' and 1] are real whiles2 is pure 
imaginary. In the R 3 ~ space, the Sp (2,R) action (2.10) 
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leaves invariant the spheres 

S 2 = S i + S i + S ~ = S ~ - 2s +s -
= (poq)2 _ p2q2 = _ r/, (3.12) 

where 112 is the Petzval (skewness) invariant. In terms of 
these coordinates, we build 12 the solid spherical harmonics 
[Ref. 20, Eq. (3.153)] 

'.?Y-!,. (s) = [(2j + 1) (j + m)!(j - m)!/41TF /2 

1 (p2)m+n (poq)j-m-2n (q2)n 
X L-- -"--'--- --"---'~--

n 2m + 2n (m+n)! (j-m-2n)! n! ' 

with I m I ..;; j integers, and finally we build 

k'.?Y-!,. (p,q) = l1k- j '.?Y-!,. (s). 

(3.13a) 

(3.13b) 

The latter is an eigenfunction of Kg with eigenvalue m, sub­
ject to raising by K 0+ up)o m = j and lowering by K 0_ 

down to m = - j, and of L with helicity eigenvalue A = O. 
These functions provide the basis for the horizontal sp (2,R) 
aberrations on the zero-helicity plane; k - j = 0,2,4, ... , 
k - lor k, i.e.,j = k,k - 2, ... ,1 or O. 

In axial systems we may have only even powers of 11; odd 
powers of 11 are not allowed by reflection symmetry across 
meridional planes. In Ref. 13 we remarked that this symplec­
tic Seidel classification of aberrations placed them in one-to­
one correspondence with the states of a quantum harmonic 
oscillator, \II kjm , with k energy quanta, angular momentumj, 
and "magnetic" projection m along the axis So = poq, i.e., 
pure-magnifier systems. The magnetic classification axis 
may be chosen to conform to other systems such as fibers, 
where! (p2 + q2) = - iS2 is more convenient. An su(3) 
algebra of operators s; 1 asj , i,j = 1,2,3, may be formally set 
up to accommodate the aberrations of a given order 
A = 2k - I into completely symmetric su (3) multiplets re­
duced with respect to so (3), characterized by eigenvalues 
under the number operator 

A a a a a 
N=p+--+p_--+q+--+q_--, (3.14a) 

~+ ~- ~+ ~-
N
A kouj k . 

;:J'm (p,q) = 2k '.?YJ
m (p,q). (3.14b) 

A 

Note that N commutes with the sp(2,R) algebra (3.5) and 
(3.6), and is extraneous to sp( 4,R) in the sense that there is 

A 

no function N(p,q) whose Lie operator is N. The same re-
mark holds for the other su ( 3) generators except for the 
three obtained from (3.10), basically the so(3) subalgebra 
ofsu(3). 

It is not clear to us whether the algebra su ( 3) can be 
used beyond its role as a suggestive classification scheme. 
Recall that three-dimensional classical systems always ad­
mit an sue 3) algebra21 whose generators may be quite com­
plicated functions of phase space. 

The sp( 4,R) Casimir operator is a function of the num­
ber operator 

c= (Kgf - ~{Ko+ ,K O
_} + + (£)2 + HK o+,K o-} + 

- HK ! ,K = } + -l{K ~ ,K ~ } + = fN(N + 4), 
(3.15 ) 

where {.,.} + is the anticommutator. The corresponding 
classical function built out of the K;'s is identically zero. 
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The eigenvalues of(3. 15) are2k(k + 2). Sincetherepresen­
tations are built out of the symmetric product of basis func­
tions w;wj , etc., it is the totally symmetric one, with null 
fourth-degree Casimir operator. Also, from (3.13b) it is 
clear that the representations of the horizontal sp (2,R) con­
tained therein are in general 

j = N 12 = !(A + I) = k,k - I,k - 2, ... ,! or O. (3.16) 

We are dealing thus with the finite-dimensional (nonuni­
tary) irreducible representations ofsp(4,R) and sp(2,R); 
they will be in correspondence with the compact irreps of 
usp(4) = so(6) and usp(2) = su(2) = so(3). 

IV. THE HELICITY OF ABERRATION MULTIPLETS 

The basic dynamical observables of geometric optics (in 
a reference plane) are the two position components q +' q_ 
and the two momentum components p+, p_ given in Eq. 
(3.1). These are arranged in the lowest sp ( 4,R) multiplet 
shown in Fig. 2. This is not an aberration multiplet since 
these functions do not appear except in products for higher 
aberration multiplets. There are two horizontal sp(2,R) 
doublets q+,p+ and q_,p_. 

Simple (symmetric) product of two basic sp ( 4,R) mul­
tiplets yields the adjoint representation mulltiplet shown in 
Fig. 3, basically a reproduction of the root diagram in Fig. I. 
These functions also do not generate aberrations since their 
degree is 2 and they belong to h functions. They allow us, 
however, to see the role that the vertical su(2) subalgebra 
J1.lays in changing the helicity [i.e., the eigenvalue of 
L = (i/2) (pXq)] of the extreme - m sp(2,R) states. The 
subalgebra generators are 

A a a A_ a a 
Ko+ =P+a-q+-a ' Ko =p----q---

'P- q_ ap+ aq+ 
(4.1 ) 

A 

and L is given in (3.7b). 
For m = j, the vertical su(2) multplets will have the 

form 

(7),j _ '\i j+A j-A _ {(p2)j-A(..]2p+)U, j;;;;oA;;;;oO, 
-u A - ~p+ p -

- (p2)j+A(..]2p_) -u, -j";;A";;O, 
(4.2) 

with the same spin;/ integer or half-integer and helicity 
eigenvalue A under L. For A = 0 we have equal amounts of 
p +'s and p _ 's; we are then in one of the axis-symmetric aber­
rations (3.13). 

Now, we follow the highest A = j (or lowest A = - j) 
helicity sp (2,R) multiplet, starting from ~j ±j = 'Ppj± ' and 

112 

-112 

-1/2 

: 1/2 

I 

• 

m FIG. 2. The basic sp(4,R) multiplet. 
Continuous lines join the two "horizon­
tal" sp(2,R) doublets. 
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I I 
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-I I 1 1 
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1 • 

1 
1 
1 
1 
I 

~ 

FIG. 3. The adjoint sp( 4,R) multi­
plet. Dotted lines join the "vertical" 
su(2) multiplets. 

A 

move down sp (2,R) with K 0_ • This yields 

S ~j = '}}p~+ mq~ m, m = j,j - 1, ... , - j, j>O. (4.3) 

Both the axis-symmetric aberration functions (3.13) and 
the highest-helicity aberration functions (4.3) transform in 
the same way under the group Sp(2,R) of paraxial, axis­
symmetric optical transformations. 

The simple product of two highest-weight states, (p2)j, 

and (p ± ) 2j, constitutes a highest-weight state of sp (2,R) 
with Seidel weight m = j = jl + j2 and helicity ..1.= ±j2' In 
particular, (4.2) shows that the sp(2,R) highest states ~~ 
of spin m = j and helicity A = AlA I, A = sgn A, are products 
between '3I}=111 (p2) andStAI (Ph)' 

When ~~ is subject to repeated action of the sp(2,R) 
lowering operator K 0_ , it yields the m partners of the 
sp(2,R) multiplet of spin j, through m =j, j - 1, ... , - j. 
These will be denoted k g'j,;;t(p,q) and given below. So, every 
multiplet of axis-symmetric aberrations of integer spinj gets 
j positive-helicity partners ..1.= 1,2, ... ,j andj negative-heli­
city partners A = -1, - 2, ... , -j;theirhighestm =jstates 
belong to a (2j + 1 )-dimensional vertical su(2) multiplet. 
This is shown in Figs. 4 and 5 for aberration orders 2 and 3. 

The coupling of '3Ij - 1A I and SA to aberrations g'j,A of 
total symplectic spin j and helicity A thus takes place 
through the "completely stretched" Wigner coefficients 
Cj,;,,!:,!~~ + m, that will be detailed in the next section. 

What has been said for the sp ( 4,R) multiplet that con­
tains (p2y [thefivesp(2,R) quintuplets of Fig. 5] is valid for 
the three triplets in the same figure, except that we need not 
resort to su(2)-lowering arguments [which mix sp(2,R) 

, , , 
1 

m 

FIG. 4. The sp( 4,R) multiplet corresponding to second-order aberrations. 
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FIG. 5. The sp(4,R) multiplet corresponding to third-order aberrations. 

multiplets].1t is clear that if we have an sp( 4,R) multiplet of 
aberrations labeled kg'~ and we multiply by the sp(2,R) 
singlet'T] = p X q ofzero weight and degree 2, we obtain aber­
rations k+ Ig'~ in an sp(4,R) multiplet corresponding to 
aberrations of order A increased by 2. In this way, the three 
sp (2,R) triplets and the singlet in Fig. 5 for third aberration 
order, are the higher repeaters of the three triplets and sing­
let of first order in Fig. 3. 

A similar compounding between spin and helicity ap­
plies to half-integer symplectic spin multiplets correspond­
ing to even aberration order. The latter contain no axis-sym­
metric aberration multiplets. Thus Fig. 4 contains the 
highestj = k = ~ (4X4 = 16)-plet, none of whose members 
have zero helicity; and aj = k - 1 =! (2X2 = 4)-plet, re­
peater by one power of 'T] of the basic representation of 
sp ( 4,R) in Fig. 2. 

In abstract, thus the sp ( 4,R) :::> sp (2,R) classification 
scheme we propose here yields the aberration functions 
k g'j,;;t(p,q) labeled by (k,j;A.,m), where we have the follow­
ing. 

k: labels the aberration order A = 2k - 1 = 2,3,4, ... , by 
A 

k = ~, 2, ~, ... ; it is the eigenvalue of N, the number operator 
(3.14a), N = 2k =A + 1. 

j: symplectic spin,j = k,k - I, ... ! or O. The power of the 
skewness variable 'T] = p X q in the aberration function is 
k-j. 

A:helicity,A = j,j - 1, ... , - j, eigenvalueofL in (3.7b); 
gives the excess of w + 's over w _ 'so 

A 

m: Seidel weight, m = j,j - 1, ... , - j, eigenvalue of Kg 
in (3.7a); gives the excess ofp's over q's. 

Axis-symmetric paraxial transformations of aberrating sys­
tems will only mix m's, respecting k,j, and A. 

We may write the generating polynomial of an asymme­
tric aberrating system of order A = 2k - 1 as 

k j j 

12k (p,q) = L L L k~,;;t k g'~(p,q), (4.4) 
j=00r!A= -jm=-j 

where the k~,;;t are the sp( 4,R) :::>sp(2,R)-Seidel aberration 
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coefficients. The generic association between the Seidel m­
label and the christened axis-symmetric aberrations4 was 
given in Ref. 13. Enclosing in parentheses aberrations that 
are present only for order 5 or higher, they are 

m=j 
m=j-l 
m=j-2 
m=j-3 

m=3-j 
m=2-j 
m= I-j 
m= -j 

spherical aberration, 
( circular) coma, 
(oblique spherical aberration), 
(nameless) , 

(elliptical coma), 
curvature of field/astigmatism, 
distortion, 
pocus. 1 

The traditional classification is neither complete (pocus has 
not openly appeared), nondegenerate (by j), nor is it easy to 
see departure directions for asymmetries. We offer (4.4) as 
an attractive alternative. 

We end this section with a word on reality:px,Py, qx' 
and qy are real, sop,*+- = p _ and q,*+- = q _ are complex con­
jugates; 'lJ is real. It follows that (,q'A)* =,q' -A, as may be 
seen on the sp(2,R )-highest weight states. Iff2k (p,q) is to be 
a real polynomial, then the complex aberration coefficients 
in (4.4) must relate as 

(4.5) 

The operation of complex conjugation p + ....... p _, q +.......q _ is 
equivalent to the reflection Py ....... - Py' qy ....... - qy. If the 
asymmetric system is even (or odd) under the latter trans­
formation, then k vi;: = + k uim- A (or - ) and the k vi;: are 
real (or pure imaginary). Reflecting across the orthogonal 
line Px ....... p - Px, qx ....... - qx effects p+ ....... - p_ and 
q + ....... - q _, placing a factor of ( - 1 )2k to what was said 
above for aberrations of orders 2,4, ... (k =~, ~, ... ). If the 
asymmetric system is even (or odd) under the last reflection, 
the k vi~ are pure imaginary (or real). Ifboth reflection sym­
metries are present and even (p....... - p, q ....... - q) then all 
even-ordered aberrations will be zero. 

v. THE ASYMMETRIC ABERRATION FUNCTIONS 

There is an evident advantage in uniform notation for 
the identification of the aberration functions with standard 
special functions such as the solid spherical harmonics '.?jI~, 
normalized by integration over the unit sphere (Ref. 20, Sec. 
2.10). These functions involve numerical square roots, as 
( 3.13) shows, for factors of the functions themselves, under 

'" the action of K o± ' and in the representation matrices carry-
ing the Sp (2,R) paraxial transformations. 

In geometric optics we have not yet required the integral 
over the sphere, i.e., the subspace of rays with fixed skew­
ness. Moreover, square-root factors are not included in the 
traditional scale of the known axis-symmetric aberration co­
efficients.7 Finally, symbolic and numeric computer pro­
grams22 run faster when no square roots are present. For this 
reason we introduced in Ref. 1, and kept in Ref. 9, the unnor­
malized symplectic aberration polynomials23 
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= 
41r(2j+ l)(j+m)!(j-m)!'.?jIj (f:') 

(2j-l)!! m ~ 

=j!(j + m)!(j - m)! L (p2)m+n 

(2j)! n (m + n)! 

(2poq)i-m-2n (q2)n 
X --

(j-m-2n)! n! ' 
(5.1a) 

k~~ = (pXq)k-j~~. (5.1b) 

As a check, the coefficients of the terms (p2)Q (p.q)b(q2)c 
are all positive and sum to unity. 

The aberration polynomials (5.1) are such that 

j~~ = (p2y= (2p+p_'1, j~j_j = (q2y= (2q+q_'1. 
(5.2) 

They raise and lower through 
'" ° k OYJj _ • k OYJj K + a'm - (m - J) a 'm +" 

KO k~j = (m +J') k~j . - m m-l 

(5.3a) 

Indeed, our choice of the extreme-helicity states in (4.3) was 
made so that also 

"'0 A I I A K + S m = (m - 11. )S m + l' 

"'0 A I I A K _ S m = (m + 11. )S m _ " 

(5.3b) 

with the same form for the coefficients. 
Now we build the sp( 4,R) symplectic harmonics la­

beled in the last section through defining first the highest­
weight state (A = sgn 11.), 

k t7i'j,A _ 'YIk - j OYJj-IA ISA 
.;xj -" a j_ AlAI 

= (pXq)k- j(p2)j-IAI(v2PA)2IAI. (5.4) 

We construct the rest of the j multiplet through demanding 
that (5.3) hold for the k,q'1;!; as well. ApplyingKO_ to (5.4) 
we see that the general weight - m aberration polynomial is 
given by the linear combination 

k,q'J,A = 'YIk-j~Cj.IA I~j-IAISA 
m ., ~ m.p.. m -It Jl' (5.5a) 

I' 

where the coefficient C{;!~I is related by root factors to the 
stretched su(2) Wigner coefficient [Ref. 20, Eq. (6.177)]. 
Recursion relations found from applying K 0_ and the base 
case (5.4) yield a coefficient in terms of binomial coefficients 
with no square roots, 

j,IA I _ (j + m ) (j - m ) ( 2j ) - 1 

C m
,l' - \111. I +Ii- \111. I-Ii- 2111. I . 

We note that the coefficients sum to unity. 

(5.5b) 

The closed analytic form for the asymmetric aberration 
polynomials is thus 

k ,q'1;!;(p,q) 

= [(2j)!] -1(2111. I )!2IA l(j -111. I)!(j + m)!(j - m)! 

(5.6) 
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TABLE I. Second-order aberration polynomials. 

3/2 ..P'~~~.3/2 = S ~~~ = 2312p3+ 

3/2 ..P'~~~.3/2 = S ~~~ = 23/2p2+ q + 

3/2..P'~~~.1/2 = ~:S:~~ = 21/2p2p+ = 23/2p2+p_ 

3/2..P'~~~.1/2=!~:SI~2112 +i~~S:~~ =21/2~(p2q+ +2poqp+) 

where the coefficients of p':+p":..._qn.; q~ sum to 'l!. In the 
multiplet diagrams, reflection in helicity is 

k.P'{;, - A(p,q) = (k .P'{;,A(p,q»)* = k.P'~ (w + ++w _). 

(5.7a) 

Similarly, reflection in Seidel weight is obtained as 

k.P'j~m(p,q) = (_l)k-jk.P'j';;«q,p). (5.7b) 

The last operation exchanges p's and q's, including the TJ 
factor; hence the sign. 

In Tables I and II we give the symplectic aberration 
polynomials of orders 2 and 3 (Figs. 4 and 5) in the normali­
zation (5.6) for the upper-right quadrant of the multiplet. 
Reflections in A and m through (5.7) yield the full multiplet. 

As we said in Sec. II, for a given aberration order there 
are d 2k =! (2k + I) (2k 2 + 5k + 3) independent 2k th-or­

der monomials in p';Xp;Yqx nxqy ny; we can count the same 
number of k5's. The coefficients to pass from the latter to 
the former are present in (5.6); the inverse transformation 
coefficients have a recursion relation reported in Ref. 12 for 
zero helicity. 

The role of the aberration polynomials k.P'f: is not only 
to generate aberrations, but to serve as homogeneous space 
for the optical group action linearized thereby. If we return 
to (2.7) withf2k written in the symplectic basis as (4.4) and 
write the basic quadruplet 1/2.P':';2A. for w, then clearly we 

TABLE. II. Third-order aberration polynomials. 

2..P'~,2=S~ =4P'. 

2..P'i,2 = Si = 4p3+ q+ 

2 ..P'~.2 = S~ = 4p,+ i+ 

2..P'~.I=I~:S: =2p2p2+ =4p3+ p _ 

2..P'i·1 =! 1 ~:S~ +! I~~S: = p2p+q+ + p.qp,+ 

2..P'~,1 = ~ l~lSI_1 + i I~~S~ + ~ 1~1_ISl 

2 ..P'~'O = 1 ~~ = (p2)2 = 4[1+ p2_ 

2..P'i'O = 1 ~i = p2p.q 

2 ..P'~'O = 1 ~~ = Hp2q2 + 2(p.q)2] 

2..P'!;,1 = ."s~ 

2..P'!;,O=."I~~ 

2 ..P'g'o =.,,2 
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are in need of expressions of the Poisson brackets between 
the .P"s. To our knowledge, this operation has not been stud­
ied within representation theory. We may state, neverthe­
less, the following structure with selection rules for the in­
dices: 

j+/-I 
{k.P'lm·,A, k'.P'lm"'1-'} = ~ pj/j" k+k'-I.P'r.A+A' 

~ m.m' m+m' . 
r=lm+m'l 

(5.8) 

This also defines the Lie structures of the universal covering 
algebra of the one generated by the basic quadruplet, and 
those of its aberration algebras of order A briefly constructed 
in Ref. 1. We note in (5.8) that the weight labels A and m 
compose additively, k is diminished by 1 [cf. (2.6) ], and the 
sum ranges only over the j" values present at the point 
(m + m',A + A') on the multiplet diagram. The maximal 
multiplicity occurs nearest to (0,0) and is the integer part of 
k + I for asymmetric aberrations. For zero helicity, the re­
sult (5.8) involves only sp(2,R) and the coefficients are giv­
en in terms of so (3) Wigner coefficients in Ref. 9. 

VI. EXAMPLES: FLAT AND QUASI FLAT REFRACTING 
SURFACES TO FOURTH ABERRATION ORDER 

Let us consider two optical model elements to visualize 
the effect of asymmetric aberration on light rays: flat and 
quasiflat refracting surfaces. 

Flat refracting surfaces exist as Fresnel lenses, such as 
may be seen in the back windows of some vans, with groves 
that may not be circular and/or of varying depth. The action 
of a flat Fresnel lens on optical phase space is to change the 
direction of all rays at the surface, namely )JI--+p'(p,q) and 
q~' = q. Since the transformation is canonical, p' must be 
of the form p + K'(q) and this is produced by the operator 

(6.1 ) 

We shall call K(q) the kick function since the model also 
applies to a potential kick in mechanical systems where the z 
axis is time, and we shall speak of multipoles, as in the thin­
lens approximation to magnetic optics. 

The expansion of the general kick function K(q) into 
aberration polynomials is 

K(q) = 

'" k L L Kik.P'k..:.\(q) 
k=0.1I2 •... A= -k 

'" k L L q2k(Ci cos UtP + Si sin UtP), 
k=0.1I2 •... A=00r1l2 

(6.2a) 

(6.2b) 

In the last expressions we have written qx = q cos 1,6 and 
qy = q sin 1,6, so kfrk:...\ (q) = q2ke2iA.<P and the coefficients are 
C i = 2 Re Ki and S i = - 2i 1m Ki. All other coefficients 
of k .P'f:, m-:;f - j, are zero. The fr's present are only those 
of the leftmost vertical su(2) multiplet in Figs. 2-5. 

The k = a term is a constant and of no import (the Lie 
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operator of a constant is zero). The k = ! terms correspond 
to a linear (free-fall) potential kick, a thin prism (a Fresnel 
lens with straight groves), or a "thin" magnetic dipole 
across the beam axis. Being of first order, they are excluded 
from our treatment here. 

The k = 1 terms are the generators oflinear transforma­
tions of phase space; they are produced by harmonic oscilla­
tor potential kicks, thin (Gaussian) lenses, and thin magnet­
ic dipoles along the beam axis modeled by the 1 g' ~Ol = q2 
term. The other two 1 g' ~'\ 's yield the independent quadru­
pole kicks q x qy and q; - q; that are in sp ( 4,R), linear but 
not axis symmetric. Since they produce linear transforma­
tions, they do not count among the aberrations. 

Kick functions of angular dependence - sin (Mt/J) may 
be called 2M poles; this may be used to model magnetic 2M­
pole arrangements of 2M alternating magnetic poles in a 
plane normal to the optical axis, and thin. Since 2M poles are 
invariant under rotations around the optical axis by 2rr 1 M, it 
follows that a pure 2M-pole kick function may expand in 
(6.2) only into helicity components A = 0, ± M 12, 
± M, ... , and these may appear only for k;p IA 1 = M 12, i.e., 

for aberration order A;pM - 1. Thus sextupoles (M = 3, 
k = V require at least second aberration order, octuples 
(M = 4, k = 2) require at least third order, etc. 

Since each exponential factor terminates after the first 
term, the required Poisson brackets are, from (3.3), 

{ kg'k,A n } = _a_ kg'k,A (q) 
-k'r ± aq+ -k 

=../2(k +A) k-1I2g'k--<Y-='113/12
• 

The series may be summed to 

as is evident from (3.3). 

(6.3a) 

(6.3b) 

A quasif/at refracting surface is an interface z = b( q) 
between two different optical media with refractive indices 
n, n', that coincides with the reference plane up to second 
derivatives at the chosen optical center. This means 
b(O) = 0, ab laqlq=o = 0, and a 2

b laqq aq, Iq=o = O. We 
may expand the quasiflat surface b(q) in k g'k...:.Adq)'s as in 
Eqs. (6.1) with coefficients where b g = b 1 = o. We exclude 
here the axis-symmetric Gaussian thin-lens coefficient b ~ 
since it produces linear transformations (q~, ~p 
+ 2b~q) that would take us beyond the purpose of simple 

illustration. We exclude also the Gaussian thin saddle lenses 
b l± 1 since they lie in sp ( 4,R) outside sp (2,R ). 

Unlike multipole kicks, quasiflat surfaces are not quite 
flat. See Fig. 6. A ray crossing the reference plane at q in 
medium n, strikes the interface b at q after free flight by a 
distancez = b(q). This is described at the reference plane by 
virtual free flight back, in medium n', by - z. The intersec­
tion with the plane is q'. The effect of an arbitrary refracting 
surface on optical phase space was introduced in Ref. 24 and 
described in the articles in this series1,2 and in Ref. 9, so we 
need not repeat the derivation. It is shown that the refract­
ing-surface transformation is a canonical transformation 
thatJactorizes in the manner described in Fig. 6 into two root 
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q 

n z 

FIG. 6. Refraction at the interface between two media interpreted as a 
transformation at the reference plane. 

transformations 

§n,n';' = Rn"Rn-::d, (6.4) 

each of which is canonical and, written in the helicity basis, is 

(6.5a) 

Observations that have been made before in this regard 
are that this set of equations solve implicitly for q out of 
( 6. 5b ). This process is amenable to expansion by aberration 
order; using symbolic computation programs, we have 
found explicit expressions to aberration order 9 for arbitrary 
axis-symmetric surfaces.22,25 Here we proceed by hand 
through fourth order for asymmetric quasiflat surface in­
volving k =~, 2, and ~. We abbreviate the surface shape in 
(6.2) as 

b(q) = b3(q) + b4(q) + b5(q), 
k (6.6) 

b2k (q) = q2k L bie2
;)''''. 

A= -k 

Keeping terms in phase space to the aberration order, and 
this plus one in (6.6), we expand the inverse root function in 
(6.5b) and find 

q ± = q ± + (b3 + b4 + b5)(q) 

X [(lln)p ± (p 2/2n3)p ± + ... ] 
= q ± + (lIn)b3(q)p ± + 0-5 

=q± + (lIn)b3(q)P± +0-5' (6.7) 

In the last step we have replaced the left-hand side, q, into 
b3(q) obtaining b3(q) plus terms beyond aberration order. 
The fact that q # q shows that the quasiflat surface is not 
simply a flat kick; the summand b3(q) p ± is of degree 4 and 
the distinction with kicks lies thus beyond aberration order 
3. 

We now replace the result (6.7) into (6.5a) expanding 
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the square root in the same manner, 

p± =P± + (n - L_ .. . )_a_(;3 +;4 + ;s)(ij) 
2n dq+ 

a = p ± + n-!I-(;3 +;4 + ;5) (q) 
uq+ 

p+p ~r ( ) -----~3 q +"'s' 
n aq+ 

(6.8) 

In the last step we have noted that a;3/Oq is of degree 2 in q 
and, since the lowest cross term in (6.7) would be already of 
degree 5, we wrote a;3laq + "'s' The q+ derivative of the 
aberration polynomials are found from (6.3) . 

Now we want to write the aberration polynomials 
r 2k (p,q) that generate the root transformation (6.7) and 
(6.8) as a pure-aberration Lie transformation (2.5) with 
r2 = 0. We recall the results for pure kicks and proceed 
through aberration orders 2 and 3, 

3/2 

r3(q) = n;3(q) = n L ;112 3/2 ,q'3':~2 (q), (6.9a) 
A= -3/2 

2 

r4(q) = n;4(q) = n L ;~ 2,q'~A2 (q). (6.9b) 
A= -2 

The corresponding exponential series of the operators'3 and 
'4 acting on the position observables q do nothing, while on p 
they stop after the first term and account for the summands 
n a;3Iaq+ and n a;~aq+ in (6.8). 

The polynomial r5 responsible for fourth aberration or­
der in the exponential series yields the fourth-order term ofij 
and p through its first Poisson bracket with q and p, 

ars { } ~r - -a-- = rs,q ± = ----:>3(q)P ± ' 
'P+ n 

( 6.10a) 

ar { } a p+p_ a -a 5 = rs,P± =n~a 5(q)---~3(q). 
q+ q+ n q+ 

(6. lOb) 

The system is integrable because of the symplectic condi­
tion. 26 Its solution is 

(6.11 ) 

Thus the root transformation (6.5) to fourth order is 

Rn,s = .. 'exp[n;s(q) - (lI2n)p2;3(q) r 
(6.12) 

The quasiflat surface transformation (6.4) may be 2b;:: 
tained directly from the two root ones, sincelO ~eB 
= tlit?e[A,B J + ... , where A = r3 + r4 + r5 with n, and B the 

same with - n'; {A,B}-{r3,rS } is of degree 
3 + 5 - 2 = 6> 5 and lies beyond the aberration order. 
Hence the Lie transformation is 

Sn,n';' 

= ... exp [ (n - n' );s (q) _ (_1 ___ 1_\"2;3 (q)] A 
2n 2n'T 

Xexp(n - n');4(q)A exp(n - n');3(q)A. (6.13) 

The phase-space transformations w' = Sn,n';' W = R';;,t Ware 
also given by (6.7) and (6.8) through n~n - n' and 
lIn~1!n - lin'. 
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In the above expressions we may distinguish the kick 
terms present in (6.8) by the factor - (n - n'). They are 
functions only of q and belong to the "left edge" of each 
sp(4,R) mutliplet. The nonflatness term has a factor 
- (lIn - lin') in both q'± and p'± . The latter are the more 
interesting ones: forq,-± ' following (6.7) it is -p ± ;3(q); for 
p'± ' following (6.8) it is _p2 a;3( q)/aq + . A;3 term at the 
(k,j,m,)..) position (M; -~, [A =~, - M, oq]> is shifted 
in the former to (2,[j = 2,1]; - I,).. ± ~) and in the latter to 
(2,[j = 2,1,0];0,1,,1, ± ~I..; 1), with a mixture of two or three 
values ofthe symplectic spinj. We shall not go into details 
beyond this point; the explicit results in terms of the sp ( 4,R) 
aberration polynomials may be found using (6.3) and the 
two tables of Sec. V. 

VII. SOME FURTHER ISSUES AND CONCLUDING 
REMARKS 

It seems to us that Lie methods in aberrating systems 
require a balance between computational ease and math­
ematical thoroughness. The examples in the last section 
would also be quite tractable using the "unclassifiable"27 
monomials Cm+m_n+n_p",+-+p":..._qn.; qn.:: for both the aberra­
tion polynomials rk (p,q) and the nonlinear map of phase 
space pt---+p(p,q),q~(p,q). Indeed, if we ask only that the 
refracting surface be tangent to the reference plane at the 
optical center, we derived in Ref. 12 a set of selection rules9 

obeyed by the monomial aberration coefficients ofaxis-sym­
metric systems. Concretely, spherical aberration ([P2]k), 
circular coma ([P2]k-l p.q), and all aberrations generated 
by [p3]k-K (p'q)K, K = O,I, ... ,k, are zero. 

We may apply exactly the same reasoning to the asym­
metric surface ;(q) = ;crrquqT + ;UT",qUqTq", + .,. (U,T,l/J 
= +, - ) and obtain selection rules for the coefficients r of 

Rn", 

r2k (q) = L r m+m_n+n_p",+-+p":...-q"; q~ . 
m+ + m_ + n+ + 11_ = 2k 

(7.1 ) 

We shall not repeat the details since they follow closely the 
arguments presented in Ref. 9. We obtain 

rm+m_n+n_ = ° for n+ + n_..;I, (7.2a) 

i.e., the rightmost two columns of every symplectic aberra­
tion multiplet are absent: spherical aberration and circular 
coma, with all their helicity versions. For the third column 
from the right, we find 

rm m n n =0 for n+ +n_ =2 and m+=I=m_, 
+ - + - (7.2b) 

i.e., only the monomial aberrations p2q"; q~ , n + + n _ = 2 
(so A = 0, ± I) are nonzero. 

The point we want to emphasize here is that the selec­
tion rules are imposed by nature on the coefficients of the 
monomials p",+-+p":..._qn.; qn.::, not on the coefficients of the 
symplectic polynomials k ,q'j;:. By itself, this result would 
argue against the usefulness of our classification. This, we 
saw in Sec. II is based on pure magnifiers; it represents the 
"best choice of balance" between refracting surface transfor­
mations and free propagation (2.8), where only ikk<Xl (z) is 
different from zero. Principally, it is the symplectic spin j 
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that may be questioned for convenience. Let us therefore 
present the basics of another development that argues for the 
economy of Lie theory in aberration optics. 13 

Optical fibers with bends or other defects may be expect­
ed to suffer from asymmetric aberrations. Moreover, the Sei­
del aberrations of a fiber2 are bound to a paraxial harmonic 
oscillator motion and describe epicycles in the complex 
plane. A simpler description of their behavior becomes evi­
dent already for axis-symmetric systemsJ3 when we refer 
their weight (m) classification to the oscillator axis 

HOse = !(p2 + q2) = 1i(5+ + 5-) = - ;52' (7.3) 

The transformation from the Seidel axis for magnifiers to the 
coherent-state axis for fibers is through a (complex) rota­
tion of 1T /2 around the 51 = - ~ (p2 - q2) axis. This is Barg­
mann's transformation28 

[ 
1 . A] (p) 1 Cl exp - gl1T(p2 - q2) q = Ii . 

Under this transformation, the components of each 
sp( 2,R) spin multipletj mix only among themselves. Instead 
of a Seidel weight m, we shall have a "coherent state" weight 
m'; aberration order, sp (2,R) spin, and helicity are the same. 
The coherent state basis aberration coefficients now follow 
multiply periodic circular motion (with z) in the complex 
plane that does not surround the origin. The adaptability of 
the Lie classification scheme to the paraxial system under 
consideration will extend to the general asymmetric situa­
tion as well. 

In this article we have presented as the main result the 
classification of asymmetric aberrations; we have also 
brushed several issues we left aside as lateral, and questions 
remain to be answered. There is a need for more realistic 
examples of optical systems, analyzed and computed in 
greater depth. This we propose to do in future work. 
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The stabilit! ~nd symmetry breaking bifurcation of a planar liquid drop is studied using the 
energ~-CaSlI~llr method and. singularit! theory. It is shown that a rigidly rotating circular drop 
of radIUs r With surface tensIOn coeffiCient 'T and angular velocity 0/2 is stable if (0/2) 2 

< 3r/r. A new branch of stable rigidly rotating relative equilibria invariant under rotation 
through 1T and reflection across two axes bifurcates from the branch of circular solutions when 
(0/2)2 = 3'T/r. 

I. INTRODUCTION 

Bifurcation of systems with symmetry has been a subject 
of much interest in recent years. Symmetric systems are 
common in nature and even more common in the literature, 
as multidimensional bifurcation problems possessing sym­
metry are typically more tractable than asymmetric prob­
lems of comparable dimensions. The requirement that the 
bifurcation equation be equivariant under the action of a 
given group G, i.e., thatJ(g·x,A) = g1(x,A) for all gEG, can 
force the bifurcation equation to take on a relatively simple 
form. For example, if one considers a functionJ on R which 
is equivariant with respect to the Z2 action x -+ - x it is clear 
that J can be written as j(x2 )x for some function j: [See 
Golubitsky and Schaeffer) for a thorough presentation of the 
singularity theory approach to bifurcations with (and with­
out) symmetry.] 

The class of bifurcation equations with which we are 
particularly concerned here arise in Hamiltonian systems 
with symmetry. Using the energy-Casimir method (cf. 
Holm et al. 2

), one can typically find a combination C of 
conserved quantities such that a given (relative) equilibrium 
ofaHamiltoniansystemisacriticalpointofH + C, whereH 
is the usual Hamiltonian of the system. The bifurcation pa­
rameter may appear in either the Hamiltonian itself or in the 
added conserved quantities; if we denote the parameter-de­
pendent modified Hamiltonian by (H + C)"' then the ap­
propriate bifurcation equation is Dx (H + C)" (x) = O. 

Invariance of the Hamiltonian under a given group ac­
tion usually induces constraints on the form of its differen­
tial. In the analysis of a symmetric bifurcation problem it is 
important to exploit these constraints as fully as possible; 
behavior exceptional in an asymmetric context may be typi­
calor even necessary if all existing symmetry is taken into 
account. Several important generic properties of bifurca­
tions of Hamiltonian systems are presented in Golubitsky 
and Stewart.3 The present paper is largely the result of dis­
cussions with Golubitsky and Stewart; the lemma presented 
here is a variation on results due to Cicogna4 and Golubitsky 
et al. 5 

There are a number of well known, but as yet incom­
pletely understood, examples of bifurcation with symmetry 

breaking in hydrodynamics, including Taylor-Couette flow 
and the vortex breakdown. The energy-Casimir method has 
been applied to a wide variety of hydrodynamic problems 
with a great deal of success in recent years (see Holm et al. 2 

for a generous selection of applications of the energy-Casi­
mir method). In earlier works we have determined the Ham­
iltonian structure for free boundary fluid problems (see 
Lewis et al.6

) and formal stability for the two-dimensional 
circular liquid drop (see Lewis et al.7

); in Lewis,8 condition­
al nonlinear stability under the same hypotheses is estab­
lished. The method is readily applicable to analytic solutions 
(e.g., the Kelvin-Stuart cat's eye, cf. Holm et a1.9

) and 
should be implementable for approximate numerical solu­
tions. 

Our basic approach is to determine the stability of a 
relatively simple equilibrium flow by applying the energy­
Casimir method and then, at the point at which this flow 
loses formal stability, apply the techniques of symmetric bi­
furcation theory to gain information about the new, typically 
more complicated, solution branch. The techniques and gen­
eral results discussed here are not, however, restricted to 
problems in fluid dynamics; another class of examples cur­
rently being studied is the stability of coupled rigid bodies 
and spacecraft with flexible attachments; see Krishnaprasad 
and Marsden. JO 

. The p~per consists of three sections. Section II gives a 
bnef (and Incomplete) summary of existing results in this 
area. Section III contains a lemma outlining conditions un­
der which bifurcation of the critical manifold of an SO (2) 
invariant function on R2 can be shown to occur. Section IV 
discusses, as an application of the lemma, the bifurcation of a 
two-dimensional rotating liquid drop with surface tension 
~ro~ a rigidly rotating circular configuration. In future pub­
lIcations we hope to present some numerical studies of the 
drop configurations and possibly search for boundary bifur­
cations from the "flip" symmetric two-lobed branch. 

II. BACKGROUND 

Rotating liquid drops have been the object of intense 
study, both in the nineteenth century and in the last twenty 
years. While the original research was necessarily restricted 
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to the study of approximate theoretical and experimental 
models, recent work has benefitted greatly from the avail­
ability of computer simulation and elaborate and accurate 
experimental configurations. Swiatecki II provides a thor­
ough review of research in this area up to the early seventies. 

The principal analytic approach to the study of the equi­
librium configurations and their stability has been to analyze 
linearized models and low-order approximations of the actu­
al drop shapes. Analytic linear stability results for axisym­
metric drops held together by surface tension have been 
found by Chandrasekhar12 using the method of virials. Sec­
ond-order expansions for the evolution of a perturbed 
spherical drop have been developed by Tsamopoulos and 
Brown. 13 

Several thorough numerical studies of rotating liquid 
S · ~ fi' I drops have been made. Brown and cnven use a mte e e-

ment code to trace the bifurcations of an initially spherical 
rotating drop held together by surface tension; they analyze 
the linear stability of the solution branches and show general 
agreement with Chandrasekhar's analytic results. Benner l5 

has performed numerical studies of cylindrical (i.e., planar) 
drops under the effect of surface tension and traced the evo­
lution of small potential flow perturbations of the stationary 
circular solution. The results of his simulations indicate that 
these perturbations remain bounded for at least a short peri­
od of time. Both the calculations of Brown and Scriven and 
Benner assume that the drop possesses reflectional symme­
try across some axis; equilibria lacking this symmetry could 
conceivably appear through subsequent secondary bifurca­
tions. 

Experimental research regarding rotating liquid drops 
with surface tension dates back to Plateau's study offat glob­
ules suspended in a liquid of nearly equal density. The most 
dramatic recent research is that of Wang et 01. 16

; these ex­
periments, which involved free floating, acoustically acceler­
ated droplets, were conducted in near zero gravity in Space­
lab. The observed bifurcation of a family of two-lobed drops 
from a family of oblate, axisymmetric drops agrees qualita­
tively with both the analytic and numerical predictions, al­
though there are some unresolved quantitative discrepan­
cies. (In particular, the bifurcation from the axisymmetric to 
the two-lobed branch appears to have occurred somewhat 
earlier than predicted.) 

Ill. BIFURCATION LEMMA 

The initial step in the analysis of a given bifurcation is to 
establish that a bifurcation has, in fact, taken place. It is 
typically the case that if a known solution loses stability as a 
given parameter is varied, then a "transfer of stability" oc­
curs and another stable solution exists for nearby parameter 
values. This supposition must, however, be checked in each 
case. In complicated examples, e.g., those obtained from 
large or even infinite-dimensional systems by Liapunov­
Schmidt reduction, the task of determining points ofbifurca­
tion need not be trivial. 

At a point of bifurcation one typically expects to see a 
new one-dimensional solution branch emerge; a typical non­
degeneracy condition for bifurcation results is that only one 
eigenvalue of the system pass through zero at the point of 
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bifurcation. In problems without symmetry, or with discrete 
symmetry, this is an entirely reasonable assumption, but if 
the symmetry group is continuous, it may be impossible to 
satisfy. If a map/is equivariant under the linear action of a 
group G, then the following situation occurs. Ifx is a zero of/ 
then, for any gEG, g·x must be a zero as well, since 

/(g·x) = g1(x) = 0 

if/ex) = O. Thus the solution branches are made up of orbits 
of the group action. If ~ acts freely on a given solution 
branch, then the dimension of that branch cannot be less 
than the dimension of G. Even if the action is not free, it may 
still force the solution branch to be multidimensional, imply­
ing that at the point of bifurcation multiple eigenvalues pass 
through zero simultaneously. In this case many standard 
bifurcation theorems may not be applicable. 

If analyzed strictly with regard to dimension, the study 
of bifurcation problems with continuous symmetry groups 
may appear to be extremely difficult. In fact, the multidi­
mensional solution branches are usually redundant; all es­
sential information about the bifurcation may be obtained by 
studying a representative point in the orbit swept out by the 
group action. In some cases it is feasible to explicitly reduce 
the original manifold by the group action, but there are cir­
cumstances under which this reduction can be somewhat 
complicated. For example, if one considers a linear group 
action on a vector space, the action at the origin is not free 
and the reduced space may fail to be a manifold at that point. 
Thus, if one is considering a bifurcation from the "trivial" 
solution (O,A), analytic difficulties arise exactly at the point 
of interest. In such cases it seems preferable to leave the state 
space unaltered and instead generalize the usual criteria for 
bifurcation to account for the redundancy induced by the 
group action. The central result of this section is a simple 
generalization to the case of the group SO(2) acting on H2. 
(In this case both eigenvalues pass through zero simulta­
neously at a point of bifurcation never leaving the imaginary 
axis.) 

The following lemma is a modification of results of Ci­
cogna4 and Golubitsky et 01.5 The idea behind the lemma is 
to split the bifurcation map into a scalar function that de­
pends on the bifurcation parameter and a multidimensional 
map that is independent of the parameter and equal to zero 
at the bifurcation point; one then applies the implicit func­
tion theorem to the scalar equation to establish the existence 
of a new solution branch. The second result in this section is 
an application of the lemma to the differential of an SO (2) 
invariant function on R2, where the restrictions imposed on 
the function by SO (2) invariance guarantee that the decom­
position of the differential into scalar and vector-valued 
components is possible. 

Lemma 1: Let Vbe a vector bundle over a manifold M 
and AER. Let F be a A-dependent section of V. Assume 
F(x,A) = g(X,A )·h(x) for some (smooth) maps g: M X R 
-Randh:M- V. Let So = {x:h(x) = O}. Ifforsomepoint 
(Xo,Ao) with XoESo we have 

(i) DxF(Xo,Ao) = 0; 
(ii) Dxh(Xo) #0; 
(iii) Dx.<F(Xo,Ao) #0, 
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then a branch (or possibly family) of solutions (i.e., points 
mapped into O) bifurcates from the trivial solution manifold 
So at (Xo,A,o)' 

Proof 

0= DxF(xo,A,o} 

= Dx g(Xo,A,o)h(Xo) + g(Xo,A,o)Dxh(Xo) 

implies g(xo,A,o) = 0, since xESo implies h(Xo) 0 and, by 
(ii), Dxh(Xo) #0. Similarly, 

O#Dx;.F(xo,A,o) 

= DAg(Xo,A,o)Dxh(Xo) 

implies D Ag( xo,A,o) # O. Thus we can apply the implicit func­
tion theorem to g and find a function A: M ..... R such that 
g(x,A(x») = 0 for all x in a neighborhood of Xo. It follows 
that there must be a set of solutions ofF = 0 passing through 
So at (Xo,A,o)' • ' 

We now specialize the above result to the study of criti­
cal points of an SO(2) invariant function on R2. 

Corollary 1: If 
(i) I ]R2 X R ..... ]R is (smooth and) invariant under the 

standard SO(2) action on ]R2; 

(ii) Dxx f(O,O,Ao) = 0 for some .1.0 ; 

(iii) Dxx;. f(O,O,A,o) #0, 
then a branch of critical points off emanates from the trivial 
critical point branch (O,O,A) at .1.0 ' 

Proof The invariance ofl R2XR ..... R under the SO(2) 
action implies the existence of a function /: R X R ..... R such 
that/ex, y,A,) = j(x2 + y2,A,). (For smoothness of], see Go­
lubitsky and Shaeffer. I ) Identifying T*]R2 with R2XR2, it 
follows that 

Dx f(x, y,A,) = aj (x2 + r ,A)(2x,2y). 
ar 

Thus, letting g(x,y,A,) = (ajlar)(x2 + y2,A,) and h(x,y) 
= (2x,2y), we have 

F(x, y,A) = Dx f(x, y,A) 

= g(x,y,A)·h(x,y). 

Conditions (ii) and (iii) imply that 

DxF(O,O,A,o) = Dxx f(O,O,Ao) 

=0 
and 

Dx;.F(O,O,Ao) = Dxx;. f(O,O,A,o) 

=1:0. 
Differentiating the linear map h gives 

Dxh(O,O} = (~ ~) . 
Thus the conditions of the lemma are satisfied and a branch 
of nonzero solutions of F = 0, i.e., critical points off, must 
branch from (O,O,Ao)' • 

Remark: The above result for SOC 2) acting on R2 can be 
generalized to the case of an n dimensional Lie group G act­
ing on an n + 1 dimensional manifold JI. If a function I 
JI X R ...... R is G invariant, then Df typically lies in a one­
dimensional subspace of the cotangent bundle of JI; thus, if 
the appropriate nondegeneracy conditions are satisfied, the 
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lemma can be applied. More precisely, letl JI ..... R be a G 
invariant function, xEJi and 0(s) be a curve in G tangent to 
a vector seY , the Lie algebra of G, at s = O. Differentiating 
the equality f(0(s)'x) =f(x), one sees that Dxf(x) 
'SJE (x) = O. Here SJE (x) denotes the infinitesimal gener­
atorofS,definedbYSJE(x) = (dlds)!s=o 0(s)·x. [Forex­
ample, in the case of ]R2 with the usual SO(2) action, 
lJE (x) = iXx.] Lets 1, ... ,snbeabasisof Y.Atanypointx 
in JI at which G acts freely, S ~ (x), ... , S~ (x) span an n­
dimensional subspace Ex of Tx JI. Then Df(x) must lie in 
the one-dimensional subspace E; of T: JI consisting of one 
forms annihilating Ex. Any nondegenerate local section of 
E; will serve as h, so that the lemma may be applied. 

IV. ROTATING PLANAR LIQUID DROP 

As an application of the preceding results, we consider a 
planar liquid drop consisting of an incompressible, inviscid 
fluid with a free boundary and forces of surface tension on 
the boundary. The dynamic variables are the free boundary 
l: and the spatial velocity field v, a divergence-free vector 
field on the region D~ bounded by l:. The surface l: is an 
element of the set Y of closed curves in R2 diffeomorphic to 
the boundary of a reference region D and enclosing the same 
area asD. We let...#" denote the space of all such pairs (l:,v). 
The Hamiltonian approach to hydrodynamic problems was 
introduced in the fixed boundary case by Arnold 17 and de­
veloped by Marsden and Weinstein,lS The free boundary 
case has also been studied by Sedenko and Iudovich. 19 

The equations of motion for an ideal fluid with a free 
boundary l: with surface tension 'T are 

av + (v.V)v = _ Vp, al: = (v,v), 
at at (1) 

div v = 0 and p!l: = 'TK, 

where v is the unit normal to the surface, l:, K is the mean 
curvature of l:, and 'T is the surface tension coefficient, a 
numerical constant. 

The Poisson bracket will be defined for functions F,G: 
...#" ..... R, which possess functional derivatives defined as fol­
lows. 

(i) 6F 16v is a divergence-free vector field on D~ such 
that 

Dv F(l:,v).8v = r (8F ,8v) dA, 
JD)1 8v 

where the partial (Frechet) derivative DvF is computed 
with l: fixed. 

(ii) 6F 18q; is the function on 2 with integral zero given 
by 

8F = (6F ,v) . 
6q; 8y 

(The symbol q; represents the potential for the gradient part 
of y in the Helmholtz, or Hodge, decomposition. ) 

(iii) 6F 18l: is a function on l: determined up to an addi­
tive constant as follows. A variation 6l: of l: is identified 
with a function on l: representing the infinitesimal variation 
of l: in its normal direction. It follows from the incompress­
ibility assumption that 6l: has integral zero. Let 8F 18l: be 
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the function determined up to an additive constant by 

r 8F 8~ds=D~ F(~,v).8~. 
J~ 8~ 
We now define a Poisson bracket on f as follows. For 

functions F and G mapping f to R and possessing func­
tional derivatives as defined above, set 

{F,G} = i (Ct), 8F X 8G) dA 
D.,. 8v 8v 

(2) 

where Ct) = curl v. This Poisson bracket on f is derived 
from the canonical cotangent bracket on T * 9ff , where, in the 
two-dimensional case, 9ff = Embvol (D,R2) is the manifold 
of volume-preserving embeddings of a two-dimensional ref­
erence manifold D into R2, by reduction by the group 
G = Diffvo1 (D), the group of volume-preserving diffeomor­
phisms of D (i.e., the group of particle relabeling transfor­
mations). (See Lewis et af.6 for details. ) 

We take our Hamiltonian to be 

H(~,v) = i ~ Ivl 2 dA + T r ds. 
D>. 2 J~ 

The functional derivatives of H are computed to be 

8H = v, 8H = (8H ,v) = (v,v), 
8v &p 8v 

8H =~ Ivl 2 + TK 
8~ 2 ' 

(3) 

where 8H I 8~ is taken modulo constants. For this H and the 
Poisson bracket (2), the equations of motion ( 1) for the free 
boundary fluid with surface tension are equivalent to the 
relation aF I at = {F,H} for all functions F onf possessing 
functional derivatives. 

We consider the stability of the planar incompressible 
fluid flow such that the boundary ~e is a circle of radius rand 
the fluid is rigidly rotating with angular velocity o. We shall 
apply the energy-Casimir method as follows. For the circu­
lar equilibrium solution of the equations of motion, we shall 
find a conserved quantity C such that He = H + C has a 
critical point at the equilibrium. We shall then test for defi­
niteness of the second variation of He at the equilibrium 
point. If it is definite, then the equilibrium is said to be for­
mally stable. (See Holm et aU for a thorough description 
and applications of the energy-Casimir method. For details 
of the following stability analysis, see Lewis et af.7) 

One class of conserved quantities consists of the Casi­
mirs of the Poisson manifold f, i.e., functions Con f 
satisfying {C,F} = 0 for all functionsF for which the bracket 
is defined. We will make use of Casimirs of the form 

CI(~'V) = i <I>(Ct)dA, 
D>. 

where <I> is a C 2 function on R2 and Ct) = (curl v,i). We will 
also include the angular momentum 

J(~,v) = i (xXv,i)dA. 
D>. 

Here J is the momentum map associated to the left action of 
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the group 0(2) on f. The conservation of J is a conse­
quence of the invariance of the Hamiltonian H under the 
0(2) action, which implies aJ lat = {J,H} = O. The inclu­
sion of J in the modified Hamiltonian He allows us, roughly 
speaking, to view the fluid from a rotating frame with arbi­
trary angular velocity. 

We take our total conserved quantity to be 

He(~,v) = L>. (~ IvI 2-,u(xxv,i) + <I>(Ct))dA 

+T L ds, 

where,u is a constant, as yet undetermined. Using elemen­
tary vector identities, we can rewrite He as 

He (~,v) = i (~IVI2 - ~,u2IxI2 + <I> (Ct)) dA 
D>. 2 2 

+T L ds, 

where v = v - ,uzXx. This rephrasing corresponds to view­
ing the fluid from a flame rotating with constant angular 
velocity,u; v is the fluid velocity in the rotating flame. 

The first variation of He is computed to be 

DHe (~,v)o(8~,8v) (4) 

= i (v,8v) + <I>'(Ct)Hcurl8v,i»)dA 
D>. 

(5) 

(6) 

We now consider the case where :le is a circle of radius r 
and Ve = (.o./2)ixx for some constant 0, i.e., the equilibri­
um flow is rigid rotation with angular velocity O. The circle 
~e has constant mean curvatureK = l/r. WerequireDHe to 
vanish at this equilibrium. Since Ct)e = (curl ve,i) = .0., 
DH e depends on <I> only through the constants <I> (.0.) and 
<1>' (0). If we set ,u = 0/2, corresponding to choosing a 
frame moving with the rigidly rotating fluid, then ve = 0, so 

DHe (~e,ve )o(8~,8v) 

= i <I>'(.o.Hcurl8v,i)dA 
D>. 

= i <I>'(.o.Hcurl8v,i)dA, 
D ... 

since 8~ satisfies f~ 8~ ds = o. Thus DHe(~e,ve) = 0 iff 
<1>' (0) = o. For convenience we choose <I> = o. (Other 
choices of <I> will give better stability estimates. ) 

The second variation of He at a general point (~, v) is 
calculated to be 
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D 2HC (l:,v)·(8l:,8v)2 

= r (18v1 2 + <l>"(liJ)'lcurl8vI 2)dA 
JD>: 

+ i [2(v,8v) + <l>'(liJHcurl8v,z»)8l: 

+ Hlvl 2 - !,u2IxI2 + TK + <l>(liJ»)(82l: + K8l:2) 

+ ~ (~ Ivl 2 - ~,u2IxI2 + <l>(liJ») 8l:2 
Jv 2 2 

- T(a8l:)8l: - T~8l:2] ds, 

where a is the Laplacian on l: and 82l: is the variation of 8l: 
with respect to l:. (The presence of the terms involving 82l: 
is due to the constraints on the variations of l: arising from 
the fact that the manifold Y of boundary curves is not a 
linear space; for fixed l: the space ofv's on l: is linear, so no 
such 82v term arises. ) 

For the circular flow described above the second vari­
ation reduces to 

D 2Hc (l:e,ve )-(8l:,8v)2 

= r 18vl2 dA 
JD>: 

- i[(~rr8l:2+T(a8l:)8l:+ ~8l:2]dS. 
It follows that D 2HC (l:e ,Ve ) is positive definite iff 

T i (- ~ 8l:
2

- (a8l:)8l:)ds>(~r r i 8l:
2

ds 

(7) 

for all area preserving variations 8l:. 
We simplify the expression of this condition by estimat­

ing - (a8l:)8l: using eigenvalues of the negative of the La­
placian on the circle of radius r. The eigenfunctions are 
8l:k,tP(8) =cosk(8-¢) with eigenvalues Ak,tP = (k/r)2 
for all positive integers k. The eigenfunction 8l: 1,tP 

= cos (8 - ¢) corresponds to an infinitesimal translation in 
the ¢ direction. If we wish to consider our system modulo 
position, regarding two configurations as equivalent if one 
can be obtained from the other by a Euclidean motion, then 
we can simply ignore the perturbations generated by the low­
est eigenfunctions 8l: 1,tP and test for the definiteness of 
D 2 He only with respect to perturbations which actually dis­
tort the drop shape. In this case, taking A2,tP = 4/r as the 
lowest admissible eigenvalue, D 2HC is positive definite iff 

3r/r> (!lI2)2. (8) 

It follows from the stability analysis above that the ri­
gidly rotating circular drop (l:e' v e) is formally stable iff (8) 
holds. If we fix values for T and r and consider the rotation 
rate n as a variable parameter, then the above statement may 
be interpreted as saying that the circular solution loses (for­
mal) stability as the parameter 0 increases through the criti-
cal value O2 = ~12r/? Typically, one expects that at a 
point where a known curve of solutions loses stability (in 
this case, when the second variation of the Hamiltonian loses 
definiteness) a "new" branch of solutions bifurcates from 
the known curve. Thus we look for a bifurcation of critical 
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points of H - (0/2)J at (l:e've ) when 0 = O2, 
We now consider the 0(2) action on the manifoldvY. 

This action is induced by the 0(2) action on R2 as follows: 
Let Ry: R2--->R2 denote the action of YEO(2) on R2. Then 
y-l: = {Ry(x): xEl:} and y-(l:,v) = (Y'l:, Ry. v). We are 
concerned here primarily with relative equilibria; in particu­
lar, we are seeking equilibria whose motion is given by the 
action of some curve in the group 0 (2). Since the motion of 
our configurations must be continuous, we do not allow a 
sudden flip; hence the motion must be given by a smooth 
rotation. We choose to work with the group 0 (2) so as to be 
able to capture any reflectional symmetries of the equilibri­
um configurations, although this is not the appropriate 
group for a study of the dynamics of the problem. While the 
Hamiltonian is invariant under the 0(2) action, the dynam­
ics are not invariant under reflection; hence, if one wishes to 
consider the time-dependent behavior of solutions near the 
bifurcating equilibria, it is necessary to take SO(2), rather 
than 0(2), as the appropriate symmetry group. The SO(2) 
action preserves both the bracket and the Hamiltonian; thus 
the theory of bifurcations of Hamiltonian systems with sym­
metry may be applied in this case. 

When discussing the symmetries of a given configura­
tion it is convenient to do so within a given rotating frame. 
This is motivated as follows: consider a drop moving in rigid 
rotation with angular velocity 0; if the drop shape is fixed at 
some time to by a reflection across an axis X, then at time t it 
must be fixed by reflection across Rn(t _ ,,,)/2 X, where 
Rn(t _ ',,)/2 denotes rotation through the angle 0 (t - to) /2, 
while in general it will not continue to be fixed by reflection 
across X. Thus, while the conjugacy class of the isotropy 
subgroup of the drop is fixed, the actual axes of symmetry of 
the drop vary in time. Shifting the problem to a rotating 
frame eliminates this complication; a rigidly rotating drop is 
stationary in the appropriately chosen frame and hence has a 
constant isotropy subgroup. 

Another advantage of viewing drop symmetries from 
within a rotating frame is that in this context one can have 
nontrivial velocity fields which are fixed by orientation re­
versing actions. More specifically, if one considers rigidly 
rotating equilibrium configurations, then such drops are 
fixed points of some subgroup of the 0 (2) action in the sense 
that the drop shape is preserved by the subgroup, although 
the velocity field is reversed. [If one incorporates a time re­
versal as part of the flip action, then rigid rotation is fixed by 
the 0(2) action.] Within an appropriately chosen rotating 
frame the velocity field of a rigidly rotating drop is equal to 
zero; thus, if we consider the action of 0(2) within this 
frame, the drops described above are actual fixed points un­
der the action. For these reasons we shall now shift the prob­
lem to a rotating frame and work with triples (l:,v,O), 
where l: denotes as usual the drop boundary, 0 is the rota­
tion rate of the rotating frame, and v is the velocity field in 
the rotating frame. For an arbitrary pair (l:, v), we take 0 to 
be the average angular velocity of the velocity field, i.e., 

0= 1 i (curl v,z)dA; 
volume D}; D>: 

for a rigidly rotating drop, this sets the frame rotation rate 
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equal to the rotation rate of the drop. For example, the con­
figuration (~,(.o./2)iXx) is identified with the triple 
(~,O,.o.). The dynamics in the rotating frame are determined 
by the bracket 

{F,G} = r (w + .o.i, 81:' X 8~) dA 
JD~ 8v 8v 

r (8F 8G _ 8G 8F) ds 
+ J}; 8~ 8ip 8~ 8ip , 

where w (respectively, 8F /8v and 8F /8ip) is the vorticity 
(respectively, functional derivatives of F with respect to v 
and ip), and the Hamiltonian H: ffX R ..... R is given by 

H(~,v,.o.) = ~ L>: (Iv12 - (~r IXI2) dA + 1" 1 ds 

= ( H - ~ J ) ( ~, v + ~ iXx) . 

The trivial solution (~e,ve) = (~e'O,.o.) is a fixed point 
of the 0(2) action in the rotating frame; we expect that the 
new solution branch bifurcating from (~e,ve) should be 
fixed by some subgroup of 0(2). We find, in fact, that the 
new solutions have isotropy subgroup conjugate to the sub­
group Z2 X Z2 of 0 (2) generated by rotation through 1T and 
reflection across the x axis. (For a discussion of the theory of 
bifurcation with symmetry relevant here, see Ihrig and Go­
lubitsky20 or Golubitsky et al. 5

) 

As we are concerned only with the immediate neighbor­
hood of the point (~e,ve), it is convenient to work in normal 
coordinates centered at (~e,ve)' We endow ff with the 
0(2) invariant metric 

«(8~,8v),(8i,8v») = r 8~8ids+ r (8v,8v)dA J}; JD~ 
and use the exponential map exp associated to the metric 
given above to map a neighborhood Vof (0,0) in T(};e.ve> ff 

diffeomorphically onto a neighborhood U of (~e' ve) in ff. 
We define the function B on V X R to be the pullback of the 
Hamiltonian plus conserved quantity; 

B(8~,8v),.o.) = H(exp(8~,8v»). 
It follows from the in variance of H and the equivariance of 
exp that B is 0(2) invariant. 

We construct the bifurcation equation using the Lia­
punov-Schmidt procedure. First we construct the splitting 

2'" . 
V = VI Ell V2, where VI = Ker D H(0,0,.o.2) and V2 IS the 
« , » orthogonal complement to VI' We have 

2'" 2 D H(0,0,.o.2) = D (H - (.o.2/2)J)(~ .. ve)' 

Thus 

VI = Ker D 2(H - (.o.2/2)J)(~e,ve) 

= {(cos 20,0),(sin 20,0)}. 

The pure rotation elements of 0(2) act on the 8~ compo­
nent of (8~,8v) by a negative phase shift, i.e., 

R ~ '8~(0) = 8~(0 - cp); 

a reflection across the axis at an angle cp to the x axis is given 
by 
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Let 

F: VXR ..... V, 

(
8B 8B ) (8~,8v,.o.) ..... - (8~,8v,.o.), - (8~,8v,.o.) 
8~ 8v 

denote the map determined by 

r (8B (8~,8v,.o.),8v) dA + r 8B (8~,8v,.o.)8~ ds 
JD~ 8v J}; 8~ 

= DB(8~,8v,.o.)· (8~,8v), 
where ~ denotes the first component of exp(8~,8v), for all 
(8~,8v)EV. Let P denote the orthogonal projection P: 
V ..... V2• The mapping 

po F: VIX V2 XR ..... V2 

is nonsingular at (0,0,.0.2); hence, by the implicit function 
theorem, there exists an 0(2) equivariant mapping u: 
VI X R ..... V2 such that 

(P 0 F) «8~,0) + u(8~,0),.o.),.o.) = 0 

for all (8~,0}EVI' The bifurcation equation is then given by 

(Id - P) 0 F«8~,0} + u(8~,0},.o.),.o.} = O. 

We introduce the coordinate chart 'Ii on a neighborhood 
W X Yin H2XH, given by 

'Ii: W X Y ..... VI X Y, 

(x, y,.o.) ..... «x cos 20 + y sin 20,0) 

+ u(x cos 20 + y sin 20,0),.o.),.o.}. 

We pull back B by 'Ii to obtain the bifurcation Hamiltonian 
v v '" 
H: W X Y ..... lIt given by H = H 0 'Ii. In summary, we have 
reduced the original problem to that of finding critical points 
of an 0(2) invariant function on a two-dimensional space 
with an 0(2) invariant metric. 

The bifurcation space Wpossesses nontrivial symmetry. 
This symmetry is not artifically imposed on the system; it is a 
natural property of Ker D 2H(~e'O) which is inherited by 
the bifurcation space. TheO(2} action on Winduced by that 
on VI is simply twice the standard 0 (2) action on H2; i.e., for 
x = (x, y},O'x = RUJ (x). In this action, rotation through 1T 

is equivalent to the identity action, thus the entire space Wis 
fixed by the subgroup Z2 generated by rotation through 1T. 

We also note that any element (x,y) of Wis fixed by reflec­
tion across the line through the angles arctan(x/y) and 
arctan(x/y} + 1T/2. Thus any element of W has isotropy 
subgroup 0(2}x conjugate to Z2XZ2' Since the mappings u 
and exp are equivariant, it follows that any solution XE W X Y 
of the bifurcation equation must be mapped to an 0(2}x 
invariant solution in ffX H (the "rotating frame space") 
under exp 0 'Ii. 

There are two possible methods for demonstrating that 
a bifurcation does, in fact, occur. If we consider the group 
o ( 2) acting on the space W, then each isotropy subgroup 
0(2}x, for some nonzero element x of W, has a one-dimen­
sional fixed point space consisting of the line spanned by x. 
Thus, we can apply the equivariant branching lemma to 
show that there is a branch of relative equilibria with iso­
tropy subgroup 0(2}x branching from the trivial solution 
branch at .0. = .0.2' The equivariant branching lemma states 
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that, given a Lie group G acting on a vector space V such that 
(i) Fix(G) = {O}; 
(ii) reG is an isotropy subgroup satisfying 

dim(Fix(r») = 1; 
(iii) g: V X R ..... Vis a G-equivariant bifurcation problem 

satisfying D,tDg(O,A.o)ovo#O for some A.o and some nonzero 
Vo E Fix(r), 
then there exists a branch of solutions (tvo,A.(t») to the equa­
tion g(v,A.) = O. (See Cicogna4 or Golubitsky et al.5 for a 
proof of the equivariant branching lemma.) The first two 
conditions are clearly satisfied for the 0 (2) action on W; we 
take, for example, the subgroup ~XZ2 corresponding to 
reflection across the x axis and rotation through 1T as our 
isotropy subgr~p and let Vo = (1,0). The equivari~ce of 
the map F = DH follows from the 0 (2) invariance of H; the 
fact that DF(O,0,02) = D 2H(0,0,02) = 0 implies that the 
map F and the point (0,0,02) form a "bifurcation problem." 
Finally, we compute that 

2
V 

Do DF(O,0,02)' (1,0) = Do D H(O,0,02)' (1,0) 

= - °21Tr/ 2 

#0, 

thus the conditions of the equivariant branching lemma are 
fulfilled and a branch of solutions of F(x,O,n) = 0 must ex­
ist. It follows from the equivariance of the equations that the 
existence of one solution branch implies the existence of an 
entire circle of solution branches swept out by the group 
action. 

If we wish to consider only symplectic group actions, 
then we must restrict our attention to the group SO(2), 
which preserves the symplectic two-form on the space W. In 
this case, there are no one-dimensional fixed point spaces, so 
the equivariant branching lemma is not applicable. We can, 
however, apply the corollary given above to show that a bi­
furcation occurs. [The fact that the SO (2) action on W is 
twice the usual SO( 2) action does not effect the applicability 
of the corollary.] The space Wand function H clearly satisfy 
condition (i) of the corollary; we shall show that the point 
(O,0,n2) satisfies conditions (ii) and (iii): 

=0; 

(iii) Do D 2H(0,0,02) 

= (- 02
0

1Tr/ 2 0) 
- °21Tr/ 2 

#0; 

provided that O2 = ~12'T/?#0 (e.g., that the surface ten­
sion coefficient 'T is nonzero). 

Thus the corollary applies to Wand H and so there is a 
branch of critical points of H bifurcating from (0,0,0) at 
o = O2, Note: The matrices computed above are simply sca­
lar multiples of the identity matrix; these scalars are the rel­
evant quantities which must be computed when checking the 
conditions of the equivariant branching lemma in the 0(2) 
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case. Taking the image of the solution branch under the map 
exp 0 'II, we obtain a curve in ff of critical points of the 
original function H + pJ. The elements in ff thus obtained 
have the same isotropy subgroups as their preimages in W; in 
particular, the isotropy subgroups of elements along the new 
branch near the bifurcation point contain a subgroup conju­
gate to Z2XZ2. 

By computing higher-order derivatives of the bifurca­
tion equation, it may be seen that the bifurcation equation 
has normal form 0 = - V(x2 + y2)(X2 + y2 + 0 - O2)) 
(see Lewis8 for details). Thus, the bifurcation at O2 is sub­
critical with respect to the bifurcation parameter 0 (i.e., 
locally the nontrivial solutions exist only for values of 0 less 
than O2), 

Remark 1: The bifurcation is supercritical with respect 
to angular momentum. Angular momentum is the "physi­
cally appropriate" bifurcation parameter in the sense that 
angular momentum is a physically meaningful conserved 
quantity for all isolated flows (whereas the bifurcation pa­
rameter n, which functions mathematically as a Lagrange 
multiplier, is related to angular velocity, a physical param­
eter which is only defined for rigidly rotating flows). In this 
case, the bifurcation equation has normal form 
0= V( (x2 + y2)(X2 + y2 + p2 -p»), wherep is the bifurca­
tion parameter and P2 is the angular momentum at the bifur­
cation point; the energy-Casimir method shows the new 
branch is formally stable near the bifurcation point, which 
agrees with the general notion of transfer of stability if one 
views the bifurcation as supercritical. Despite the greater 
physical relevance of angular momentum, we have chosen 
the Lagrange multiplier 0 as the bifurcation parameter, 
since the necessary computations are straightforward in this 
context and it is easy to interpret the results with respect to 
angular momentum once the bifurcation branches have been 
determined. 

Remark 2: The symplectic form induced on the reduced 
space W is a multiple of the standard symplectic two-form 
on R2, given byw(x,y), (x,y») =yx - yx, which changes 
sign under the action of reflections; hence, as remarked 
above, the symplectic structure on the reduce space W is not 
preserved by the action of the orientation reversing elements 
of 0(2). The symplectic form is, however, preserved under 
the action of S I; hence the analysis of Golubitsky and 
Stewart4 may be applied, viewing the drop as an S 1 invariant 
Hamiltonian system. We see that in this context the behavior 
of the drops near the point of bifurcation is generic. 

Remark 3: It can be seen from the second variation of 
H + pJ (or H + C) that the variation will be indefinite in 
the direction of (8l:k,III'0) = (cos k«() - ¢),O) when p2 
= (k 2 - 1 )'T/r. It may be shown as above that a subcritical 

bifurcation occurs at Ok = ~4(k 2 - 1 )'T/? The solution 
branches intersecting the trivial solution branch are invar­
iant under rotation through 21T/k and flips across lines con­
jugate to n1T/k; thus their isotropy subgroups are conjugate 
to Dk, the dihedral group of symmetries of a k-gon. Note: Dk 
is the semidirect product Z2@Zk' where Z2 acts on Zk by 
negation, i.e., by reversing the rotation associated with the 
elements of Zk' 

Remark 4: The remark in Lewis et al. 7 regarding three-
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dimensional equilibria is incorrect; it will be corrected else­
where. 
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The effe~tive conductivity tensor is calculated for a periodic composite composed of 
alternatmg rectangular blocks of two very unequal conductors. The two-dimensional case of a 
checkerboard pattern of rectangles is also treated, and Gautesen's result for it is obtained. The 
checkerb~ard of parallelogr~ms is treated, too. The method can be applied to alternating 
parallelepIpeds and to certam other configurations. 

I. INTRODUCTION 

We consider the effective conductivity tensor 1: (0' a ,0' b ) 

of certain two- and three-dimensional periodic composites 
composed of two materials with scalar conductivities 0' a and 
O'b' Examples are the "checkerboard" patterns of rectangles 
or parallelograms in two dimensions (Fig. 1) and the analo­
gous arrangement of rectangular blocks or parallelepipeds in 
three dimensions (Fig. 2) . We shall show how to calculate 1: 
asymptotically as O'a/O'b tends to zero or to infinity. This 
work grew out of an attempt to obtain a simpler deriviation 
of one ofGautesen's I recent results for a rectangular "check­
erboard" in two dimensions. 

First we shall present our result for the three-dimen­
sional alternating arrangment of rectangular blocks shown 
in Fig. 2. Let the edges of the blocks be parallel to the axes, 
and let h j be the length of the edge parallel to the Xi axis. 
Clearly the axes are the principal directions of 1:. Our result 
for 1:11 is 

1:11 (O'a'O'b) - [hi (h2 + h3)/h2h3] (O'aO'b) 1/2 

aSO'a/O'b-+Oor 00. (1.1) 

For cubes this yields 2(O'a O'b ) 1/2, which was obtained before 
by Milton2 and by Soderberg and Grimvall,3 while when h3 

tends to infinity it yields Gautesen's two-dimensional result 
(h l /h 2 ) (O'a ,O'b ) 1/2. Cyclic permutation of indices in (1.1) 
yields 1:22 and 1:33, 

In Sec. II we derive the result for a two-dimensional 
rectangular checkerboard and in Sec. III we derive the three­
dimensional result ( 1.1). In Sec. IV we calculate the conduc­
tance 0' between two highly conducting parallelograms that 
meet at a corner. Then in Sec. V we use 0' to determine 1: for a 
checkerboard of parallelograms. The result (1.1) is not uni­
form in the hi> so an appropriate modification of it is dis­
cussed in Sec. VI. Finally in Sec. VII we discuss these results 
and indicate some generalizations of them. 

II. RECTANGULAR CHECKERBOARD PATTERN 

We begin with the two-dimensional checkerboard of 
rectangles with conductivities 0' a and 0' b shown in Fig. 1 (a) . 
The principal axes of the effective conductivity tensor 1: are 
the X I and X2 axes, so 1: 12 = 1:21 = O. By definition 1: 11 is just 
the average current density in the x I direction resulting from 
an electric field of unit strength in the XI direction. We sup-

pose that 0' a » 0' b' Then the current will flow through the 
highly conducting regions as much as possible, and it will 
traverse the poorly conducting regions only at the corners 
where it goes from one highly conducting rectangle to a dia­
gonally adjacent one. In Sec. IV we shall show that there is a 
well-defined conductance 0' associated with such a corner. 

We now use 0' to find the current density due to a unit 
electric field along the XI axis. This field produces a voltage 
difference hi between the planes XI = - hl/2 and XI = h l / 

2. As a result a current hi 0' flows across each corner, and the 
resulting current density 1:11 is this current divided by the 
vertical spacing h2 between corners. Thus 1: 11 -h I0'/h2, and 
similarly 1:22 -h2u/h l • These results are asymptotic as O'a/ 

0' b -+ 00 because only then can we associate all the conduc­
tance with the corners. 

For a square checkerboard we have shown4
•
5 that 

1: 11 = 1:22 = (0' a 0' b ) 1/2. Therefore by applying our asymp­
totic result to this case, for which hi = h2' we find that 

( ) 1/2 B . h' f . 0' - 0' a 0' b • Y usmg t IS value 0 0' 10 the preceding for-

(a) 

CTb X2 eTa 

0 X1 

eTa eTb 

(h) a2 =(h2 cos a , h2 sin a ) 

FIG. I. (a) Part of a checkerboard pattern of rectangles with conductivities 
U a and U b' Edges parallel to the Xl axis are oflength hI and those parallel to 
the X 2 axis are of length h2• (b) Part of an alternating pattern ofparallelo­
grams with conductivities U a and U b • The vertices are generated by the vec­
tors Q 1 = (h1>O) and Q 2 = (h2 cos a, h2 sin a). 
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FIG. 2. Part of an alternating arrangment of rectangular paraUelipipeds of 
conductivities (Ta and (Tb' 

mulas, we obtain for the rectangular checkerboard 

~II- (h ,lh2 ) (o-ao-b) 1/2, 

~22- (h2Ih , )(o-ao-b )112 as O-alo-p -+ 00. 

(2.1 ) 

This is just Gautesen's result, 1 which he derived in a different 
way that proves it to be asymptotically correct. In Sec. IV we 
shall calculate 0- directly for general corners, including rec­
tangular ones, and again obtain the value (0-a 0-b ) l/Z for the 
present case. 

III. RECTANGULAR BLOCK PATTERN IN THREE 
DIMENSIONS 

We shall now obtain the result (1.1) for the medium of 
alternating rectangular blocks shown in Fig. 2. The diagonal 
element ~ II is, as before, the average current density in the x I 
direction due to a unit electric field in the x I direction. When 
o-u >o-b the current will flow through the highly conducting 
blocks as much as possible. It will pass through the poorer 
conductors only along the edges where it goes from one high­
ly conducting block to another. The conductance per unit 
1ength of such an edge is just 0-, where 0- is the two-dimen­
sional conductance introduced in the preceding section. The 
voltage between the planes x I = ± h /2 is just h I' Therefore 
the current through each highly conducting block is 
(2hz + 2h3 )h10- because 2hz + 2h3 is the length of edge be­
tween a highly conducting block and its highly conducting 
neighbors in the direction of increasing x I' The current den­
sity is obtained by dividing this current by the area 2hJhz, 
which is the cross-sectional area normal to the x 1 axis of a 
highly conducting block and a poorer conducting neighbor. 
In this way we get .Ill -hi (hz + h3 )0-Ih2h3 • When we use 
the value 0-- (o-a O-b) 1/2 in this formula, we obtain our result 
(1.1). 

IV. RESISTANCE OF A CORNER 

In order to treat the two-dimensional medium of alter­
nating parallelograms shown in Fig. 1 (b), we shall first de­
termine the conductance 0-( a) of the corner shown in Fig. 3. 
The medium with the high conductivity 0-a occupies the sec­
tor - al2 < () < al2 and the opposite sector, while the other 
two sectors contain the medium of conductivity O-p . The cor­
ner is surrounded by a circle of radius R which is an insulator 
in the o-b regions and a perfect conductor in the O-a regions. 
Its potential is + 1 in the interval - al2 < () < a/2 and - 1 
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cpr=O 

Cp=-1 

cpr=O 

FIG. 3. A corner of the pattern in Fig. 1 (b). rotated to be symmetric about 
the coordinate axes. The value of the potential If = ± 1 and its derivative 
If, 0 are indicated on a circle of radius R centered at the vertex. 

in the opposite sector. Then the current between these two 
conductors is just the potential difference multiplied by the 
conductance, I.e., 20-. We shall calculate the current and thus 
determine 0-. 

In terms of polar coordinates p, () the potential q; must 
be a function of pi Rand (), by dimensional analysis: 
q; = q;(pIR,(). Then the current, which is equal to 20-, is 
given by 

2o'(a) = [/2 O-a a~(p ,())I R d() 
-a/2 Jp R p=R 

[

12 

= O-a q;P (l,()d(). 
-a/2 

(4.1 ) 

Here q;p is the derivative of q; with respect to its first argu­
mentp = piR. From (4.1) we see thato-is independent ofR, 
the radius ofthe circular conductors and insulators, so it can 
be interpreted as a property of the corner. 

To simplify (4.1) we use the symmetry of q; about () = 0 
to write the integral as twice the integral from 0 to a12: 

[

12 

a = O-a 0 q;P (l,()d(). (4.2) 

Now q; must be a harmonic function satisfying the following 
conditions: 

q;(l,() = 1, o <()<a/2, 

q;P (I,() = 0, al2 < () < 1T12, 

q;o (p,O) = q;(p,1T12) = 0, 0 <p < 1, 

q; &, ~ -) = q; &,~ + ). 

o-aq;o~, ~ - ) = o-bq;O~' ~ +). 0 <p < 1. 

(4.3) 

(4.4 ) 

(4.5) 

(4.6) 

Equation (4.3) follows from the specification of the poten­
tial on the conductor, (4.4) is the condition of no current 
flow into the insulator, (4.5) expresses the evenness of q; 
about () = 0 and its oddness about () = 1'12, while (4.6) 
states that q; and the normal component of current are con­
tinuous at () = a12. 

To solve for q; we write 

q;=AaPVcosv(), 0"(),,a/2, (4.7) 

q;=AbPv sinv(1T/2-(), aI2" ()"1'/2. (4.8) 
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These functions are harmonic for any v and they satisfy 
(4.5). Upon imposing (4.6) we get 

va . (11' a) A cos-=Ab smv ---
a 2 22' 

(4.9) 
. va (11' a) Aaua sm-=Abub cos v --- . 

2 2 2 
Dividing the second equation in (4.9) by the first yields 

Ua tan v; =Ub cotv(; - ~). (4.10) 

Whenua/ub » 1, it follows from (4.10) thatthefirst positive 
root for v is small. Therefore we expand tan and cot and solve 
for v to obtain 

v-2(ub/a(11' - a)ua)1/2, for ua/ub» 1. 

Now (4.7) and (4.8) become 

q:>-AaPv, 0<0<a/2, 

q:>-AbP
V v(11'/2 - 0), a/2<0<11'/2. 

(4.11 ) 

(4.12) 

(4.13) 

By using (4.12) in (4.3) we find that Aa -1 and then the 
first of Eqs. (4.9) yieldsAb -2/v( 11' - a). We also see from 
(4.13) that (4.4) is satisfied to order v. Finally we use (4.12) 
for q:> in (4.2) with Aa - 1 to get 

u(a) -Ua va/2. (4.14 ) 

Then by substituting (4.11) for v into (4.14) we obtain the 
final result 

u(a)-(auaub/(11'-a))I12, forua/ub»1. (4.15) 

When a = 11'/2 this reduces to the result 
0'(11'/2) - (UaUb) 1/2, which we obtained in Sec. II. 

v. PARALLELOGRAMS IN A CHECKERBOARD 
PATTERN 

We shall use the result ( 4.15) to calculatel: for the two­
dimensional checkerboard of parallelograms shown in Fig. 
1 (b). First we note that the average current density I is relat­
ed to the average applied fieldEby 1= l:E, and therefore the 
component of I parallel to the unit vector n is 

n-I = n-l:E. (5.1) 

By using this relation for three pairs ofvalues of nand E, we 
shall obtain three equations from which to determine the 
three independent components of l:. 

First we introduce the two vectors a I and a2 , which gen­
erate the lattice of vertices, defined by a I = hi ( 1,0) and 
a2 = h2 (cos a,sin a). Here h I and h2 are the lengths of the 
two sides of a parallelogram, and a is the angle between 
them. The unit normals to these sides are bl = (0,1) and 
b2 = (sin a, - cos a). Now we choose n = E = bl in (5.1) 
to obtain 

bl 'I=l:22' (5.2) 

To compute the current density on the left side of (5.2) 
we note that the voltage across a parallelogram in the verti­
cal direction is h2 sin a. The vertical current through one 
highly conducting parallelogram is the sum of currents 
across two comers with angles a and 11' - a. Thus the cur­
rent is h2 sin a[u(a) + 0'(11' - a)). The current density is 
obtained by dividing this current by 2h l, the horizontal ex-
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tent of two parallelograms. Thus (5.2) yields 

l:22- [(h 2 sin a)/2hd [u(a) + 0'(11' - a)). 

Finally (4.15) and (5.3) give 

l: _.!2 (0' 0' )1/2 
22 2hl a b 

X sin a [ ( 11' : a y12 + ( 11' : a y/1 
Next we take n = b2 and E = bl in (5.1) to get 

(5.3 ) 

(5.4) 

b2'I=sinal:12-cosal:22' (5.5) 

The vertical voltage across a parallelogram is still h2 sin a. 
The net current through a parallelogram in the b2 direction 
is the difference between the current in at the comer of angle 
a and the current out at the comer of angle 11' - a. Thus it is 
h2 sin a[u(a) - 0'(11' - a)], and it must be divided by the 
width 2h2 of two parallelograms in the a2 direction. Thus 
(5.5) becomes 

sin al: 12 - cos al:22 - [(sin a)/2) [u(a) - 0'( 11' - a)). 
(5.6) 

Solving for l:12 in (5.6) with the aid of (5.3) yields 

l:12 - [(h2 cos a)/2hd [a(a) + 0'( 11' - a)) 

+Hu(a)-u(11'-a)). (5.7) 

This and (4.15) for 0' gives 

l:12-.!2 (UaU
b

) 1/2 cos a [(_a __ )112 + (11' - a )112] 
2hl 11'-a a 

+ (Uau; )1/2 [( 11': a y12 _ (11': a y/1 (5.8) 

As a third choice we take n = E = b2 in (5.1), which 
becomes 

b2'I = sin2 al: l1 - 2 sin a cos al: 12 + cos2 al:22. (5.9) 

The voltage in the b2 direction across one parallelogram is 
b2 'a l = hi sin a and the current in the b2 direction is 
hi sina[u(a) +u(11'-a)]. Dividing this current by 2h2 
and using it in (5.9) yields 

sin2 al: l1 - 2 sin acos al: 12 + cos2 al:22 

-[(hi sina/2h2][u(a) +u(11'-a)). (5.10) 

Solving for l: 11 leads to 

~ (hi h2 2) 1 [ "11- - +-cos a --. - u(a) +u(11'-a)) 
h2 hi 2sma 

cos a +-.- [u(a) -u(11'-a)). 
sma 

When (4.15) is used in (5.11) it becomes 

l:11-(!!J.+ h2cos
2
a) (Ua~b)1/2 

h2 hi 2sma 

(5.11) 

X [ ( 11' : a ) 112 + ( 11' : a ) 112] + (UaUb) 1/2 

Xc~sa [(_a_)112 _(11'-a)I12]. (5.12) 
sma 11'-a a 

Equations (5.4), (5.8), and (5.12) determine l:. 

Joseph B. Keller 2518 



                                                                                                                                    

VI. NONUNIFORMITY 

The result (2.1) is not valid when h21 h I tends to zero or 
to infinity. To obtain a result that is unifonnly valid we must 
take account of the conductivity of the material away from 
the corner. We can do this roughly by replacing 0' in the 
expression 1: 11 -h I 0'Ih2 by the series-parallel conductance 

1 h2 
I + -----"----

0'- + 2h/h20'a h/20'a + h l/20'b 

2hpb 
------+--. 
0'-1+2h llh20'a hI 

(6.1 ) 

The first tenn accounts for the fact that the corner is in series 
with the resistance of half the rectangle of material 0' a' and 
this resistance tends to 2h llh20'a as hllh2 becomes large. 
The second term represents the conductance directly across 
the rectangles, which tends to 2h20'b1hl aSO'a 100b ..... 00. Then 
1:11 becomes, with 0' = (O'aO'b) 1/2 in (6.1), 

1:1I -!!J. (O'aO'b) 1/2 [1 + 2hl (~)1I2] -I + 20'b 
h2 h2 O'b 

O'a 
as - ..... 00. 

O'b 

By interchanging hI and h2 in (6.2) we get 1:22• 

From (6.2) we find that 

1:
1I 
__ a , for -1.~ _a , 0' h (0' )112 

2 h2 O'b 

(6.2) 

(6.3) 

(6.4) 

The conditions for validity of (2.1) are thus those in (6.5). 
In the same way, we can modify (1.1) for rectangular 

blocks to obtain 

Thus 

(6.7) 

(6.8) 
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(6.9) 

VII. DISCUSSION 

The method of Sec. V can be applied to a three-dimen­
sional alternating configuration of parallelepipeds, using the 
value of 0' given by (4.15). Furthennore all of our results 
remain valid if the squares, parallelograms, rectangular 
blocks, or parallelepipeds are distorted, provided that their 
shapes near the corners in two dimensions, and near the 
edges in three dimensions, are unchanged. In addition the 
method can be applied to three-dimensional periodic media 
with curved edges and a variable angle a (s) along each edge. 
Then we must integrate O'[a(s)] along each edge to find its 
conductance. 

The concept of corner conductance can be extended to 
other kinds of "corners" besides those treated in Sec. IV. For 
example, suppose that the two highly conducting sectors in 
Fig. 3 did not meet, but were separated by a small gap filled 
with the low conductance material. Then the conductance 
between the two highly conducting sectors could still be de­
fined, and the same method could employed. The results of 
Sec. II, III, V would still apply with the appropriate value 
of 0'. 

The possibility of analyzing a continuous problem by 
replacing it with a network of lumped elements is a conse­
quence of the asymptotic behavior of the solution with re­
spect to some parameter. In the present case the parameter is 
the conductivity ratio O'a 100b , which tends to zero or to infin­
ity. In other cases it is a geometrical ratio. The analytical 
basis for the proced ure is provided by the method of matched 
asymptotic expansions. In the present case, for example, the 
construction in Sec. IV provides the leading tenn in the inner 
expansion valid near each corner of the rectangles or paral­
lelograms. The leading tenn in the outer expansion within 
each highly conducting rectangle or parallelogram is a har­
monic function. It has current sources at two vertices and 
curent sinks at the other two, and a vanishing nonnal deriva­
tive on the boundaries. The magnitudes of the currents are 
determined by matching the inner and outer expansions. By 
constructing these expansions we could obtain further tenns 
in the asymptotic expansion of 1:. 

We have used similar ideas before to treat periodic con­
figurations of perfectly conducting cylinders or spheres, or 
nonconducting cylinders, in a finitely conducting matrix. 6 

Batchelor and O'Brien 7 carried it over to highly conducting 
bodies, and Buchal and Keller8 extended it to time harmonic 
problems. 
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